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ABSTRACT
Background 22q11.2 deletion syndrome (22q11.2DS)
is the most common microdeletion disorder, affecting an
estimated 1 : 2000–4000 live births. Patients with
22q11.2DS have a broad spectrum of phenotypic
abnormalities which generally includes congenital cardiac
abnormalities, palatal anomalies, and immunodeficiency.
Additional findings, such as skeletal anomalies and
autoimmune disorders, can confer significant morbidity
in a subset of patients. 22q11.2DS is a contiguous gene
DS and over 40 genes are deleted in patients; thus
deletion of several genes within this region contributes
to the clinical features. Mutations outside or on the
remaining 22q11.2 allele are also known to modify the
phenotype.
Methods We utilised whole exome, targeted exome
and/or Sanger sequencing to examine the genome of 17
patients with 22q11.2 deletions and phenotypic features
found in <10% of affected individuals.
Results and conclusions In four unrelated patients,
we identified three novel mutations in SNAP29, the gene
implicated in the autosomal recessive condition cerebral
dysgenesis, neuropathy, ichthyosis and keratoderma
(CEDNIK). SNAP29 maps to 22q11.2 and encodes a
soluble SNARE protein that is predicted to mediate
vesicle fusion at the endoplasmic reticulum or Golgi
membranes. This work confirms that the phenotypic
variability observed in a subset of patients with
22q11.2DS is due to mutations on the non-deleted
chromosome, which leads to unmasking of autosomal
recessive conditions such as CEDNIK, Kousseff, and a
potentially autosomal recessive form of Opitz G/BBB
syndrome. Furthermore, our work implicates SNAP29 as
a major modifier of variable expressivity in 22q11.2 DS
patients.

INTRODUCTION
Although clinically under-recognised, the 22q11.2
deletion syndrome (22q11.2DS) is the most common
microdeletion disorder with an estimated prevalence
of 1 in 2000–4000 live births. Individuals with
22q11.2DS most often have a classically associated
3 MB deletion. However, smaller atypical nested
deletions have been reported, all of which result in a
broad spectrum of phenotypic abnormalities.1 2 The
occurrences of deletions in this region are related to

the architecture of chromosome 22q11.2 and are
associated with a non-allelic homologous recombin-
ation between chromosome specific low copy repeats
(LCRs) or segmental duplications.3 The larger 3 MB
deletion is associated with recombination between
LCRs-A and D. Furthermore, although the smaller
atypical nested deletions are predominantly mediated
by LCRs A-B, they also include deletions involving
LCRs B-D or C-D. In general, the associated clinical
findings include: congenital cardiac abnormalities,
palatal anomalies, and immunodeficiency in about
three-quarters of patients; hypoparathyroidism in
approximately half; and gastrointestinal and renal
anomalies in about one-third.4–6 Additional findings
can confer significant morbidity, such as autoimmune
disease and skeletal anomalies, but are generally iden-
tified in only a subset of patients.7 Lastly, develop-
mental delay, intellectual deficits, and psychiatric
disorders such as schizophrenia are important fea-
tures of this diagnosis.8

Although as many as 40 genes are deleted in
patients with 22q11.2DS, mouse models of
22q11.2DS support a strong role for haploinsuffi-
ciency of TBX1, a T-Box gene in the A-B deleted
region. TBX1 has been implicated in association with
several clinical findings, in particular congenital heart
disease.9 In patients with atypical deletions that do
not include TBX1, the adaptor protein CRKL has
emerged as a strong candidate for additional asso-
ciated features.10 In addition, a significant number of
patients with 22q11.2DS have less common findings
such as polymicrogyria, myelomeningocele, cleft lip,
and genitourinary abnormalities that cannot be
explained solely by haploinsufficiency for TBX1 and/
or CRKL. However, 22q11.2DS is considered a con-
tiguous gene deletion syndrome as it has been pro-
posed that loss of several or all genes within the
region may contribute to the broad phenotype
observed in patients.11

Next-generation sequencing advances, such as
whole exome sequencing, enables identification of
rare variants that may be damaging and therefore
disease producing.12 This new technology permits
examination of the genome including the non-
deleted allele for mutations that may contribute to
variable phenotypic expression in deletion syn-
dromes. Thus, we utilised whole or targeted exome
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sequencing in patients with a 22q11.2 deletion and phenotypic
features found in <10% of affected individuals and identified
damaging mutations in SNAP29, the gene implicated in the
autosomal recessive condition cerebral dysgenesis, neuropathy,
ichthyosis and keratoderma (CEDNIK).13 14 SNAP29 is located
within the C-D region on chromosome 22q11.2. Heterozygous
mutations of SNAP29 have also been reported in association
with cryptorchidism and hypospadias.15 Furthermore, single
nucleotide polymorphisms (SNPs) in the promoter of SNAP29
have been associated with schizophrenia.16

SNAP29 (synaptosomal associated protein 29KDa) is a
soluble SNARE protein that is predicted to mediate vesicle
fusion at the endoplasmic reticulum or Golgi membranes.17

SNAP29 was shown to be highly expressed in myelinating glia18

and is required for lamellar body formation in the skin. It is
also indirectly required for β1 integrin endocytosis and cell
migration.19 We report that hemizygous deletions of 22q11.2,
combined with damaging mutations in SNAP29, contribute to
atypical clinical findings in patients with 22q11.2DS.
Specifically, this combination unmasks one previously described
autosomal recessive condition (CEDNIK), and may unmask and
confirm another condition previously debated in the literature
(Kousseff syndrome). It also may provide an explanation for
overlapping features with a third heterogeneous condition
(Opitz G/BBB syndrome).

PATIENTS AND METHODS
The study was approved by the Institutional Review Board of
the Children’s Hospital of Philadelphia (07-005352) with
appropriate informed consent obtained on all subjects. In add-
ition, the study data were handled in compliance with HIPAA
(Health Insurance Portability and Accountability Act) regula-
tions. We recruited individuals from The ‘22q and You’ Center
at The Children’s Hospital of Philadelphia, a large comprehen-
sive multidisciplinary programme for patients with 22q11.2DS,
for inclusion in a study of atypical clinical findings (present in
<10% of overall cohort) at McGill University in Montreal,
Canada and the University of Leuven in Leuven, Belgium. These
findings initially included laryngo-tracheal-oesophageal abnor-
malities and limb differences, but were later expanded to
include polymicrogyria, myelomeningocele, cleft lip, and genito-
urinary abnormalities. In total, 17 individuals with 22q11.2DS
were studied (table 1). Whole exome sequencing was performed
on four patients (patients 1, 5–7); targeted exome sequencing
was performed on patient 4 and Sanger sequencing was used to
screen for the presence of mutations within the gene SNAP29 in
12 patients. A detailed synopsis of the clinical findings in the
patients with mutations in SNAP29 is provided in the supple-
mentary data (patients 1–4).

Whole exome sequencing and variant analysis
Whole exome capture was performed using the TruSeq Exome
Enrichment Kit (Illumina, San Diego, California, USA), which
targets 62 Mb of exonic sequences including 50 untranslated
region (UTR), 30UTR, microRNA and other non-coding RNAs.
The targeted exons were sequenced using paired-end technology
(Illumina Hiseq sequencer) with read lengths of 100 bp. The
generated exome sequencing data were analysed using our opti-
mised bioinformatics pipeline as previously described.20 Briefly,
the high quality trimmed paired-end sequences were aligned to
the human reference genome (hg19) using Burrows-Wheeler
Aligner (BWA) (v.0.5.9)21 Unmapped reads, reads mapping to
multiple locations and PCR duplicates (PICARD V.1.48) were
discarded in further analyses. A mean coverage of 66X (patient

1), 91X (patient 5), 78X (patient 6), and 76X (patient 7) was
obtained for all consensus coding sequence exons.

The variant positions on the reference genome were determined
using Samtools (v.0.1.17),22 mpileup and varFilter with the base
alignment quality adjustment disabled, leading to the identification
of approximately 299K (patient 1), 286K (patient 5), 265K
(patient 6), and 269K (patient 7) variants. Additional filters were
applied to narrow down the list of candidate rare variants. First, a
minimum of two variant reads and >20% single nucleotide var-
iants or >15% indels (small insertions or deletions) variant reads
were considered for each called position. In order to remove sys-
tematic false positives and common polymorphisms, the variants
were filtered against our in-house exome database (>350 exomes)
and removed from further analysis if seen in more than five
control exomes.

Subsequently, ANNOVAR23 was used to annotate the remain-
ing variants according to the type of mutation, whether the
variant was present in dbSNP132, minor allele frequency in the
1000 Genomes project, exome variant server (EVS), SIFT,
PolyPhen-2 and PHASTCONS scores. Based on the assumption
that the potential damaging variants are rare, the variants were
kept in the final list if they had an allele frequency <0.05 in the
1000 Genomes database and predicted to be non-synonymous,
that is, missense, nonsense, frameshift, or canonical splice site
changes. A summary of the data obtained from each step of
exome sequencing analysis is presented in supplementary table 1.

Targeted exome sequencing and analysis
The mutation in patient 4 was identified using a custom Agilent
SureSelect XT target enrichment system to capture the ∼3 Mb
interval of the intact chr22q11.2. Sequencing was performed
using the Illumina HiScan SQ platform with 50 bp paired end
reads. The reads were mapped and annotated using the Emory
Mapper (Cutler and Zwick, unpublished data) and the results
were bioinformatically filtered to help ensure a low level of
false-positive nucleotide calls.

Sanger sequencing and analysis
To screen the SNAP29 gene, genomic DNA was extracted from
whole blood using the Wizard Genomic DNA Purification Kit
(Promega), following the manufacturer’s instructions. All
sequences, with the exception of exon 1, were amplified using
50 ng of genomic DNA and Platinum Taq Hifi DNA polymerase
(Invitrogen), using the standard protocol and a Tm of 58°C. Exon
1 was amplified using Platinum Pfx DNA polymerase
(Invitrogen), with a final concentration of 2× PCRXEnhancer
Solution and a Tm of 55°C. Sanger sequencing was performed at
the McGill University and Génome Québec Innovation Centre,
using the forward primer on the unpurified PCR products.
Resulting sequences were compared using BioEdit (http://www.
mbio.ncsu.edu/bioedit/bioedit.html). Primers were designed by
web-based Primer 3 (http://primer3.sourceforge.net/).

To determine the impact of novel amino acid substitutions on
the SNAP29 protein, the PolyPhen-2 and MutationTaster tools
were used.24 25

RESULTS
To identify additional mutations that contribute to atypical clinical
findings in patients with 22q11.2DS, we used whole exome
sequencing to analyse the genome of four patients presenting with
laryngo-tracheal-oesophageal and limb abnormalities (table 1,
patients 1, 5–7). Homozygous 22q11.2 -associated variants were
identified in one of the four patients sequenced. In patient 1, we
identified 539 variants that passed all the filters after whole exome
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Table 1 A brief description of patients in this study

Patient CNS Cardiac Craniofacial Immune Eye/Ear Respiratory GI Dermatologic GU Other E/S SNAP29M

1 PMG
Microcephaly

PDA SMCP
ASCF

CI requiring
IVIG
IgG and IgM
deficiency

ONH
Nystagmus and
esotropia
Hypertelorism
SNHL

LTM
OSA
Chronic
peribronchial
thickening with lung
hyperinflation

Dysphagia and
G-tube
Constipation
FTT

Palmoplantar
keratoderma
Atopic
dermatitis
hypohidrosis

Cryptorchid
Inguinal hernia
Idiopathic
nephrocalcinosis
Hypercalciuria

– E,S c.388_389insGA

2 PMG
Microcephaly

– Preauricular tags – ONH
Amblyopia and
esotropia
Relative
hypertelorism
SNHL

Tracheomalacia Dysphagia and
G-tube
Constipation

Palmoplantar
keratoderma
Atopic
dermatitis
hypohidrosis

Hypospadias Type I DM
Scoliosis

S c.28_32delCCGTT

3 Myelo
Hydrocephalus
Microcephaly

TOF with
PA

CP ASCF CI Hypertelorism
Astigmatism
SNHL

Subglottic stenosis
Tracheostomy
Asthma

Dysphagia and
G-tube
GORD
Constipation

– Hydronephrosis
Neurogenic bladder

Hypocalcaemia
Clinodactyly

S c.265G>A

4 – ASD/PFO BLCLP Low T cells Hypertelorism
CDHL

– – – – Hypocalcaemia
Hypermobile
joints

E c.268C>T

5 Migraines Valvar
pulmonic
stenosis

VPI COM – Asthma Dysphagia and
G-tube
GORD
Constipation

– – Camptodactyly E –

6 Microcephaly
Migraines
Seizures

Syncopal
event

Lambdoidal
craniosynostosis
Bifid uvula

CI
Low IgM

Hypertelorism
Lacrimal duct
stenosis

Laryngeal web
Sleep apnoea
Asthma

GORD
Abdominal
migraines
IBS

– – Short stature
Scoliosis
Hip dysplasia
Adducted
thumbs
C-spine
anomalies

E –

7 Hypotonia – – COM – OSA
Asthma

Dysphagia and
NG tube
FTT

– – Short stature/low
growth factors
Camptodactyly
Hypermobile
joints

E –

8 Heterotopias
Seizures

BAV
AI
Heart block

ASCF
NR

Haemolytic
anaemia
ITP
COM

Hypertelorism – Dysphagia
GORD
Constipation

– Hydrocele
Inguinal hernia

Hypocalcaemia
Postaxial 4
extremity
polydactyly

S –

9 PMG
Hypotonia

TA – CI – – Dysphagia
G-tube
GORD

– – Hypocalcaemia S –

10 Myelo
Hydrocephalus
Seizures

TOF with
PA

NR COM CDHL Recurrent aspiration Dysphagia and
G-tube

– – – S –

Continued
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Table 1 Continued

Patient CNS Cardiac Craniofacial Immune Eye/Ear Respiratory GI Dermatologic GU Other E/S SNAP29M

11 PMG VSD and
PDA

NR COM and
URIs

Eustachian
tube
dysfunction

Asthma Dysphagia and
NG tube
GERD
Constipation

Mild atopic
dermatitis
Cutis aplasia on
scalp

– Short stature
Chronic leg pain

S –

12 PMG
Hypotonia
Seizures
Central apnoea

RAA
ARSA
ASD

ASCF FUO
MRSA

CDHL LTM
OSA
Asthma

Dysphagia and
G-tube
GORD
Constipation FTT

– Solitary kidney Club foot
Hypermobile
joints

S –

13 PMG
Subarachnoid
cyst
Hemiplegia

– ASCF
Nasal
regurgitation

Low T cells – Asthma Dysphagia
Constipation

– – Hypocalcaemia
Thyroid disease
Hypermobile
joints
Anaemia

S –

14 PMG
Seizures

ARSA – – – Subglottic stenosis
Laryngeal web

Imperforate anus
Dysphagia
G-tube
GORD

– Hypoplastic kidney
Vesicoureteral
reflux
Hypospadias and
chordee
Penile scrotal
transposition
Inguinal hernia

Hip dysplasia S –

15 PMG
Hemiparesis

Vascular
ring
ASD

ASCF
Retrognathia

– Astigmatism
CDHL

OSA Dysphagia
FTT

– – Growth hormone
deficiency
C-spine stenosis

S –

16 Heterotopias
Seizures

ASD/PFO
PDA
ARSA

SMCP JRA SNHL – – – Duplicated
collecting system

Scoliosis S –

17 Heterotopias
Seizures
Hypotonia
Migraines

RAA
PFO

VPI COM
IgM deficiency
Pancytopenia

– OSA
Sinusitis

Dysphagia
GORD
Constipation

– – Hypothyroid
Obesity
Cervical spine
fusion

S –

Note: all airway abnormalities were verified and found to be independent of vascular anomalies.
ASD, atrial septal defect; AI, aortic insufficiency; ARSA, aberrant right subclavian artery; ASCF, asymmetric crying facies; BAV, bicuspid aortic valve; BLCLP, bilateral cleft lip and palate; CP, cleft palate; CI, chronic infection; COM, chronic otitis media;
CDHL, conductive hearing loss; C-spine, cervical spine; DM, diabetes mellitus; E/S, Exome (E) or Sanger (S) sequenced; FUO, fever of unknown origin; G-tube, gastrostomy tube; FTT, failure to thrive; GORD, gastro-oesophageal reflux disease; IVIG,
intravenous immunoglobulins; ITP, idiopathic thrombocytopenia; IBS, irritable bowel syndrome; JRA, juvenile rheumatoid arthritis; LTM, laryngotracheomalacia; Myelo, myelomeningocele; MRSA, methicillin resistant Staphylococcus aureus; NR, nasal
regurgitation; NG, nasogastric tube; OSA, obstructive sleep apnoea; ONH, optic nerve hypoplasia; PMG, polymicrogyria; PDA, patent ductus arteriosus; PA, pulmonary atresia; PFO, patent foramen ovale; RAA, right aortic arch; SMCP, submucosal cleft
palate; SNHL, sensorineural hearing loss; SNAP29M, SNAP29 mutation present or absent; TOF, tetralogy of Fallot; TA, truncus arteriosus; URIs, upper respiratory infections; VSD, ventricular septal defect; VPI, velopharyngeal incompetence.
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sequencing analysis, 14 of which were located on chromosome 22.
Two variants out of the 14 were homozygous within the candidate
region of 22q11.2: one frameshift insertion within the gene
SNAP29, and one non-synonymous variant in the gene CLTCL1.
Although a significant number of variants were identified in the
remaining three patients (13 homozygous variants in the exome of
patients 5; 17 in the exome of patient 6; and 45 in the exome of
patient 7), none were in the 22q11.2 region (see supplementary
table 1).

Patient 1 presented with a history of laryngotracheomalacia, a
small patent ductus arteriosus, gastro-oesophageal reflux disease,
failure to thrive and feeding difficulty requiring G-tube placement,
chronic infection, polymicrogyria, and dysmorphic features
including hypertelorism. In addition, he had: microcephaly, stra-
bismus, optic nerve hypoplasia, bilateral sensorineural hearing
loss, obstructive sleep apnoea, immunoglobulin G (IgG) and IgM
deficiency, a unilateral inguinal hernia and undescended testis.
More recently, he was noted to have palmoplantar keratoderma
and ichthyosis, (figure 1: 1A–F). The homozygous frameshift
insertion within SNAP29, c.388_389insGA (p.T130fs), has not
previously been seen in dbSNP, 1000 Genomes Project or
EVS, and was subsequently confirmed by Sanger sequencing
(figure 2A–C). Sanger sequencing of parental blood DNA revealed
a heterozygous insertion in the father at the same position (figure
2C), suggesting that the proband was hemizygous for the 22q11.2
chromosome, as determined by fluorescence in situ hybridisation.
(FISH), and inherited a non-functional SNAP29 gene from the
father and by inference a de novo deletion on the 22q11.2
chromosome inherited from his mother. Truncating mutations in
SNAP29 are associated with CEDNIK syndrome, an autosomal
recessive condition characterised by cerebral dysgenesis, neur-
opathy, ichthyosis, and keratoderma.14 15 The frameshift mutation
identified in SNAP29 is predicted to result in a truncated protein
with 129 amino acids of the SNAP29 protein, and insertion of 17
novel amino acids before a premature stop (figure 2C).

In light of this finding, we concluded that the SNAP29 muta-
tion, in conjunction with the 22q11.2 deletion, unmasked the
symptoms of CEDNIK syndrome in this patient, including diffuse
polymicrogyria (similar to the 2011 Fuchs-Telem et al report14),
an ichthyosiform dermatitis with secondary hypohidrosis, atopic
dermatitis, and palmoplantar keratoderma. To determine if other
patients with 22q11.2DS and similar atypical findings might also
have mutations in this gene, we screened the coding exons 50 and
30 splice sites of SNAP29 in 12 additional patients by Sanger
sequencing. Thereafter, we identified a 5 bp deletion in exon 1
(c.28_32delCCGTT, p.P10fs) in patient 2 (figure 3B). Atypical
findings in patient 2 included features consistent with CEDNIK
syndrome, as well as with patient 1: microcephaly, polymicrogyria
(similar to the structural differences reported by Sprecher et al13),
optic nerve hypoplasia, hypertelorism, sensorineural hearing loss,
palmoplantar keratoderma, and ichthyosis; additional findings
also included a preauricular tag, amblyopia, hypospadias, and type
1 diabetes (figure 1: 2A–F and supplementary data). Sanger
sequencing of DNA from the parents of this patient revealed the
c.28_32delCCGTT mutation in the mother’s DNA (figure 3B).
This deletion is predicted to result in a frameshift insertion of 42
novel amino acids before a premature stop in the SNAP29 protein
(figure 3B). In addition, these studies also revealed a heterozygous
A to G transition (c.317A>G) that would generate a missense (p.
Q106R) mutation in the father (see supplementary figure 1).
Parent of origin studies, using microsatellite markers, revealed that
the proband shares the D22S264 allele with his mother, indicating
the 22q11.2 deletion was paternal in origin, consistent with the
SNAP29 findings.

In a third patient (patient 3) with subglottic stenosis post-
tracheostomy, cleft palate, sacral myelomeningocele, bilateral
sensorineural hearing loss, tetralogy of Fallot with pulmonary
atresia, hypocalcaemia, severe gastro-oesophageal reflux disease
with feeding difficulty necessitating G-tube placement, asymmet-
ric crying facies, hypocalcaemia, microcephaly, hypertelorism,
clinodactyly, and hydronephrosis (figure 1: 3A,B), we identified
a homozygous mutation (c.265G>A) which resulted in a mis-
sense (p.E89K) mutation in a conserved glutamic acid. This
mutation was not predicted to be damaging after PolyPhen-2
analysis with a score of 0.021. However, this specific mutation
was predicted to be damaging by MutationTaster (p=0.94) and
has been reported to be associated with genitourinary abnormal-
ities in a previous study by Zhang et al.15

A fourth patient (patient 4) presented with a bilateral cleft lip
and palate and pseudoexotropia secondary to hypertelorism as
the only atypical features. Additional findings included an atrial
septal defect, mild to moderate conductive hearing loss, hypo-
calcaemia, and hyperextensible joints (figure 1: 4A,B). Targeted
exome sequencing identified and Sanger sequencing confirmed a
second point mutation in the coiled-coil domain which resulted
in a missense (c.268C>T; p.R90C) mutation. This amino acid is
highly conserved in all mammals but one, rodent (see supple-
mentary figure 2), and is predicted to be damaging by
MutationTaster (p=0.99) and possibly damaging by PolyPhen2,
with a score of 0.890.

DISCUSSION
Recurrent structural rearrangements in the human genome are
responsible for a large number of human disorders associated
with congenital abnormalities. Human deletion syndromes occur
at a combined frequency of 1 in 1000 live births. Some examples
include Prader-Willi,26 Phelan-McDermid,27 Williams-Bueren28

and 22q11.2DS.3 11 29 In many of these disorders, the recurrent
deletion regions are defined within a certain range, the pheno-
typic defects constitute continuous spectra, there are a large
number of genes contained within the candidate intervals,
and it is unclear which gene(s) are primarily responsible for
the observed phenotypic features.30 Moreover, the phenotypic
spectra are often broad, and many patients present with atypical
or extreme phenotypes. Previously, identifying the breakpoints of
the deletions and the genes contained within the structural rear-
rangements constituted the limit of resolution in determining the
extent of genetic involvement. This resulted in numerous
unanswered questions and speculation regarding the involvement
of modifier genes and epigenetic effects as possible explanations
for this phenotypic variability. However, as has been recently
demonstrated in the case of Van den Ende Gupta syndrome,12 31

large deletions may unmask the deleterious effect of mutations
on the homologous allele, resulting in loss of function.

Likewise, in 1995, we described the association of Bernard-
Soulier syndrome,32 an autosomal recessive condition involving
thrombocytopenia and increased megakaryocytes, in a patient
with 22q11.2DS, who was noted to have notably decreased
ristoctein-induced platelet aggregation and GP1bB on the platelet
surface by flow cytometry. Later, this was explained by a secondary
mutation in the promoter region of the GP1BB gene on the
remaining 22q11.2 allele that altered a GATA binding consensus
site32 33 This mutation, in combination with the 22q11.2 deletion
as is the case with the SNAP29 abnormalities observed in patients
1 and 2 and their features of CEDNIK syndrome, essentially
unmasked an autosomal recessive condition. Thus, our ability to
identify such events will have a great impact on understanding the
causative genes underlying human deletion syndromes, as well as
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Figure 1 Patient description. (1A) Patient 1— Anteroposterior (AP) photo demonstrating upslanting palpebral fissures with hooded eyelids and
hypertelorism; malar flatness; a bulbous nasal tip with hypoplastic alae nasi; and a mandibular cleft. (1B) Lateral photo demonstrating auricular
anomalies including thick crumpled helices with attached lobes. (1C) A 2 mm thick T1 axial image of the brain reveals pronounced
under-opercularisation with very wide Sylvian fissures and bilateral thick finely nodular cortex, consistent with polymicrogyria, throughout the brain
but being particularly thick in the insular regions. There is abnormal brain morphology with some gyri being small and some wide. Also, there is
diminished white matter and there are multiple anomalous deep fissures in both parieto-occipital regions that extend near to and deform the atria
of the lateral ventricles, particularly on the right. The genu of the corpus callosum is unusually thick and the splenium is very thin. (1D) A focal area
of frictional alopecia on the vertex. (1E) Right foot displays a diffuse keratoderma with erythema and thick desquamating hyperkeratotic sheets
localised to the plantar surface of the foot and toes. (1F) Right hand shows diffuse keratoderma with erythema and overlying desquamation on the
palmar surface, notably sparing the dorsal aspects of the fingers and nails. Accentuated skin markings can be appreciated on the volar wrist.
(2A) Patient 2—AP photo demonstrating mild upslanting palpebral fissures on the left and a bulbous nasal tip with hypoplastic alae nasi.
(2B) Lateral photo demonstrating normally formed ears with attached lobes; a nasal dimple; and micrognathia. (2C) A 0.9 mm thick axial T1
weighted image at the level of the insulae shows pronounced under-opercularisation with open Sylvian fissures and bilateral extensive thick nodular
cortex representing polymicrogyria in all lobes of the brain, but most prominent in the insulae and the brain posterior to them. There is diminished
white matter and abnormal gyral pattern throughout the brain. Also noted are anomalous deep fissures lined by the thick nodular cortex extending
near to the ventricular atria and deforming them, more on the right. The genu of the corpus callosum is seen and the splenium, being very thin, is
not included on this section. (2D) Anterior trunk showing diffuse xerosis and a fine, powdery, ichthyosiform scale which is accentuated on the arms.
(2E) Bilateral plantar feet reveal a diffuse, glossy, yellowish keratoderma (thickening of the skin) with decreased skin markings and focal areas of
desquamation on the heels. (2F) Right hand shows a diffuse, yellow-orange keratoderma with focal areas of desquamation on the palms and
fingertips. (3A) Patient 3—AP photo demonstrating upslanting palpebral fissures with hypertelorism; malar flatness; a bulbous nasal tip with
hypoplastic alae nasi, a blunted nasal tip with a dimple; asymmetric crying facies; and a healed tracheostomy scar. (3B) Lateral photo demonstrating
auricular anomalies including crumpled helices with attached lobes and micrognathia. (4A) Patient 4—AP photo demonstrating hypertelorism; malar
flatness; a bulbous nasal tip with hypoplastic alae nasi; and a repaired bilateral cleft lip and palate. (4B) Lateral photo demonstrating attached ear
lobes and micrognathia.
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understanding the function of previously uncharacterised genes
which contribute to the unusual and extreme phenotypes observed
in a subset of patients with 22q11.2DS.

Mutations in SNAP29 are associated with CEDNIK syndrome
and genitourinary malformations, and SNPs in the 50 region have
been associated with schizophrenia.16 Four different mutations
were previously reported in SNAP29: a homozygous c.486insA
insertion which results in production of a truncated protein (p.
S163fs);14 a 1 bp deletion (c.220delG) which was predicted to
also result in a truncated protein (p.V75fs) and was shown to
result in loss of the protein by Western blot analysis;13 and two
heterozygous mutations, c.487A>G and c.265G>A of unknown
status.15 In this study, we report three novel mutations
(c.388_389insGA, c.28_32delCCGTT, and c.268C>T) in
SNAP29 that contribute to atypical findings in 22q11.2 patients as
well as one previously reported mutation (c.265G>A) (figure 3A).

SNAP29 is a ubiquitous member of the t-SNARE proteins that
forms a 4-helixes bundle with SNAP23, SNAP25, and SNAP47
during vesicle docking at the plasma membrane.34 SNAP29 has
also been shown to complex with several other proteins involved
in vesicle secretion such as clathrin, alpha adaptin, APAP2, EHD1,
and RAB3A.34 35 Loss of function mutations in this gene are asso-
ciated with delayed maturation and secretion of lamellar granules
that are involved in the transport of lipids and proteases to the epi-
dermis.36 More recently, SNAP29 mutant cells were also shown

to have abnormal endocytosis of β1-integrin, suggesting that
abnormal cell migration may be contributing to the polymicro-
gyria phenotype found in patients.19 Intriguingly, four of the seven
mutations identified in this gene are before or in the coiled-coil
domain of SNAP29 (figure 3A). This is a SNAP29 specific coiled-
coil domain that is not shared by other related t-SNARE members.
Since these domains are normally used for protein–protein inter-
action it is intriguing to postulate that mutations in this domain
interfere with the efficiency of the interaction of SNAP29 with
other SNARE proteins. This interference may result in abnormal
interaction with specific associated SNAREs in a tissue dependent
manner, thus explaining the variability in phenotypes found. In
addition, although the E89K mutation is predicted to not be dam-
aging by PolyPhen-2, this mutation is of an amino acid that is con-
served in all primates and placental mammals. We postulate that
this mutation is damaging as predicted by MutationTaster and thus
likely to perturb SNAP29 function.

Two of the four patients described herein (patients 1 and 2)
share a number of common clinical features: (1) an early-onset
ichthyosiform presentation; (2) eventual development of palmo-
plantar keratoderma between 1–2 years of age that is accentu-
ated at sites predisposed to pressure or friction; (3) features
consistent with mild to moderate atopic dermatitis; and
(4) hypohidrosis with associated heat intolerance (but without
other features associated with hypohidrotic ectodermal

Figure 2 Identification of a
homozygous 2 bp frameshift insertion
within the gene SNAP29 by exome and
Sanger sequencing. (A) The SNAP29
gene is located on the long arm of
chromosome 22 at position 22q11.2. It
is 32 kb in size and is composed of
five exons. (B) The grey horizontal
arrows depict the 100 bp paired-end
reads aligned to the positive strand of
human genome (hg19) and cover the
2 bp ‘GA’ homozygous insertion at
position 388_389 in exon 2. Of 19
unique reads mapped at the genomic
position chr22:21224770, 17 reads
displayed the 2 bp homozygous
insertion. Note that the BWA
(Burrows-Wheeler Aligner) placed the
insertion at position c.383_384,
whereas the correct HGVS
(Human Genome Variation Society)
notation is c.387_388dup. (C)
Chromatograms show the result of
Sanger sequencing in patient 1 and his
parents. Patient 1 carries a
homozygous 2 bp insertion resulting in
a frameshift and a premature stop
codon 17 amino acids downstream (p.
T130fs). The father is a heterozygous
carrier for the 2 bp insertion at the
same position. The position of the
insertion is indicated by the green
arrow on the chromatograms of
patient 1 and his father. In the lower
part of figure, the frameshift DNA
sequence and the respective
translation into protein are given.
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dysplasia). The ichthyosiform skin changes and palmoplantar
keratoderma are likely related to deficiency of the SNARE
protein which plays a central role in Golgi function and synaptic
vesicle recycling. The combination of the 22q11.2 deletion with
a mutation in the remaining SNAP29 allele encoding the
SNARE protein presumably leads to significantly decreased
expression of SNARE. As a result, the normal release of lipids
and proteases from lamellar granules into the extracellular
spaces of the cornified cell layer is likely impaired, resulting in
defective desquamation and barrier formation. Defective barrier
function may then lead to epicutaneous sensitisation and, sec-
ondarily, features of atopic dermatitis. Although the specific
mechanism behind the hypohidrosis seen in both patients and
the enamel hypoplasia in one of the two is unknown, these
suggest that patients with these genetic changes may share fea-
tures overlapping those of ectodermal dysplasia. In addition
they both have polymicrogyria, hypertelorism/relative hyperte-
lorism, bilateral sensorineural hearing loss, and significant
feeding, swallowing and airway difficulties.

Patient 3 has several significant atypical findings including
subglottic stenosis, bilateral sensorineural hearing loss, cleft
palate, hypertelorism, a sacral myelomeningocele, and clinodac-
tyly, in addition to classically associated features of 22q11.2DS
such as tetralogy of Fallot with pulmonary atresia, asymmetric
crying facies, and hypocalcaemia. This is notable because in
1984, Kousseff37 reported the association of sacral meningocele,
conotruncal cardiac anomalies, unilateral renal agenesis, and

dysmorphic features in three siblings and suggested autosomal
recessive inheritance. Toriello et al38 reported a similar isolated
case in 1985 and coined the term Kousseff syndrome. In 2002,
Forrester et al39 restudied the family reported by Kousseff and
identified a 22q11.2 deletion in the proband and his
father, thereby attributing the sacral myelomeningoceles to the
22q11.2DS. Thereafter, the existence of Kousseff syndrome
as a distinct entity was called into question. However, in
2004, Maclean et al40 subsequently reported two patients with
Kousseff syndrome, one with a 22q11.2 deletion and the other
without a deletion, both of which were performed by FISH,
and concluded that Kousseff syndrome is causally heteroge-
neous. Perhaps the features in our patient 3 also represent the
unmasking of an autosomal recessive condition, Kousseff, in the
same manner as CEDNIK, with a deletion of 22q11.2 on one
chromosome and a mutation in SNAP29 on the other. Thus, we
postulate that deletion of 22q11.2 on one chromosome asso-
ciated with mutation(s) in SNAP29 may also explain the pres-
ence of myelomeningoceles, a typically uncommon associated
feature in 22q11.2DS, in a subset of Kousseff37 patients.

Patient 4, presenting with a bilateral cleft lip and palate and
hypertelorism also warrants further discussion as both features
are reported in association with the 22q11.2 deletion, but
infrequently. However it is notable that the combination of
cleft lip and palate, hypertelorism, laryngotrachealesophageal
anomalies and hypospadias has been described in individuals
with the heterogeneous Opitz G/BBB syndrome,41 where an

Figure 3 Schematic representation of SNAP29 gene, cDNA and protein structure. (A) Upper panel is genomic structure of the SNAP29 gene,
comprises five exons (numbered 1–5) and 50 and 30 untranslated regions (UTRs). Introns are represented by a straight grey line. The structure of
777 bp SNAP29 cDNA is shown in the middle panel. Numbers above the cDNA diagram show the exons (named E1–E5) boundary nucleotide. The
vertical dashed grey lines align the location of each exon to the regions of SNAP29 protein that each exon encodes. Numbers below the protein
diagram show the contribution of each exon to the amino acid sequence. The SNAP29 protein has a length of 258 amino acid residues and is
composed of two domains: coiled-coil (orange box) and t-SNARE (purple box). The position of seven mutations identified in SNAP29 is shown by
arrows on cDNA and protein levels. The three mutations identified in this study are coloured in green for insertion and in red for deletion. Black
arrows show the position of four previously reported SNAP29 mutations, associated with cerebral dysgenesis, neuropathy, ichthyosis and
keratoderma syndrome. (B) Sanger sequencing confirmed all of the mutations identified in this study. Patient 2 and his mother are homozygous for
a 5 bp deletion (c.28_32delCCGTT) resulting in a frameshift (p.P10fs) and a premature stop codon 42 amino acids downstream. Patient 3 and 4
carry a homozygous sequence variant resulting in glutamic acid to lysine (p.E89K) and arginine to cysteine (p.R90C) changes, respectively.
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X-linked form – due to mutations in MID1 and an autosomal
dominant form with linkage to 22q11.2, and an association with
the 22q11.2 deletion syndrome have all been reported previ-
ously.42–46 These individuals typically present with laryngo-
tracheal-oesophageal abnormities, as seen in three of our four
patients reported here with SNAP29 mutations in combination
with a 22q11.2 deletion, as well as: cleft lip and palate in one of
four; hypertelorism in all four; severe swallowing difficulties/
oesophageal dysmotility in three of four; and genitourinary abnor-
malities such as hypospadias in one of the two males and crypt-
orchidism in the other. Thus, SNAP29 mutations in association
with a 22q11.2 deletion may also elicit a set of symptoms previ-
ously described in association with Opitz G/BBB syndrome, and
perhaps unmask an autosomal recessive phenocopy. This might
also explain the child with ‘apparent G syndrome’ reported by
Williams and Frias,47 as well as isolated case reports such as the
female described by Neri et al.48 Furthermore, although SNAP29 is
known to be associated with schizophrenia we could not assess this
condition in our patients. In fact, three of our four patients are
below the age of onset, and the fourth patient, a young teen, is
likely too impaired cognitively to assess for this phenotype.

In addition, in one patient (patient 1) we also identified a
homozygous mutation in the CLTCL1 gene that is predicted to
be damaging. This variant in CLTCL1 has previously been seen
in the dbSNP, 1000 Genomes and three unrelated exome
samples sequenced at our centre. CLTCL1 encodes clathrin
heavy chain-like 1, a major component of coated vesicles.49

CLTCL1 is not found in rodents and is predicted to function
species-specifically in Glut4 transport in muscle cells, although
it may also have functions in other tissues. Intriguingly, although
the majority of abnormalities found in patient 1 can be
explained by the mutation identified in SNAP29, this patient
also had an unusual B cell immunity that may more likely be the
result of the mutation in CLTCL1. Sequencing of additional
patients will allow us to determine if the mutation in CLTCL1 is
associated with B cell abnormalities. However, since an atypical
deletion that includes SNAP29, LZTR1 and P2RXL1 was
recently found associated with immune deficiency, it remains
possible that the mutations that we identified are responsible for
this phenotype.50

In conclusion, we have found that mutations in a single gene,
in unrelated patients, contribute to the phenotype of patients
with a microdeletion syndrome, implicating SNAP29 as a major
modifier of variable expressivity in 22q11.2DS patients. Our
work confirms that the phenotypic variability observed in
patients with 22q11.2DS may be due to additional mutations
on the non-deleted chromosome, which in some instances
unmask a previously described autosomal recessive condition
such as the CEDNIK and potentially Kousseff syndromes, and
in other cases simply contributes to the presence of atypical
findings. In fact, the majority of our patients did not have muta-
tions in SNAP29, suggesting that non-coding mutations in
SNAP29, and mutations in additional genes in the 22q11.2
region or on other chromosomes, are contributing to atypical
findings in those patients, as previously suggested by Stalmans
et al.51 Future work is focused on identifying these additional
mutations in the hope of stratifying patients for optimal treat-
ment and genetic counselling.
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