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Abstract: To encapsulate soluble iron, liposomes were prepared using unsaturated phospholipids
(phosphatidylcholine from egg yolk), leading to high encapsulation efficiencies (82–99%). The iron
concentration affected their oxidative stability: at 0.2 and 1 mM ferrous sulfate, the liposomes were
stable, whereas at higher concentrations (10 and 48 mM), phospholipid oxidation was considerably
higher. When applied in oil-in-water (O/W) emulsions, emulsions with liposomes containing low
iron concentrations were much more stable to lipid oxidation than those added with liposomes
containing higher iron concentrations, even though the overall iron concentration was similar (0.1 M).
Iron-loaded liposomes thus have an antioxidant effect at high phospholipid-to-iron ratio, but act as
pro-oxidants when this ratio is too low, most likely as a result of oxidation of the phospholipids them-
selves. This non-monotonic effect can be of crucial importance in the design of iron-fortified foods.

Keywords: iron encapsulation; liposomes; oil-in-water emulsions; lipid oxidation

1. Introduction

Iron deficiency is a worldwide issue that may be mitigated by fortification of food
products [1]. This sounds simple enough, but unfortunately soluble iron is also known to
induce deleterious reactions such as protein and lipid oxidation, which damages health-
promoting nutrients such as polyunsaturated fatty acids (PUFAs), gives undesired sensory
effects, and possibly damages the nutritional quality of the products [2]. In order to
fortify foods, it is thus required that soluble iron is prevented from inducing such negative
side-effects, while still being bioavailable, which may be achieved by using encapsulation.

Liposomes are nano-size vesicles consisting of phospholipid bilayers that surround a
core material containing an aqueous compartment, which makes them versatile carriers for
bioactive materials [3]. They have unique characteristics, such as being self-sealing, natural,
biodegradable, food-grade, and non-toxic [4], and thus appropriate for applications in food.
They are known for their high encapsulation efficiency, simple production method, and
high physical stability in products with high water activity [4]. They have been successfully
used for encapsulation of various food ingredients such as enzymes [5], vitamins [6], food
preservatives [7], and various sources of soluble iron [8–11], although some negative side
effects have also been reported with regard to oxidation of the building blocks of the
liposomes, i.e., unsaturated phospholipids [12].

Lecithin is a common food ingredient that is isolated from, e.g., egg or soybean, and
is listed as generally-recognized-as-safe (GRAS). It is a mixture of phospholipids, which
consist of a glycerol backbone with a phosphate-based group attached at the sn-3 position,
and two fatty acids at the sn-1 and sn-2 positions [13]. Phospholipids are named after
the chemical nature of the hydrophilic headgroup, for example phosphatidylcholine (PC),
phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylinositol (PI).
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The nature of the fatty acids depends on the biological source from which the lecithin
is derived, and on possible post-treatments (e.g., hydrogenation); the main fatty acids
encountered are palmitic, stearic, oleic, palmitoleic linoleic, and α-linolenic fatty acids [14].

Due to their amphiphilic structure, phospholipids can be involved in a range of col-
loidal structures, such as liposomes or other bi-layered structures (in aqueous phases),
reverse micelles (in oil), or emulsion droplets (when adsorbed at the oil-water interface) [15].
Owing to the unsaturated fatty acids often present in their molecular structure, phospho-
lipids are prone to lipid oxidation, which may physically alter the liposomes’ membrane,
causing off-flavored components production to co-oxidize other nutrients present inside
or outside the liposome compartments [13]. However, phospholipids can also act as an-
tioxidants by chelating pro-oxidant metals [16–18], forming antioxidant Maillard reaction
products [19], altering the location of primary antioxidants, regenerating primary antioxi-
dants [14,20,21], or combinations thereof. Table S1 presents an overview of some effects
reported in literature about the oxidative stability of liposomes, either investigated as such,
or when incorporated in model food systems (e.g., food emulsions and fruit juice), as
related to phospholipid type, metal ions, hydrating medium, antioxidants, and environ-
mental conditions (i.e., temperature and pH). In general, when PC was combined with
oil-soluble antioxidants (e.g., tocopherol, carotenoids, quercetin) this led to high stability
against metal-catalyzed oxidation in liposomes. This is explained by the fact that lipophilic
antioxidants spontaneously insert in phospholipid bilayers, i.e., at the location where
phospholipid oxidation is initiated. This is in line with other sources stating that pheno-
lipids, i.e., lipophilised antioxidants, are more efficient against liposome oxidation than
hydrophilic ones, because they are able to cross or interfere with lipid membranes owing
to their lipophilic tail [22,23]. In addition, such an insertion of amphiphilic antioxidants
within phospholipid bilayers may make liposomes less permeable to aqueous solutes
such as metals [22]. Table S1 remarks that in the most studies, metal ions were added as
oxidation catalysts, not for fortification purposes, however, learnings can still be taken. It is
clear that a knowledge gap needs to be bridged before PUFA-rich food emulsions can be
fortified without negative effects.

Reducing the unsaturation degree of phospholipids by hydrogenation can be an
efficient strategy to reduce oxidative issues; however, from a nutritional and consumer
point of view, it is not preferred because this adds to the saturated fat content of the
food and has been associated with the formation of trans double bonds, which is linked
to health issues [13]. Furthermore, the use of synthetic antioxidants such as butylated
hydroxytoluene (BHT), tert-butylhydroquinone (TBHQ), and ethylenediaminetetraacetic
acid (EDTA) does not comply with current consumer choice for cleaner and simpler
labels [13]. From this, it is clear that a possible strategy to produce PUFA-containing
foods enriched in iron could be to deploy iron ions-loaded liposomes, providing that such
structures can effectively circumvent undesired oxidative effects. This is a real challenge,
and publications on this topic including fundamental understanding are still lacking. In the
present study, we systematically investigate the effect of the phospholipid-to-iron ions ratio
on the oxidative stability of liposome suspensions, which are next applied in surfactant-
stabilized emulsions rich in PUFAs, such that the total iron concentration in the emulsion
is kept constant, but its local concentration in the intra-liposome environment varies. The
physical properties (particle size distribution and zeta-potential) and oxidative stability of
both the liposomes and the emulsions were determined as function of time, and compared
to appropriate reference systems, and we investigated the effect of the iron concentration
on the oxidative stability of O/W emulsions containing iron-loaded liposomes.

2. Materials and Methods
2.1. Materials

Rapeseed oil purchased from a local supermarket was stripped by means of alumina
to eliminate surface-active impurities and tocopherols following a previously established
method [24]. L-α phosphatidylcholine (PC) from egg yolk (purity ~60%), cholesterol
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(purity ≥ 99%), diethyl ether, Tween 20, iron (II) sulfate heptahydrate, 3-(2-Pyridyl)-5,6-
di(2-furyl)-1,2,4-triazine-5′,5′ ′-disulfonic acid disodium salt, sodium phosphate monobasic,
sodium phosphate dibasic, and citric acid were obtained from Sigma-Aldrich (St. Louis,
MO, USA). Different buffers were used for liposome and emulsion preparation: 10 mM
phosphate buffer (pH 6.8), 10 mM citrate buffer (pH 6.0), and 10 mM phosphate-citrate
buffer (pH 6.8). All chemicals were used were of analytical grade unless otherwise stated.
Ultrapure water, obtained from a Millipore Milli-Q system (Darmstadt, Germany) was
used for all the experiments.

2.2. Methods

The fatty acid composition and tocopherol content of lecithin were determined as
described elsewhere [25,26]. The initial oxidative status of stripped rapeseed oil and lecithin
was assessed by measuring their conjugated diene and hydroperoxide contents, para-
anisidine value and thiobarbituric acid reactive substances (TBARS) content, as described
in the following sections (corresponding values are reported in Table S2).

2.2.1. Preparation of Liposomes

Liposome dispersions were prepared as described earlier [12] with slight modifications.
In brief, 0.45 g PC and 0.018 g cholesterol were dissolved in 30 mL diethyl ether and mixed
with 10 mL of the previously described buffers, or with water, which both may or may not
contain ferrous sulfate. First, the mixture was sonicated with a probe sonicator (Microtip
3 mm, Branson Sonifier 250, Dietzenbach, Germany) for 10 min at a frequency of 20 kHz,
power of 150 W, and amplitude of 40% in an ice bath to prevent heating up. After organic
solvent removal by rotary evaporation (RC900, KNF, Oxfordshire, United Kingdom) at
controlled reduced pressure at 45 ◦C, 25 mL buffer were added while gently vortexing to
obtain the liposome suspension. The final iron concentration was 0.2, 1, 10, or 48 mM. The
liposome suspensions were filtered (0.45 µm paper, Whatman, Sigma Aldrich, Zwijndrecht,
The Netherlands). To determine the oxidative stability of iron-loaded liposomes, they were
incubated at 40 ◦C up to 14 days. The liposomes used in emulsions were stored at 4 ◦C in a
refrigerator for one day before adding them to emulsions. Samples were prepared twice
independently, and each replicate was measured three times.

2.2.2. Preparation of Emulsions

The aqueous phase of the emulsion consisted of phosphate buffer (10 mM, pH 6.8)
and Tween 20 (1 wt.%). Tween 20 was dissolved in the aqueous phase the day before
emulsion preparation and gently stirred overnight at room temperature. A coarse emulsion
containing 20 wt.% stripped rapeseed oil was prepared using a rotor stator homogenizer
(UltraTurrax T25 Basic Disperser with 25 mm diameter blade; Janke & Kunkel, IKA,
Staufen, Germany) at 7000 rpm for 2 min, followed by 3 passes at 800 bar through a high
pressure homogenizer (Microfluidizer M-110Y High Pressure Pneumatic equipped with a
F12Y interaction chamber, Microfluidics, Los Angeles, CA, USA). Six hundred milliliters
of emulsion were prepared for each batch. The cooling jacket of the homogenizer was
filled with iced water to limit temperature rise during the emulsification process. The
experiments were performed twice as independent duplicates.

2.2.3. Physical Characterization of Liposomes and Emulsions

Encapsulation efficiency of liposomal iron: The iron content in the phase surrounding
the liposomes was determined by the spectrophotometric ferene method [12]. Ferrous
iron reacts with the chromogen ferene to form a blue chromophore, and the intensity of
the color is proportional to the amount of iron present in solution. To a 0.5 mL sample,
1 mL of dissociation agent, which is a mixture of ascorbic acid (0.25 M), acetate buffer
(1.4 M- pH 4.5) in 1:1 ratio (v/v), and 0.1 mL ferene solution (6 mM) were added, and
the absorbance was measured at 593 nm. A calibration curve was used to determine the
ferrous iron concentration.
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To determine the concentration of free iron (dissolved in buffer/water and non-
encapsulated)

[
Fe f

]
, ferrous sulfate-loaded liposomal suspensions were placed in a cen-

trifugal ultrafiltration filter (Amicon® Ultra-0.5, 30 kDa MW, Merck, Darmstadt, Germany)
and centrifuged at 14,000× g for 20 min at 20 ◦C. The filtrate was collected, and 500-fold
diluted with ultrapure water. The total concentration of iron [FeT ] was determined by
taking 1 mL liposomal ferrous sulfate suspension and adding it to 5 mL hydrochloric
acid (37%), followed by burning at 100 ◦C for 20 min. The obtained samples were mixed
with 1 mL HCl solution (10%) and diluted 100 times. The calculation of the encapsulation
efficiency (EE) is shown in Equation (1):

EE (%) =
[(

[FeT ]−
[

Fe f

])
/[FeT ]

]
∗ 100, (1)

Size distribution and zeta potential: The size distribution, polydispersity index (PDI),
and zeta potential of the liposomes were measured with a dynamic light scattering in-
strument (Zetasizer Nano ZS, Malvern Instrument Ltd., Worcester, UK). This device was
also used to determine the zeta potential of emulsion droplets. The refractive index of
dispersant was set to 1.33 for water, to 1.47 for liposomal material, and to 1.45 for rapeseed
oil. As was the case for liposomes, the emulsions were prepared twice independently,
and from each emulsion three samples were 1000-fold diluted with ultrapure water or
corresponding buffers prior to measurement, both immediately after preparation, and at
the end of the incubation period. The zeta potential was expressed as a mean value in
mV ± standard deviation.

The droplet size distribution of emulsions was determined using static light scattering
(Mastersizer 2000, Malvern Instruments Ltd., Worcester, UK). The refractive indices of
rapeseed oil (1.45) and water (1.33) were used as particle and dispersant indices, respec-
tively. Five measurements were conducted per sample, and the data were reported as the
DeBrouckere mean diameter (d4,3).

2.3. Chemical Stability of Liposomes and Iron-Fortified Emulsions
2.3.1. Incubation Conditions

O/W emulsions containing 20 wt.% oil were mixed in a 1:1 ratio (v/v) with either
liposome suspension or phosphate buffer that both may or may not contain iron, and
gently vortexed to obtain homogenous systems. The combinations that were prepared are
schematically shown in Figure 1. Seven emulsion systems were studied: control emulsions
(no iron or empty liposomes added), emulsions with free iron (dissolved in buffer, non-
encapsulated), and emulsions with iron-loaded liposomes that had been prepared with
different iron concentrations (0.2 mM being the standard, the others were 1, 10, and 48 mM,
respectively). The final emulsions all contained 0.1 mM iron, but the resulting amount
of liposomal material (and hence the number of liposomes present in the continuous
phase) was different. The final oil concentration in all emulsions was 10%. Samples were
incubated at 40 ◦C on a rotating agitation device (5 rpm) for 7 to 14 days, with, for emulsion
samples, ~40 g placed in 50-mL tubes, and for liposome suspension samples, ~20 g placed
in 25-mL tubes.

2.3.2. Lipid Oxidation Markers

Primary lipid oxidation products: The amount of hydroperoxides was measured using
the method of Shantha and Decker [27]. Briefly, two stock solutions were prepared: for
solution A, 0.8 g barium chloride was dissolved in 25 mL 0.4 M HCl, and for solution B,
7.5 g ammonium thiocyanate was dissolved in 25 mL ultrapure water: both solutions were
stored cold and in the dark. To prepare the reagent, 0.14 M Fe2SO4 7H2O was mixed with
solution A in 1:1 (v/v) ratio and to obtain clear Fe (II) solution, barium chloride precipitate
was centrifuged. Then, supernatant was mixed with solution B in 1:1 (v/v) ratio and the
reagent was ready for use.
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Figure 1. Schematic view of the preparation of emulsions that may or may not contain iron and/or liposomal material.
The blue background corresponds to phosphate buffer, yellow spheres represent oil droplets, purple circles represent the
liposomes, and small red dots represent soluble iron (not to scale). PC, phosphatidylcholine.

To determine the hydroperoxide concentration, lipids were extracted from 0.3 g emul-
sion aliquots by mixing with 1.5 mL n-hexane:n-propanol (3:1, v/v). Next, 0.2 mL hexane
phase, 2.8 mL methanol:1-buthanol (2:1, v/v) and 30 µL reagent were mixed. After 20 min
incubation at room temperature, absorbance was determined at 510 nm against a blank
containing all reagents except the sample using a spectrophotometer (DU 720 Beckman
Coulter, Brea, CA, USA). The concentration expressed as mmol hydroperoxides per kg
of oil was determined using a calibration curve obtained with a cumene hydroperoxide
standard solution.

For stripped rapeseed oil and fresh PC, values of 0.05 and 11.23 mmol hydroperoxides
per kg oil were found, respectively.

Secondary lipid oxidation products: The para-anisidine value (pAV), which is a global
measurement of the formation of aldehydes, was determined by first mixing 0.3 g emulsion
with 1.5 mL n-hexane:n-propanol mixture (3:1 v/v). The absorbance of the top hexane
phase (Ab) was immediately measured at 350 nm, using pure hexane as blank. Then, 1 mL
of this top hexane phase was added to 0.2 mL para-anisidine solution (2.5 M in acetic acid)
and mixed. After 10 min the absorbance of this mixture (As) was measured using as blank
pure hexane similarly mixed with the para-anisidine solution. The pAV was calculated as
shown in Equation (2):

pAV = (1.2·As− Ab)/m, (2)

where m is the mass (g) of oil per mL hexane. For stripped rapeseed oil and PC, values of
0.02 and 0.51 (AU) were found, respectively.

Thiobarbituric acid reactive substances (TBARS) were determined according to a
previously described procedure [28]. A trichloroacetic acid-thiobarbituric acid (TCA-TBA)
solution (15 g TCA, 0.375 g TBA, 1.76 mL 12 N HCl and 82.9 mL of water) was mixed
with butylated hydroxytoluene (2 wt.% solution in ethanol), in 100:3 (v/v) ratio. One
milliliter emulsion was combined with 2 mL TBA solution, and the mixture was placed
in a water bath at 75 ◦C for 30 min. The tubes were then cooled to room temperature
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for 10 min and then centrifuged (4000× g) for 15 min. The absorbance was measured at
532 nm. Concentrations of TBARS were calculated from a standard curve prepared with
1,1,3,3-tetraethoxypropane.

2.4. Experimental Design and Statistical Analysis

Statistical analysis was done using the SPSS software (version 18, PASW Statistics,
Chicago, IL, USA). One-way analysis of variance (ANOVA) was conducted using six
individual results from two independent repetitions and least significant differences were
calculated at p < 0.05 applying Tukey’s post hoc test.

3. Results and Discussion
3.1. Iron-Loaded Liposomes
3.1.1. Effect of Aqueous Phase Composition on Physical Properties

The encapsulation efficiency of ferrous sulfate-loaded liposomes (0.2 mM iron) pre-
pared in different buffers or ultrapure water was followed in time, as was the pH. The
results are presented in Table 1. The aqueous phase had a significant effect on encapsula-
tion efficiency; water and phosphate buffer led to high values of 99 and 96%, respectively,
whereas the encapsulation efficiency measured for citrate and phosphate-citrate buffer was
lower (82–87%). These results are different from those found by Ding et al. (2009) [9] who
studied encapsulation of ferrous glycinate for which encapsulation efficiencies ranging
from 75 to 30% were reported. The highest values were for the citrate-phosphate buffer, and
the lowest for citrate buffer at pH 6.6, and the difference was explained by the excess level of
citric acid that may dissociate ferrous glycinate [9]. It is good to point out that contrarily to
our approach, in the work of Ding, the liposomes included Tween 80 and cholesterol, which
are expected to modulate the liposome structure, stability and rigidity either by covering
the phospholipid bilayer (Tween 80), or by cementing it (cholesterol) [9,29,30], or, if present
in excess, by leading to leakage of the encapsulated material (of both compounds) [31].

Table 1. Encapsulation efficiency (%) and pH of liposome suspensions prepared in various aqueous phases with 0.2 mM
FeSO4. Values are the average ± standard deviation of three measurements done on two independently prepared batches.

Buffer Set pH Encapsulation Efficiency (%)
Actual pH

Fresh After 14 Days at 40 ◦C

Water - 99.4 ± 0.19 6.3 ± 0.11 3.2 ± 0.02
Phosphate buffer (10 mM) 6.8 95.9 ± 1.37 6.7 ± 0.08 6.4 ± 0.05

Citrate buffer (10 mM) 6.0 86.6 ± 0.18 6.0 ± 0.13 5.9 ± 0.04
Phosphate-citrate buffer (10 mM) 6.8 82.1 ± 4.46 6.8 ± 0.12 6.8 ± 0.11

The pH of the liposome suspensions in buffer did not change significantly over 14 days
of incubation at 40 ◦C, but for water the pH dropped considerably. The starting pH of
the iron-loaded liposome suspensions prepared in water was around 6.3 and decreased to
3.2 over 14 days incubation. When metal ions are present in water they form metal aquo
complexes that are acidic owing, to the ionization of protons from the water ligands, which
explains the eventual low pH of the solution [32].

The sizes of iron-loaded liposomes are given in Figures S1 and S2 and Table 2 (top
section): they were rather similar in all tested media (no significant difference), ranging
from 129, 139, 141, up to 154 nm in citrate, phosphate-citrate, phosphate buffers and water,
respectively. The liposome size remained constant over 14 days incubation.

The zeta potential of all liposomes was negative (Figure 2a,b), and became more
negative over 14 days incubation. A high net value of the zeta potential is linked to high
repulsion forces between liposomes, which promotes high physical stability, as confirmed
by the constant size in Table 2. The isoelectric point of PC is ~1, thus other phospholipids
present in lecithin with higher IEP such as phosphatidylserine and phosphatidylglycerol
could be responsible for the negative charge [12].
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Table 2. Size of iron-loaded liposomes, and of O/W emulsion droplets. Reported values are the average ± standard
deviation of the nine measurements done for two independently prepared batches.

Sample
Average Size (nm) *

Fresh 14th/8th Day **

Liposomes

Water 154 ± 0.5 153 ± 0.6
Phosphate buffer 141 ± 0.2 141 ± 0.2

Citrate buffer 129 ± 0.1 128 ± 0.5
Phosphate-citrate buffer 139 ± 0.1 137 ± 0.2

Emulsions in
phosphate buffer

Reference emulsions
Control 147 ± 0.1 148 ± 0.1

+ Empty liposomes 146 ± 0.1 147 ± 0.1
+ Free iron 144 ± 0.1 145 ± 0.1

Emulsions containing
iron-loaded liposomes

0.2 mM *** 148 ± 0.1 147 ± 0.1
1 mM *** 146 ± 0.1 145 ± 0.1
10 mM *** 146 ± 0.1 147 ± 0.2
48 mM *** 148 ± 0.1 147 ± 0.1

* For liposomes, size was determined by dynamic light scattering and is reported as hydrodynamic diameter; for emulsion droplets, size
was determined by static light scattering and is reported as d4,3. ** After 14 days incubation at 40 ◦C for liposomes, and after 8 days
incubation at 40 ◦C for emulsions. *** Iron concentrations in the initial liposome suspensions used to fortify the emulsions; in all emulsions,
the final iron concentration was 0.1 mM.
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3.1.2. Oxidative Stability of Iron-Loaded Liposomes

The effect of aqueous phase composition on the oxidative stability of liposomes con-
taining 0.2 mM iron was evaluated by measuring primary (hydroperoxides) and secondary
(para-anisidine value and TBARS) oxidation products for up to 14 days at 40 ◦C (Figure 3).
Hydroperoxide concentrations remained under 4 mmol/kg oil for all liposome suspensions,
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whereas the pAV for liposomes in water dramatically increased to above 14 (AU) over
five days and then decreased to 6.5 (AU) at the end of incubation, which also occurred
for TBARS formation. pAV and TBARS concentrations remained low for the other sam-
ples over the timescale of the experiment, with the sample in phosphate buffer showing
the lowest TBARS concentration at ~12 µmol/mg lipid at the end of the incubation. To
summarize, iron-loaded liposomes showed a good stability to oxidation when present in
buffer, whereas in water they were extremely unstable with a remarkably fast production of
secondary lipid oxidation products (high pAV and TBARS). The fact that the latter markers
show a subsequent decrease in time may be due to further decomposition of aldehydes
into other products, such as alcohols and acids, which are not detected with the assays
used in our study [32–39].
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The pro-oxidant effect of ferrous iron is well documented [40], and more prominent at
lower pH [18], which may explain the high oxidation rates measured for the liposomes in
water for which the pH decreased strongly. Furthermore, it is known that both phosphate
and citrate can dissociate in various negatively charged species that can interact with iron,
or form complexes with iron (see Appendix A for more information), therewith rendering
iron less active as a pro-oxidant. In addition, Goto et al. (1970) [41] found that spontaneous
oxidation of ferrous iron can lead to various ferrous hydroxide complexes. Between pH 5
and 8, as is the case in our buffered liposome solutions, mainly Fe(OH)2+ is present, which
reduces the actual iron concentration involved in oxidative reactions.

To wrap up, the buffer components chemically interact with iron via various routes.
Overall, this decreases the pro-oxidant effect of iron by preventing it from producing
reactive oxygen species (ROS; in particular •OH radicals) via the Fenton reaction, and from
reacting with lipid hydroperoxides. On top of this, phosphate ions can intervene in lipid
oxidation through their free radical scavenging activity [41–44]. This combinatory effect of
phosphate ions is interesting, since it may allow powerful mitigation of oxidative effects.

3.1.3. Effect of Iron Concentration on Lipid Oxidation in Liposomes

The oxidative stability of liposome suspensions in phosphate buffer was further inves-
tigated using various ferrous sulfate concentrations, and hydroperoxide concentrations
and pAV were measured over 14 days at 40 ◦C (Figure 4). Hydroperoxide concentrations
for liposome suspensions containing 0.2 and 1 mM iron remained below 3 mmol/kg oil,
whereas higher iron concentrations (10 and 48 mM) led to the formation of higher amounts
of primary and secondary lipid oxidation products, as can be clearly seen through the
pAV. Liposomal phospholipids in the phosphate buffer therefore seem to resist (or possibly
delay) iron-catalyzed oxidation only until a certain iron concentration, above which they
oxidize rapidly.

Foods 2021, 10, x FOR PEER REVIEW 10 of 16 
 

 

3.1.3. Effect of Iron Concentration on Lipid Oxidation in Liposomes 
The oxidative stability of liposome suspensions in phosphate buffer was further in-

vestigated using various ferrous sulfate concentrations, and hydroperoxide concentra-
tions and pAV were measured over 14 days at 40 °C (Figure 4). Hydroperoxide concen-
trations for liposome suspensions containing 0.2 and 1 mM iron remained below 3 
mmol/kg oil, whereas higher iron concentrations (10 and 48 mM) led to the formation of 
higher amounts of primary and secondary lipid oxidation products, as can be clearly seen 
through the pAV. Liposomal phospholipids in the phosphate buffer therefore seem to re-
sist (or possibly delay) iron-catalyzed oxidation only until a certain iron concentration, 
above which they oxidize rapidly. 

 
Figure 4. (a) Hydroperoxide concentration and (b) para-anisidine value (pAV) of iron-loaded lipo-
some suspensions containing 0.2, 1, 10, or 48 mM iron, for a fixed PC concentration. All liposome 
suspensions were incubated at 40 °C under slow rotative agitation. Error bars represent standard 
deviations (n = 4). 

When liposomes are prepared by sonication, generation of traces of lipid peroxides 
(LOOH) is inevitable [45]. Besides, iron can bind to the membrane of the phosphatidyl-
choline-based liposomes, thus promoting phospholipid oxidation. District et. al. [46] sug-
gested that during the period when oxidation product concentrations are very low (latent 
period or lag phase), addition of ferrous iron (Fe2+) initiates lipid peroxidation by decom-
posing preformed hydroperoxides (LOOH) to peroxyl radicals (LOO*) that propagate ox-
idation. In the same work, the effect of the iron-to-lipid ratio on liposome oxidation was 
investigated, and it was found that when [Fe2+/LH] reached a critical value (40 µM Fe2+ in 
the continuous phase in their case), LOOH concentration increased rapidly and peroxida-
tion started. 

The ability of the polar headgroup of phospholipids, such as PC, to protect their fatty 
acid chains against oxidation has been reported in literature (Table S1, Supporting infor-
mation). Accordingly, the antioxidant effect of PC and of other phospholipids with an 
anionic polar headgroup is linked to their ability to bind positively charged metals such 
as iron [18,47–49], thus reducing the ability of the metal ions to decompose lipid hydrop-
eroxides to secondary oxidation products. Quite logically, the oxidative susceptibility of 
phospholipids has been reported to vary because of differences in the degree of unsatura-
tion [13], although Yoshida et al. (1991) observed that both saturated and unsaturated PS 
protected egg yolk PC-based liposomes from oxidation by binding free iron to their ani-
onic polar headgroup. Furthermore, a few studies reported that the fatty acids present in 
phospholipids oxidized faster when the headgroup was PE, compared to PC [17,50], 
which was found both in liposome and emulsion systems. This may be due to the sensi-
tivity to oxidation of the ethanolamine group itself, which has been shown to occur con-
comitantly with the oxidation of the unsaturated fatty acid chains [50]. 

From this short literature impression, it is clear that the mechanisms involved in the 
oxidation of phospholipid-based matrices have been far from agreed on, and depend on 
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some suspensions containing 0.2, 1, 10, or 48 mM iron, for a fixed PC concentration. All liposome
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deviations (n = 4).

When liposomes are prepared by sonication, generation of traces of lipid peroxides
(LOOH) is inevitable [45]. Besides, iron can bind to the membrane of the phosphatidyl-
choline-based liposomes, thus promoting phospholipid oxidation. District et al. [46]
suggested that during the period when oxidation product concentrations are very low
(latent period or lag phase), addition of ferrous iron (Fe2+) initiates lipid peroxidation
by decomposing preformed hydroperoxides (LOOH) to peroxyl radicals (LOO*) that
propagate oxidation. In the same work, the effect of the iron-to-lipid ratio on liposome
oxidation was investigated, and it was found that when [Fe2+/LH] reached a critical value
(40 µM Fe2+ in the continuous phase in their case), LOOH concentration increased rapidly
and peroxidation started.

The ability of the polar headgroup of phospholipids, such as PC, to protect their
fatty acid chains against oxidation has been reported in literature (Table S1, Supporting
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information). Accordingly, the antioxidant effect of PC and of other phospholipids with
an anionic polar headgroup is linked to their ability to bind positively charged metals
such as iron [18,47–49], thus reducing the ability of the metal ions to decompose lipid
hydroperoxides to secondary oxidation products. Quite logically, the oxidative suscep-
tibility of phospholipids has been reported to vary because of differences in the degree
of unsaturation [13], although Yoshida et al. (1991) observed that both saturated and
unsaturated PS protected egg yolk PC-based liposomes from oxidation by binding free
iron to their anionic polar headgroup. Furthermore, a few studies reported that the fatty
acids present in phospholipids oxidized faster when the headgroup was PE, compared to
PC [17,50], which was found both in liposome and emulsion systems. This may be due
to the sensitivity to oxidation of the ethanolamine group itself, which has been shown to
occur concomitantly with the oxidation of the unsaturated fatty acid chains [50].

From this short literature impression, it is clear that the mechanisms involved in
the oxidation of phospholipid-based matrices have been far from agreed on, and depend
on the chemical nature of the components used, as well as on the colloidal structures
in which phospholipids are involved. The systematic approach that we use here, first
investigating the effect of iron concentration in liposomes, from which it is clear that the
iron-to-phospholipid concentration is of pivotal importance, and next using this knowledge
to design iron-fortified emulsions, can thus help unravel some of the hierarchical and
cascaded effects involved.

3.2. Iron-Fortified Emulsions

Various emulsions were incubated in oxidative conditions, amongst which there are
various reference systems (Figure 1): a control emulsion without iron and liposomes,
an emulsion with free iron, and an emulsion with empty liposomes. The purpose of
these experiments was to elucidate the effect of PC-to-iron ratio while keeping the total
iron concentration constant at 0.1 mM. Both physical (size distribution and zeta poten-
tial) and oxidative (hydroperoxide concentration and pAV) stability-related parameters
were determined.

3.3. Physical Properties of Iron-Fortified Emulsions

Table 2 (bottom section) shows that the droplet size (d4,3) was very similar for all
emulsions, around 150 nm on average, and did not change during incubation. The zeta
potential of all emulsions was negative even though a non-ionic surfactant was used,
which is in agreement with results from others [12,18]; the possible reason being the
preferential adsorption of OH− onto the emulsion droplet surface [51], or binding of
phosphate ions [12]. After 8 days of incubation, the charge of the emulsion droplets became
more negative, yet still less negative than previously found for liposomes. This decrease in
zeta potential in emulsions over incubation (Figure 2c,d) could be due to minor hydrolysis
of the oil’s triglycerides into free fatty acids, which have affinity for the droplet surface, as
reported previously [52].

3.3.1. Oxidative Stability of Iron-Fortified Emulsions

Effect of encapsulation of iron on its pro-oxidant activity in emulsions. Lipid oxidation
in emulsions was evaluated based on hydroperoxide concentration and pAV for up to seven
days at 40 ◦C (Figure 5a,b). During the first two days, in all emulsions the hydroperoxide
concentration remained below 10 mmol/kg oil. After the fourth day, maximum values
of 28–44 mmol/kg oil were reached, which decreased to 12–24 mmol/kg oil at the end of
incubation. The pAV increased in all emulsions, eventually reaching 7–11 in emulsions
containing free iron or iron-loaded liposomes; the PC-based liposomes as such did not
influence lipid oxidation, as is evident from the empty liposome-emulsion results. Free
iron led to a more pronounced lipid oxidation in the emulsion compared to iron entrapped
in liposomes (for a PC-to-iron mass ratio of 1607, i.e., when the initial liposome suspension
was prepared with 0.2 mM iron), which shows that the physical location of iron, and in
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particular, its segregation from the oil droplet substrate, can mitigate its overall pro-oxidant
activity. In Figure 3, we already showed that at low iron concentration (0.2 mM), the
liposomal material was stable to oxidation. Furthermore, the polar headgroups of PC may
have bound iron, as described earlier by Cardenia et al. (2011).
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Figure 5. (a,c) Hydroperoxide concentration and (b,d) para-anisidine values (pAV). Top panels:
control emulsion, emulsion with empty liposome, emulsion with iron-loaded liposome, and emulsion
with free iron; bottom panels: emulsion with free iron and emulsions containing the following PC-to-
iron ratios: 7, 32, 321, or 1607. All emulsions were incubated at 40 ◦C under slow rotative agitation.
in all iron-containing emulsions the concentration was 0.10 mM. Error bars represent standard
deviations (n = 4).

When liposomes were initially prepared with higher iron concentrations (i.e., the
iron concentration in the intra-liposome environment was high, and thus the PC-to-iron
ratio low), the liposomes themselves were prone to oxidation, even in phosphate buffer
(Figure 4). Whether this effect also spills over to the emulsion droplets was investigated
next (Figure 5c,d).

Effect of PC-to-iron ratio: Iron-loaded liposome suspensions were prepared with
various iron concentrations, and at a fixed amount of PC, and added to emulsions to reach
0.1 mM total iron concentration in all fortified emulsions (Figure 1). Primary and secondary
lipid oxidation products were measured (Figure 5c,d). Hydroperoxide concentrations and
pAV increased over the incubation period and were largely affected by the PC-to-iron
ratio. The high lipid oxidation at low PC-to-iron mass ratios (7 and 32), i.e., when the local
intra-liposome concentration of iron was very high, can be explained by the early formation
of lipid radicals and hydroperoxides within the liposome membrane, in accordance with
the data reported in Figure 4, and also in previous work [12], which could be reactive
intermediates that would contribute to propagating lipid oxidation. It is remarkable that
at these low PC-to-iron ratios, lipid oxidation in the emulsions was largely accelerated
compared to the reference emulsion (free iron) with a similar total concentration of iron.
This indicates that under such conditions, local accumulation within the liposomes in fact
potentiates the pro-oxidant effect of iron, most likely by creating highly reactive “hot spots”
within the emulsion, which could locally generate high concentrations of lipid oxidation
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products. This is in line with recent theories considering lipid oxidation as a spatially
heterogeneous reaction [53–56].

At high PC-to-iron ratios, as also discussed earlier, lipid oxidation was clearly slower
than at low ratios, which is especially visible in the pAV values, i.e., with regard to the
formation of secondary oxidation products. At high ratios, i.e., when the local intra-
liposome concentration of iron was low, lipid oxidation in emulsions proceeded slower
than in the reference emulsion that contained non-encapsulated iron, showing that the
antioxidant potential of these encapsulates can be tuned and even reverted depending on
the PC-to-iron ratio, while keeping the total iron concentration constant. These are very
important insights that need to be generalized to achieve iron-fortified emulsion products
that do not suffer from lipid oxidation-related alterations.

4. Conclusions

Encapsulation of soluble iron in liposomes is possible at high encapsulation efficiency,
and by tuning the ratio between phospholipids and iron, it is also possible to mitigate
negative oxidation effects towards the liposomes themselves, and the surrounding lipid-
containing matrix. This is an important step towards the design of PUFA-rich foods that
are fortified in soluble iron.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/foods10061293/s1, Figure S1: Particle size distribution in iron-loaded liposomes, Figure S2:
Particle size distribution in (a) the reference emulsion; (b) emulsions containing iron-loaded lipo-
somes, Table S1: Overview of studies pertaining to lipid oxidation in liposome suspensions and
liposome-containing systems, with a focus on (but not limiting to) those conducted in the pres-
ence of added metal ions. Table S2: Fatty acid composition (µg/g) of phosphatidylcholine (PC).
References [8,12,18,37] are cited in the supplementary materials.
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Appendix A. Iron Complexation in Buffers

Buffers such as phosphate and citrate anions chelate iron cations, and in this way
decrease their prooxidant potential [33–36]. At high pH, citrate has a negative charge and is
able to complex iron, and an equilibrium is established between bound and unbound iron.

Citric acid and phosphate both have three pKa values (3.13, 4.76, and 6.4 for citric acid,
and 2.15, 7.2, and 12.33 for phosphate). The various charged from can be calculated on
classic Henderson-Hesselbach equations. At pH 6.8, the monohydrogenocitrate (CitH2−)
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majority, and the percentage of (CitH2−) of total citrate (CitH2− + Cit3−) can be calculated
as follows (adopted from Daoud et al. (2021) [33]):

pH = pKa + log
base
acid

= pKa + log

[
CitH2−

]
[
Cit3 − ] , (A1)

[
CitH2−

]
[
Cit3−] = 10(pKapH) = 10(6.46.0) = 2.52, (A2)[

CitH2−
]

[
CitH2−

]
+
[
Cit3−]= 2.52

[
Cit3−]

2.52
[
Cit3−] + [Cit3−]= 2.52

1 + 2.52
= 0.712. (A3)

At the buffer pH’s used in our work, citric acid is mostly in charged forms, either as
monohydrogenocitrate (CitH2−) or totally deprotonated (Cit3−).

The distribution of phosphate species can be evaluated using the same strategy. At
pH 6.8, phosphate is mainly presented as dihydrogenophosphate H2PO4

− (71%), and
monohydrogenophosphate HPO4

2− (29%).
Whether stemming from citrate or phosphate, the ionic species present in the buffered

systems we used can act as counter-ions or take part in the formation of hypervalent
iron-oxygen complexes.

The complexation of ferrous ions with citrate and phosphate buffer is presented in the
reactions (Equations (A4) and (A5)) and (Equations (A6) and (A7)), respectively [34,38]:

Fe2+ + HCit2− → FeHCit, (A4)

Fe2+ + Cit3− → FeCit−, (A5)

Fe2+ + H2PO4
− → FeH2PO4

+, (A6)

Fe2+ + HPO4
2− → FeHPO4. (A7)
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