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Abstract: Electrospinning is a well-known technology used to create nanofiber mats from diverse
polymers and other materials. Due to their large surface-to-volume ratio, such nanofiber mats are often
applied as air or water filters. Especially the latter, however, have to be mechanically highly stable,
which is challenging for common nanofiber mats. One of the approaches to overcome this problem is
gluing them on top of more rigid objects, integrating them in composites, or reinforcing them using
other technologies to avoid damage due to the water pressure. Here, we suggest another solution.
While direct 3D printing with the fused deposition modeling (FDM) technique on macroscopic textile
fabrics has been under examination by several research groups for years, here we report on direct
FDM printing on nanofiber mats for the first time. We show that by choosing the proper height of the
printing nozzle above the nanofiber mat, printing is possible for raw polyacrylonitrile (PAN) nanofiber
mats, as well as for stabilized and even more brittle carbonized material. Under these conditions,
the adhesion between both parts of the composite is high enough to prevent the nanofiber mat
from being peeled off the 3D printed polymer. Abrasion tests emphasize the significantly increased
mechanical properties, while contact angle examinations reveal a hydrophilicity between the original
values of the electrospun and the 3D printed materials.

Keywords: nanofiber mat; electrospinning; water filter; 3D printing; FDM printing; adhesion;
stabilization; carbonization

1. Introduction

Electrospinning can be used to create continuous nanofibers or nanofiber mats, typically with
diameters in the range of tens to hundreds of nanometers [1–3]. In needle-based technology, a polymer
solution or melt is pressed out of a syringe through a fine needle and stretched in a strong electric field,
building a so-called Taylor cone while being drawn to a substrate [4]. Needleless technologies often
apply rotating cylinders or wires, which are constantly coated with polymer melt or solution [5].

Due to their large surface space, such nanofiber mats are often used in applications that necessitate
a large contact area of the material with the environment, such as catalyzers [6], medical wound
dressing [7–9], biotechnological applications [10–12], or novel filter materials [13–18].

These fine nanofiber mats with typical areal weights of a few grams per square meter or even
less, however, are mechanically not very stable [19], making an additional stabilization necessary
in many cases. This is of special relevance in the case of electrospun water or oil filters [20].
Diverse approaches have been reported in the literature to solve this problem, such as heat
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pressing [14,21], ultrasonic welding of several nanofiber mats [22], coating the nanofiber mats [23],
laminating the nanofiber mats [24], crosslinking of neighboring fibers [25], or embedding the nanofiber
mats into textile composites [26].

Additive manufacturing technologies have many applications, both in the aerospace,
automotive, and prototyping industries. At present, however, many research works focus on the
study of mechanical properties and the dimensional accuracy of manufactured models [27–29].
Here, we report on a novel approach to combine both of the aforementioned technologies, using 3D
printing on nanofiber mats to increase their mechanical stability.

Generally, 3D printing by fused deposition modeling (FDM) on macroscopic textile fabrics is
under investigation in many research groups, aiming at increasing the adhesion between both parts of
the composite by mechanical, thermal, or chemical methods [30–38]. Direct 3D printing on electrospun
nanofiber mats prepared with different equipment, however, has, to the best of our knowledge, not yet
been reported in the scientific literature. Reports of combinations of both technologies by electrospinning
on 3D printed objects [39–41], on objects for which 3D printed negative forms were created [42], or by
creating 3D printing inks from electrospun nanofibers [43], have been recently published. Only one
report on a special self-built machine, created to produce alternatingly 3D-printed and electrospun
layers by a needle-based method, can be found in the scientific literature [44]. Our results reported
here go without such specialized equipment, but evaluate 3D printing by a common FDM printer on
needleless electrospun nanofiber mats.

2. Materials and Methods

For electrospinning, the needleless electrospinning machine “Nanospider Lab” (Elmarco Ltd.,
Liberec, Czech Republic) was used by applying the following spinning parameters: high voltage
50–80 kV, nozzle diameter 0.8–0.9 mm, carriage speed 100 mm/s, bottom electrode/substrate distance
240 mm, ground electrode/substrate distance 50 mm, temperature in the chamber 22–23 ◦C, and relative
humidity in the chamber 32–33%. As substrates, either a polypropylene nonwoven or an aluminum
foil was used. On the latter, PAN nanofibers mats adhere strongly [45], allowing one to use the
aluminum foil as a relatively rigid substrate during 3D printing. Spinning was carried out for 10 min
(on aluminum), 20 min (in case of 70 kV), or 30 min (in case of 50 kV) to create sufficiently thick
nanofiber mats.

The spinning solution was prepared from 16% polyacrylonitrile (PAN) dissolved in dimethyl
sulphoxide (DMSO, min. 99.9%, purchased from S3 Chemicals, Bad Oeynhausen, Germany). PAN was
used for this proof-of-concept, since it can be electrospun from the low-toxic DMSO [46] and has been
investigated in detail during stabilization and carbonization before [47].

Some nanofiber mats were stabilized in a muffle furnace B150 (Nabertherm, Lilienthal, Germany),
at a typical stabilization temperature of 280 ◦C approached with a heating rate of 1 K/min, followed by
isothermal treatment at this temperature for 1 h. Carbonization was performed in a furnace (Carbolite
Gero, Neuhausen, Germany) at a temperature of 500 ◦C, reached with a heating rate of 10 K/min in
a nitrogen flow of 150 mL/min (STP) and isothermal treatment at this temperature for 1 h.

On these nanofiber mats, 3D printing was performed using the FDM printer Orcabot XXL (Prodim,
The Netherlands) with a nozzle diameter of 0.4 mm, using a layer thickness of 0.2 mm, a nozzle
temperature of 190 ◦C to 210 ◦C, and different printing bed temperatures between room temperature
and 80 ◦C. The polymer material was poly(lactic acid) (PLA) (purchased from Filamentworld,
Neu-Ulm, Germany). A sketch of this process is presented in Figure 1.
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at once if the distance is too small or the nozzle even touches the mat, which is opposite to 3D printing 
on woven, warp knitted, or weft knitted fabrics, where it can be advantageous in terms of adhesion 
for pressing the filament into the textile by printing “below” the textile surface [31]. On the other 
hand, if the distance is too large, the contact between both materials is lost, resulting in a very uneven 
surface (Figure 2a). It must be mentioned that gluing the nanofiber mat onto the printing bed over its 
entire area results in severe problems to detach the composite from the printing bed afterwards 
(Figure 2b) and thus cannot be recommended. 
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Figure 2. 3D printing squares of dimensions 40 mm × 40 mm on nanofiber mats: (a) rough surface for 
a too large distance between nanofiber mat and printing nozzle and (b) composite strongly sticking 
on the double-sided adhesive tape used for gluing the nanofiber mat over its entire area. 

In a first test series, nanofiber mats were glued along their borders onto the printing bed, and 
the printing bed temperature was modified from room temperature to 40 °C, 60 °C, and 80 °C. While 
a temperature of 60 °C or higher strongly supports the adhesion of a 3D printed PLA layer on the 
printing bed, here we found that printing at room temperature or at 40 °C showed similar results to 
using a printing bed temperature of 60 °C, while a temperature of 80 °C resulted in severe problems, 

Figure 1. 3D printing with fused deposition modeling (FDM) technology on a polyacrylonitrile (PAN)
nanofiber mat. The printing polymer PLA (here green) is delivered as a filament into the nozzle in
a molten state and placed on the nanofiber mat.

For the optical and chemical evaluation of the composites, we used a digital microscope VHX-600D
(Keyence, Neu-Isenburg, Germany), a confocal laser scanning microscope (CLSM) VK-8710 (Keyence),
and an Excalibur 3100 (Varian, Inc., USA) FTIR spectrometer.

Contact angles were investigated by placing drops of distilled water with a volume of 15 µL
onto the samples under examination, taking microscopic images with the aforementioned digital
microscope and fitting the angles between the drop contour and the baseline between object and drop.

The abrasion resistance of the nanofiber mats on the 3D printed polymer surface was investigated
by a Martindale abrasion tester, working according to ISO 12947, and evaluating the damage on the
surface by eye, as defined in the standard, as well as with the aforementioned digital microscope.

3. Results and Discussion

Generally, 3D printing on nanofiber mats was found to require that the distance between printing
nozzle and nanofiber mat was controlled exactly. On the one hand, the nanofiber mat breaks at once
if the distance is too small or the nozzle even touches the mat, which is opposite to 3D printing on
woven, warp knitted, or weft knitted fabrics, where it can be advantageous in terms of adhesion for
pressing the filament into the textile by printing “below” the textile surface [31]. On the other hand,
if the distance is too large, the contact between both materials is lost, resulting in a very uneven surface
(Figure 2a). It must be mentioned that gluing the nanofiber mat onto the printing bed over its entire
area results in severe problems to detach the composite from the printing bed afterwards (Figure 2b)
and thus cannot be recommended.
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Figure 2. 3D printing squares of dimensions 40 mm × 40 mm on nanofiber mats: (a) rough surface for
a too large distance between nanofiber mat and printing nozzle and (b) composite strongly sticking on
the double-sided adhesive tape used for gluing the nanofiber mat over its entire area.
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In a first test series, nanofiber mats were glued along their borders onto the printing bed,
and the printing bed temperature was modified from room temperature to 40 ◦C, 60 ◦C, and 80 ◦C.
While a temperature of 60 ◦C or higher strongly supports the adhesion of a 3D printed PLA layer
on the printing bed, here we found that printing at room temperature or at 40 ◦C showed similar
results to using a printing bed temperature of 60 ◦C, while a temperature of 80 ◦C resulted in severe
problems, prohibiting us from finding a suitable nozzle-nanofiber mat distance in which none of the
aforementioned problems occurred. Since heating the printing bed did not show any advantage,
the results depicted here were gained with the printing bed at room temperature.

Similarly, different nozzle temperatures between 190 ◦C and 210 ◦C were tested, which are
well-suited to print PLA. Former experiments revealed that higher temperatures allowed for 3D printing
on textile fabrics in a larger distance to reach the same adhesion [48]. Here, however, the possible
distance range that was sufficient to create reliable adhesion without breaking the nanofiber mat could
not be extended in this way.

Detailed observation of the printing process if the nozzle is slightly too high suggests that the
problem of missing adhesion for too large distances between nanofiber mat and printing nozzle may be
based on electrostatic repulsion between the 3D printing polymer and the nanofiber mat. In a previous
experiment, the electrostatic charging could be significantly reduced by soaking the nanofiber mat into
water with a surfactant that was typically negatively charged [49]. Thus, 3D printing was also tested
on a nanofiber mat that was soaked in soap water and dried in the air.

In this experiment, however, we found that controlling the distance between nozzle and nanofiber
mat was not easier, and the danger of reduced contact between 3D printed polymer and nanofiber mat
could not be reduced in this way. Figure 3 depicts an example of a slightly too high nozzle, resulting in
a rough surface or even open areas in the 3D printed surface for the longest lines near the diagonal of
the sample.
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Figure 3. 3D printing squares of dimensions 40 mm × 40 mm on nanofiber mats previously dipped in
soap water: (a) rough surface for a too large distance between nanofiber mat and printing nozzle; (b) 3D
printed layer with uneven surface and even several not closed areas near the diagonal, i.e., along the
longest lines, due to a too large distance between nozzle and nanofiber mat.

On the other hand, soaking and drying the sample in pure water or soap water before printing on
it supports relaxation [49]. In this way, fixing it in a slightly stretched position was simpler than in case
of not watered samples, in order to ensure that no elongation of the specimen was possible due to
thermal and mechanical impact during printing. Apparently, in spite of the unreached original goal,
this pre-treatment is clearly advantageous and should thus always be performed before 3D printing on
nanofiber mats.
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Next, the question arises whether 3D printing with a nozzle temperature of approx. 200 ◦C may
influence the morphology of the nanofiber mat. This is important for the possible application of the
nanofiber composites as filter materials. Figure 4 depicts examples of CLSM images, taken on pure
nanofiber mats and on nanofiber mats after 3D printing on their backsides to enable comparison.
Neither the pure PAN nanofiber mats (Figure 4a,b) or the carbonized ones (Figure 4c,d) show any
difference in the morphology. In addition, no color change is visible for the pure PAN nanofiber
mat, which might occur for temperature treatment at 180 ◦C or higher due to the stabilization of the
nanofibers [50]. Here, however, either the duration of the temperature treatment is not long enough or
the polymer melt touching the nanofiber mat has a temperature below 180 ◦C so that no stabilization
process can start.
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Figure 4. Confocal laser scanning microscope (CLSM) images of polyacrylonitrile (PAN) nanofiber
mats: (a) pure PAN (electrospun with 80 kV), (b) pure PAN (electrospun with 80 kV) after printing on
the other side of the nanofiber mat, (c) carbonized PAN (electrospun with 50 kV), and (d) carbonized
PAN (electrospun with 50 kV) after printing on the other side of the nanofiber mat.

After 3D printing on the nanofiber mats, the composites were detached from the printing bed,
and, starting at the edges, the nanofiber mats were carefully peeled from the 3D printed polymer to
investigate whether the adhesion between 3D printing polymer and nanofiber mat was stronger or
smaller than the adhesion of the layers inside the nanofiber mat. Figure 5 depicts exemplary images
of the residues of the nanofiber mats, showing areas with thicker or thinner nanofiber layers left
after peeling them off. In the case of the pure PAN nanofiber mats (Figure 5a,b), it is clearly visible
that the nanofiber mats were separated inside the fabrics, while even in the areas with the thinnest
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nanofiber coatings, no positions were found where the nanofiber mats were fully separated from the
3D printing polymer.
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the printed polymer: (a) PAN on aluminum (electrospun with 80 kV)—average situation; (b) PAN on
aluminum (electrospun with 80 kV)—thinnest nanofiber “coating” found on all samples; (c) stabilized
PAN (electrospun with 80 kV); and (d) carbonized PAN (electrospun with 50 kV).

This shows clearly that the adhesion between 3D printing polymer and nanofiber mat is uncritical.
For better bonding of the fibers inside the mat, either stabilization at higher heating rates than used
here [45,50] or crosslinking of the fiber connection points by exposing the nanofiber mat to a solvent
vapor [25] can be applied.

The impact of stabilization—even for the small heating rate used here, which does not significantly
modify the nanofiber morphology and does not lead to visible conglutinations at the crossing points of
neighboring nanofibers—is visible in Figure 5c,d. Thick layers of the stabilized and the carbonized
nanofiber mats remain after trying to peel them off, which are, on the other hand, prone to showing
micro-cracks, as visible in Figure 5. This suggests either using a chemical method to bond the nanofibers
inside the mats better [25] or to fix the whole nanofiber mats on the 3D printed polymer by printing
an open grid on the nanofiber mats after the first printing step. Due to the strong relaxation of nanofiber
mats during evaporation of residual solvent [49], the opposite procedure of electrospinning on 3D
printed layers does not seem to be suitable, but can be expected to result in breaking of the nanofiber
mats, which may also happen during electrospinning on the commonly used polypropylene nonwoven.

Next, Figure 6b shows FTIR measurements of PAN nanofiber mats on 3D printed PLA. Figure 6a
gives an overview of typical peaks of PLA [51–54] (grey lines) and PAN [55] (red lines), respectively.



Polymers 2019, 11, 1618 7 of 11
Polymers 2019, 11, x FOR PEER REVIEW 7 of 11 

2500 2000 1500 1000

T
ra

ns
m

is
si

o
n 

(a
rb

. u
n

its
)

Wave number (cm-1)

 pure PAN 
nanofiber mat

 pure PLA

 

2500 2000 1500 1000

T
ra

ns
m

is
si

o
n

 (
a

rb
. u

n
its

)

Wave number (cm-1)

PAN nanofiber
mats on PLA

 raw
 stabilized
 carbonized

 

(a) (b) 

Figure 6. FTIR spectra of (a) pure PAN and pure poly (lactic acid) (PLA) for comparison, with some 
prominent peaks marked and (b) PAN nanofiber mats in raw, stabilized, and carbonized state on 
PLA. 

To investigate the hydrophobic properties of the original PAN nanofiber mat, the PLA 3D 
printing material and the composite contact angle measurements are performed (Figure 7). Since all 
materials are strongly hydrophilic, the most crucial point is the time between setting the drop on the 
object under examination and taking the photograph. Contact angles measured approx. 1 s after 
setting the drop are (34 ± 3)° for PLA, (31 ± 3)° for PAN, and (32 ± 4)° for the PAN/PLA composite 
surface. 

While the contact angles thus do not show a significant difference, it should be mentioned that 
the drop vanishes slightly faster on the pure PAN nanofiber mat, as compared to the composite, and 
stays constant for the closed PLA surface. It is observed that spreading of the water inside the 
nanofiber mat was unidirectional for the pure PAN nanofiber mat, while it was guided along the 
printing lines in case of the composite. This underlines that care must be taken to position such a 
composite filter in the optimal orientation with respect to the water flow. 

   
(a) (b) (c) 

Figure 7. Contact angles, investigated by dropping 15 µl of distilled water on (a) an FDM-printed PLA 
layer, (b) an electrospun PAN nanofiber mat, and (c) a PAN/PLA composite prepared as described in 
this article. 

Finally, the mechanical properties of the composites are investigated by a Martindale abrasion 
test (Figure 8a). This test is usually performed with macroscopic textiles; thus, it destroyed the 
nanofiber mat in the dry state between 5 and 10 Martindale cycles (Figure 8b) and in the wet state 
after the first cycle (Figure 8c). 

This changed dramatically for the composites surfaces. Figure 9 depicts exemplary images of 
these surfaces before the tests, after 10, and after 50 Martindale cycles. While after 10 cycles, first 
protruding areas are abraded, after 50 cycles parts of the nanofiber mats on narrower areas that were 
not properly fixed there are torn apart; thus, the test was stopped. It should be mentioned that this 
behavior was quantitatively identical for tests on wet composites. In addition, several areas were still 
fully coated with the nanofiber mat after 500 Martindale cycles. 

These experiments underline that fixing the nanofiber mats by 3D printing on them is generally 
possible. Nevertheless, further investigations are necessary to optimize the adhesion between both 

Figure 6. FTIR spectra of (a) pure PAN and pure poly(lactic acid) (PLA) for comparison, with some
prominent peaks marked and (b) PAN nanofiber mats in raw, stabilized, and carbonized state on PLA.

In Figure 6b, the curve measured for the raw PAN nanofiber mat clearly shows peaks of both
PLA (grey lines) and PAN (red lines), indicating the composite character of the surface under
examination. For the stabilized samples, new peaks can be expected at 1582 cm−1, 1660 cm−1,
and approx. 800 cm−1 [55–57]. Here, these peaks are clearly visible (blue arrows), while no PLA peaks
can be recognized due to the thick nanofiber mat on top of the PLA layer. Finally, for the carbonized
layer, the characteristic peaks of the stabilized material are usually nearly completely vanished due
to the high absorbance of carbon, leaving only very few functional groups [58]. Again, the peaks
resulting from PLA are nearly vanished due to the almost complete carbon nanofiber mat on top of the
PLA material.

To investigate the hydrophobic properties of the original PAN nanofiber mat, the PLA 3D printing
material and the composite contact angle measurements are performed (Figure 7). Since all materials
are strongly hydrophilic, the most crucial point is the time between setting the drop on the object under
examination and taking the photograph. Contact angles measured approx. 1 s after setting the drop
are (34 ± 3)◦ for PLA, (31 ± 3)◦ for PAN, and (32 ± 4)◦ for the PAN/PLA composite surface.
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Figure 7. Contact angles, investigated by dropping 15 µL of distilled water on (a) an FDM-printed PLA
layer, (b) an electrospun PAN nanofiber mat, and (c) a PAN/PLA composite prepared as described in
this article.

While the contact angles thus do not show a significant difference, it should be mentioned that the
drop vanishes slightly faster on the pure PAN nanofiber mat, as compared to the composite, and stays
constant for the closed PLA surface. It is observed that spreading of the water inside the nanofiber mat
was unidirectional for the pure PAN nanofiber mat, while it was guided along the printing lines in case
of the composite. This underlines that care must be taken to position such a composite filter in the
optimal orientation with respect to the water flow.

Finally, the mechanical properties of the composites are investigated by a Martindale abrasion test
(Figure 8a). This test is usually performed with macroscopic textiles; thus, it destroyed the nanofiber
mat in the dry state between 5 and 10 Martindale cycles (Figure 8b) and in the wet state after the first
cycle (Figure 8c).
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on raw, stabilized, or carbonized PAN nanofiber mats, thus mechanically stabilizing the nanofiber 
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composites could be used in filter applications with the liquid flow parallel to them, future 
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Figure 8. Electrospun nanofiber mat in Martindale abrasion test holder, (a) before the test, (b) after
10 cycles in dry state, and (c) after one cycle in wet state.

This changed dramatically for the composites surfaces. Figure 9 depicts exemplary images of these
surfaces before the tests, after 10, and after 50 Martindale cycles. While after 10 cycles, first protruding
areas are abraded, after 50 cycles parts of the nanofiber mats on narrower areas that were not properly
fixed there are torn apart; thus, the test was stopped. It should be mentioned that this behavior was
quantitatively identical for tests on wet composites. In addition, several areas were still fully coated
with the nanofiber mat after 500 Martindale cycles.
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Figure 9. Composite surface after Martindale abrasion tests, (a) before the test, (b) after 10 cycles in dry
state, and (c) after 50 cycles in dry state.

These experiments underline that fixing the nanofiber mats by 3D printing on them is generally
possible. Nevertheless, further investigations are necessary to optimize the adhesion between both
materials over the whole contact area without increasing the danger of touching and thus destroying
the nanofiber mat with the 3D printing nozzle.

4. Conclusions

To conclude, we have successfully tested the possibility to prepare composites by 3D printing
on raw, stabilized, or carbonized PAN nanofiber mats, thus mechanically stabilizing the nanofiber
mats. Optical and chemical examinations revealed that the nanofiber mats were not measurably
modified by the 3D printing process. Contact angle examinations did not show significant differences
in hydrophilicity, comparing the pure nanofiber mat and the composite surface. Martindale abrasion
tests underlined the significantly increased abrasion resistance of the composite.

While in this first proof-of-principle, a full layer was 3D printed on the nanofiber mats, as the
composites could be used in filter applications with the liquid flow parallel to them, future experiments
have to be conducted to investigate the possibility to print open mesh-like structures on nanofiber
mats to also enable utilization in filters through which the liquid flows.
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