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Abstract: Physical exercise has wide-ranging benefits to cognitive functioning and mental state, ef-
fects very closely resembling enhancements to hippocampal functioning. Hippocampal neurogenesis
has been implicated in many of these mental benefits of exercise. However, precise mechanisms
behind these effects are not well known. Released peripherally during exercise, beta-endorphins are
an intriguing candidate for moderating increases in neurogenesis and the related behavioral benefits
of exercise. Although historically ignored due to their peripheral release and status as a peptide
hormone, this review highlights reasons for further exploring beta-endorphin as a key mediator
of hippocampal neurogenesis. This includes possible routes for beta-endorphin signaling into the
hippocampus during exercise, direct effects of beta-endorphin on cell proliferation and neurogenesis,
and behavioral effects of manipulating endogenous opioid signaling. Together, beta-endorphin
appears to be a promising mechanism for understanding the specific ways that exercise promotes
adult neurogenesis specifically and brain health broadly.

Keywords: exercise; adult neurogenesis; beta-endorphin; hippocampus; stress; dentate gyrus; spatial
memory; depression

1. Exercise Effects on Brain and Mental Health

Aerobic exercise has widely been prescribed to benefit many physical health condi-
tions, such as cardiovascular disease, obesity, diabetes, and immune functioning [1–3],
but growing evidence points to chronic aerobic exercise as vital for brain health. Exercise
increases blood flow to the brain, reduces risk of stroke, prevents age-associated reductions
in brain volume, and is protective against the progression of various neurodegenerative
disorders, including Parkinson’s disease, Alzheimer’s disease and other dementias, and
progressive multiple sclerosis [4–9]. In addition, exercise has wide-ranging positive effects
on cognitive functioning and mental health across the lifespan [10–12]. Although physi-
cal exercise shows strong effectiveness as a prescribed treatment or prevention for many
conditions, it is not always practical due to physical and mental barriers behind many
neurological and psychiatric conditions [13]. Therefore, having a deeper understanding
of the brain mechanisms behind its therapeutic effects is vital to offering the promise of
exercise treatment to many.

2. Hippocampus and Adult Neurogenesis—Potential Involvement in Many of the
Exercise-Related Effects

Many of the cognitive and emotional effects of aerobic exercise involve normalized or
enhanced functioning of the hippocampus. Specifically, exercise enhances spatial learn-
ing and memory processes, pattern separation and mnemonic discrimination, attention
shifting, and negative feedback to stress, in addition to decreasing feelings of anxiety
and depression [14–19]. Using rodent lesion models, behaviors modeling all of these are
dependent on normal hippocampal functioning [20], suggesting that the hippocampus
may be a key target to effects of exercise on cognition and mental health. Plastic changes
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within the hippocampus are likely responsible for producing long-term improvements
in brain functioning following chronic exercise, which can be studied in many ways, in-
cluding dendritic growth of neurons, synapse formation, and long-term potentiation or
other changes to physiological strength of synaptic connections. One additional process
relatively unique to the hippocampus in the adult mammalian brain is the continual pro-
duction of new neurons in the dentate gyrus region of the hippocampus. New neurons are
born throughout adulthood in the dentate gyrus of mammals, from rodents to primates
and humans [21,22], and have the unique potential to dynamically alter hippocampal
processing by their introduction to dentate networks.

Recent work utilizing models to ablate neurogenesis in the hippocampus of adult
rodents has demonstrated a functional role for adult-born neurons in many of the hip-
pocampal functions that exercise improves. In learning and memory tasks, new neurons
in the hippocampus are important for normal adoption of spatial strategies when solving
new environments [23] and initial acquisition of contextual fear conditioning [24]. On tasks
assessing specific areas of cognitive functioning, deletion of new neurons impairs normal
pattern separation abilities [25] and attention shifting [26]. Lastly, with stress physiology
and related behaviors, ablating adult neurogenesis impairs negative feedback of the normal
corticosterone response to stress and leaves rodents at higher risk for developing anxiety
or depression [27], although many studies show that losing new neurons does not simply
produce anxiety or depression [28]. Overall, there is much circumstantial evidence to
suggest that adult neurogenesis is a possible mechanism behind the benefits of exercise
on mental functioning. The purpose of this review is to describe the effects of exercise on
adult neurogenesis, discuss the functional relevance of changing adult neurogenesis on ex-
ercise’s effects, and highlight β-endorphin as one interesting and underlooked mechanism
mediating these effects.

3. Exercise Effects on Adult Neurogenesis

Initially, the basic characterization of adult neurogenesis in the hippocampus of
rodents occurred in tandem to experiments showing manipulations that reduced cell pro-
liferation and neurogenesis, such as stress. Conversely, living in an enriched environment
was shown to enhance adult neurogenesis in mice and follow-up studies demonstrated
that access to a running wheel was the most important factor in producing these effects [29].
This important first study and similar ones that followed consistently showed that rodents
given free access to running wheels to run whenever they wanted would gain a boost in
hippocampal neurogenesis [30,31]. Limiting the timing of wheel access, though, showed
that hippocampal neurogenesis would be most promoted when wheel access was granted
for multiple hours during the active dark phase of their circadian cycle, when rodents
would naturally be most active on running wheels anyway [32].

In general, running longer distances results in increased neurogenesis [33]. However,
use of resistance-embedded running wheels results in shorter distances but similar increases
to adult neurogenesis [34], suggesting that amount of effort is more importantly associated
with neurogenic effects rather than simply distance ran, but to a point. In long-term running
conditions (one month or longer), limiting daily access to running wheels results in higher
cell proliferation than unlimited access [35,36], suggesting that neurogenesis effects are
more nuanced and likely balanced by energy demands exerted by excessive exercise.
Relatively newer research looking at different types of exercise on cell proliferation and
neurogenesis supports the idea that physical fatigue can offset exercise-induced increases in
adult neurogenesis. Adding strength training to a regular treadmill paradigm through body
weights and incline walking depresses hippocampal cell proliferation back to baseline
levels [37]. However, just performing strength training, as has been conducted with
resistance-based ladder climbing, increases cell proliferation on its own [38,39], suggesting
that type of exercise—aerobic or anaerobic, endurance or high intensity—may not matter, as
long as exercise load does not become excessive. Other resistance-based exercise paradigms
show the opposite effect—no change in cell proliferation but decreases in neurogenesis [40],
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suggesting that disparities in duration and intensity of workouts matter. By contrast,
allowing rodents to voluntarily run at their own pace may be the simplest way to keep
fatigue in check and maximize hippocampal plasticity.

Voluntary exercise does not universally enhance all facets of adult neurogenesis,
however. Transiently, cell proliferation from progenitor cells in the hippocampus is initially
suppressed in the first two days of running, although by one week, there are characteristic
increases in cell proliferation [41]. New cells are proliferated, but also more new neurons
are differentiated and survive to fully integrate into hippocampal circuitry within a matter
of weeks [42]. There is even evidence of increased number of new neurons within two days
of running [41], likely reflecting enhanced survival or hastened maturation of preexisting
neurons [42,43]. However, these effects do not continually persist for the duration of
long-term running. By the third week of exercise, running rats no longer have increased
cell proliferation [42].

Cell proliferation may initially dip following initiation of running due to stress.
Exercise is a physical stressor in that it activates the hypothalamic-pituitary-adrenal
(HPA) axis resulting in peripheral increases in corticosterone [44]. Despite consistently
inhibitory effects of various stressors, both physical and psychological, on adult neuroge-
nesis (reviewed in [45]), running seems to serve as a ‘positive’ stressor that can maintain
beneficial effects on brain plasticity, such as increased adult neurogenesis. One of the
ways harmful effects of running stress may be buffered is through social housing. Exercise
produces either no change in adult neurogenesis or uncharacteristic decreases in adult
neurogenesis in socially isolated rats and mice [46–48], and intentionally depressing the
level of corticosterone circulating in socially isolated runners restores the beneficial effects
of exercise on adult neurogenesis [46]. In addition, the voluntary nature of wheel running
is most often utilized as it gives rodents agency in choosing to run and is considered less
stressful, compared to prolonged forced exercise on treadmills. Although many stud-
ies utilizing treadmills show enhancements in adult neurogenesis [49], intense exercise
paradigms using treadmills show diminished increases in neurogenesis [50,51], possibly
related to allostatic demands of those paradigms.

4. Functional Role of Neurogenesis on Exercise-Induced Changes to Mental Functioning

Although running-increased adult neurogenesis may mediate many of the broad
behavioral changes produced by exercise, most studies directly studying the function
of new neurons have focused on memory functions of the hippocampus, namely spa-
tial/environmental learning and memory. Overall, effects are mixed when asking whether
increased neurogenesis is necessary for improved cognition following exercise. Using
irradiation or pharmacogenetic models of neurogenesis inhibition, partial reduction in
adult neurogenesis following exercise has been shown to decrease spatial performance in
the Morris water maze [52,53]. However, no changes to exercise-enhanced performance
were observed in similar studies [54–57], or following treatment with the anti-mitotic drug,
Ara-C [58]. Perhaps surprisingly, one of the papers that found effects of irradiation on
exercise-enhanced spatial memory failed to find effects on contextual fear conditioning [52],
whereas a paper that failed to find spatial memory deficits did see a reduction in contextual
fear conditioning following irradiation [54].

Stress does seem to be an important variable when examining the functional role of
new neurons in exercise-induced changes to mental functioning. Although ablation of new
neurons does not prevent anxiolysis following exercise in basal conditions [59], loss of new
neurons does diminish the reduction in anxiety-like behavior produced by exercise in a
chronic pain model [60]. Likewise, even when absence of adult-born neurons in rats fails to
impact spatial learning in the Morris water maze following running, it does make running
less beneficial when rats were injected with corticosterone [58]. One potential reason
why stress may affect hippocampal processing is that stress can saturate hippocampal
long-term potentiation (LTP) [61], leading to reduced capacity for future learning. Adult
neurogenesis has been proposed to help combat LTP saturation in the hippocampus and
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maintain hippocampal memory capacity [62]. Important for this discussion, exercise was
specifically shown to aid in the recovery of contextual fear learning following artificial LTP
saturation, but not when neurogenesis was inhibited by irradiation [62].

It should be noted that many of the cognitive and affective benefits of exercise may be
due to other factors outside of changes to cell proliferation and neurogenesis. Long-term
running enhances LTP in the dentate gyrus [63] and increases downstream molecular
pathways involved in synaptic plasticity [64]. In addition, exercise impacts hippocampal
structure in a variety of ways. Exercise increases dendritic length and spine density in
hippocampal neurons [65] and increases overall hippocampal volume [66]. Exercise results
in the release of many trophic factors, and although there is significant evidence that these
growth factors enhance neurogenesis in adult rodents (see below), they are also likely
to mediate other physiological and structural changes from exercise [64,67]. Therefore,
exercise produces many changes within the hippocampus, and while evidence points to
neurogenesis being important for many of the mental benefits of exercise, it is likely one
type of plasticity among many that have a functional role.

5. Potential Mechanisms Involved in Exercise Effects on Neurogenesis—Endorphins?

Early studies showed various neurotrophic factors important for developmental neu-
rogenesis and neuroprotection mediate exercise effects on adult neurogenesis. Vascular
endothelial growth factor (VEGF), released by skeletal muscle cells, is increased by run-
ning, promotes cell proliferation in adult rodent neural progenitor pools [68,69] and its
activity is necessary for increases in adult neurogenesis [70]. As VEGF promotes angiogen-
esis within the brain, further studies have shown that only blocking angiogenic activity,
through angiotensin II receptor antagonists, is sufficient to block exercise effects on adult
neurogenesis [71]. Likewise, insulin-like growth factor I (IGF-I), which is important for
cell proliferation and neuronal differentiation and survival in the embryonic brain [72], is
necessary for exercise to increase neurogenesis in the adult rodent [73].

The most work, however, has been performed circling the neurotrophic factor BDNF
(brain-derived neurotrophic factor). BDNF is expressed relatively weakly during embry-
onic development, but expression increases postnatally and strongly within the hippocam-
pus [74,75], suggesting it has a role in the process of postnatal neurogenesis. Exercise
transiently increases BDNF mRNA expression [76] and BDNF protein increases are consis-
tent across the lifespan within a week [77]. As these levels return to baseline after long-term
running, it mirrors effects on cell proliferation that are strongest towards the beginning of
running [77]. Through transgenic studies, BDNF is vital for normal neurogenesis in the
adult hippocampus [78] and artificially increasing its expression stimulates increases in
neurogenesis [79]. In addition, BDNF is required for neurogenesis increases following en-
riched environment including an exercise wheel [80] and transgenic deletion of the BDNF
receptor, TrkB, prevents neurogenesis enhancements by exercise as well [81]. Overall, the
consensus suggests BDNF as a key mediator of adult neurogenesis in the adult brain and
thus a key mediator of the effects of exercise on neurogenesis as well.

Because running is a physical stressor, it is also tempting to consider what factors
may uniquely counteract the well-documented inhibitory effects of negative stressors on
adult neurogenesis [45]. One intriguing culprit is the endogenous endorphins, known to
be released during aerobic exercise and long thought to be responsible for the proposed
‘runner’s high’ [82], although this specific role may be more suited for exercised-induced
release of endocannabinoids [83]. During an acute stressor, hypothalamic corticotropin-
releasing hormone (CRH) activates the synthesis of pro-opiomelanocortin (POMC), the
precursor for adrenocorticotropic hormone (ACTH) and β-endorphin, both simultaneously
released by the anterior pituitary [84]. Traditionally, β-endorphins have a peripheral role
in analgesia; helping an organism continue to fight-or-flee despite potential harm and pain
from a physical stressor [85]. Intriguingly, though, adult-born neurons have been suggested
to be involved in chronic pain states [86] and β-endorphins have also been speculated to
be important for a wide array of behaviors and conditions related to hippocampal neuroge-
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nesis, including depression, anxiety, and stress physiology [87]. Thus, a more specific role
of β-endorphins within the relationship between exercise and adult neurogenesis deserves
investigation. Despite many unanswered questions, β-endorphin remains an intriguing
candidate for mediating exercise-induced increases to adult neurogenesis [88], as will be
outlined here.

6. β-Endorphin: Just for the Periphery?

One potential problem with focusing on β-endorphins is the presumed one-way di-
rection of β-endorphin transmission from brain to body. As a peptide hormone, it has long
been postulated that β-endorphin is transiently elevated in plasma by stress and exercise
via its release from the anterior pituitary but because it does not readily cross the blood–
brain barrier, these increases are specific to the periphery. However, the evidence for this
largely relies on measurements showing transient drops in β-endorphin levels soon after
acute stressors in the hypothalamus and pituitary, from where β-endorphin would be mo-
bilized for secretion to the periphery [89]. It should be noted, however, that β-endorphin is
elevated centrally in various brain areas following long-term exercise [90] and mediates be-
haviors affected by stress [91], suggesting that β-endorphin acts centrally in some capacity
during stress and exercise as well. Although it is well known that related opioid peptides,
the enkephalins and dynorphins, are synthesized and released locally within the dentate
gyrus [92], hippocampal neurons do not functionally express POMC for β-endorphin
synthesis [93], suggesting that any β-endorphin signaling would be coming from outside
the hippocampus. It is unknown by which mechanisms β-endorphin signaling within
the hippocampus occurs, but there at least three possible routes: (1) β-endorphin may
be released centrally by axons projecting from POMC-expressing hypothalamic neurons,
(2) β-endorphin may be transported across the blood–brain barrier after being released
peripherally, or (3) β-endorphin may be secreted into cerebrospinal fluid (CSF) and trans-
ported to the hippocampus via volume transmission in cerebral ventricles.

The most direct route of β-endorphin activity within the dentate gyrus would be from
direct innervations of β-endorphin-releasing axon terminals in the dentate gyrus. Neurons
that use β-endorphin are typically labeled through their expression of POMC and using
autoradiographic and immunofluorescent methods, POMC neurons have been primarily
localized within the hypothalamus, specifically the arcuate nucleus [94,95]. Viral tracing
studies conclude that POMC neurons in the hypothalamus do not directly innervate the
dentate gyrus [95], showing that direct transmission of β-endorphin from hypothalamic
POMC neurons is unlikely. Blocking β-endorphin activity in the brain through antibody
treatment does alter glucose metabolism in the dentate gyrus during active pain [96], show-
ing that β-endorphin has a modulatory role in dentate gyrus activity patterns. Although,
if this is due to central release of β-endorphin from POMC neurons, it is likely indirect
through activity of extrahippocampal areas, such as the amygdala.

β-endorphin protein expression is still reported within the dentate gyrus and its
expression can be modified by experience [97], so more indirect routes of β-endorphin
signaling are likely. One possibility for this is transport of β-endorphin from plasma across
the blood–brain barrier into the dentate gyrus specifically or CSF broadly. Experiments
injecting radioactive β-endorphin intravenously into rats show a steady increase in intact
radioactive β-endorphin in CSF over 90 min [98], suggesting that this mechanism is
possible, albeit slow. A few mechanisms may help β-endorphin cross the blood–brain
barrier where it is not naturally soluble. The organic anion-transporting polypeptide
(Oatp) family of membrane transporters have been shown to transport opioid peptides
across the blood–brain barrier [99], although whether β-endorphin is one of them or if
transporter activity is regulated by exercise is still unclear. In addition, β-endorphin has
been demonstrated to be transportable through bonding with other peptides or molecules
that are transportable [100]. However, evidence of this occurring naturally is still lacking.
It seems feasible that plasma β-endorphin can cross back into the central nervous system.
Although this route may be too slow to reliably affect behaviors following acute stress or
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exercise, it may be well suited for neuroprotection of cell proliferation and neurogenesis
during chronic running conditions.

One last route β-endorphin can take is by skipping the periphery and going into CSF
directly. Peptides secreted by arcuate nucleus neurons may directly feed into CSF [101],
and indeed β-endorphin is elevated in CSF following exercise [102]. Plasma and CSF con-
centrations of β-endorphin do not increase and decrease in parallel, either under baseline
or following stress or exercise, suggesting that the two routes of β-endorphin release are
independent of one another [103]. Once secreted into CSF, β-endorphin needs to exit the
ventricles and be transported into hippocampal tissue, and there is evidence that ventricu-
lar signals can do just that [104]. Additional evidence that intracerebroventricular injections
of β-endorphin induce the greatest increase in glucose usage in the hippocampus [105]
suggests that β-endorphin may act directly within the hippocampus following transport
into CSF. Thus, in addition to possible blood–brain barrier transport, β-endorphin may be
released directly into CSF centrally to influence expression in the hippocampus. Much of
this remains to be directly tested. However, elevated β-endorphin from either of these two
routes has the possibility to act within the hippocampus and moderate cell proliferation
and/or neurogenesis and neuron survival once there (Figure 1).
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Figure 1. Proposed β-endorphin influence on adult neurogenesis following exercise. During multiple types of exercise,
β-endorphins are released peripherally, which may signal in the dentate gyrus either through transport across the blood–
brain barrier (BBB) or direct infusion into cerebrospinal fluid (CSF) and to the hippocampus via volume transmission.
Once at the dentate gyrus, β-endorphins may enhance cell proliferation by both directly inducing proliferative activity
in progenitor cells from acting on mu opioid receptors (MOR), which upregulate during exercise, or enhancing local net
excitation by inhibiting GABAergic interneurons.

7. Direct Evidence for Endorphin Influence on Neurogenesis

The most direct evidence for β-endorphin in mediating exercise-induced increases in
adult neurogenesis comes from β-endorphin knockout mice. Mice without β-endorphin
were prevented from increases in cell proliferation in the hippocampus from wheel run-
ning [106]. These effects on cell proliferation held for both short-term (10 days) and
long-term (39 days) running, although surprisingly, neurogenesis and cell survival re-
mained enhanced in runners without β-endorphin for both durations [106], suggesting
that other mechanisms can still promote neurogenesis with longer bouts of exercise, likely
through enhancing cell survival [42]. Importantly, β-endorphin-deficient mice maintained
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normal degrees of cell proliferation and neurogenesis in sedentary conditions, showing
that β-endorphin is uniquely involved in exercise-effects on adult neurogenesis [106].

β-endorphin acts on multiple opioid receptors in the brain, namely the mu-opioid
receptor (MOR) and delta-opioid receptor (DOR). Peripheral administration of naltrexone,
a MOR-preferential antagonist, increases cell proliferation in the hippocampus of sedentary
rats, but suppresses the enhanced cell proliferation of running rats [107]. For sedentary
rats, these effects are likely due to inhibition of HPA-axis activation [107,108]. However,
for running rats, these effects may reflect β-endorphin acting on MORs as a mediator
of exercise-produced neurogenesis. In cultured adult hippocampal progenitors, MORs
exist in their cell membrane and their activation induces proliferative pathways [109],
suggesting that MOR activity by β-endorphins would stimulate cell proliferation in a
vacuum, through activation of mitogen-activated protein kinase (MAPK) pathways [110].
In addition, β-endorphin increases BDNF mRNA expression in the dentate gyrus, effects
that are blocked by naltrexone as well [111] and show that β-endorphins can enhance cell
proliferation and adult neurogenesis through indirect means too. These effects seem to be
specific to the MOR, as drugs that are antagonists of DOR do not show the same effects.
Interestingly, exercise enhances MOR expression within the dentate gyrus quickly (within
5 days of running) [112], so even if β-endorphin levels return to baseline during chronic
running, changes to MOR expression may continue to moderate proliferative effects.

Instead of acting directly on progenitor cells, β-endorphin may act to promote cell
proliferation indirectly through GABAergic interneurons in the dentate gyrus. Broadly,
endogenous opioid peptides increase activation of the dentate gyrus [113], largely through
inhibiting local GABAergic interneurons to increase net excitation [114,115]. Because
progenitor cells and new neuroblasts in the dentate gyrus contain GABA receptors, prolif-
eration can be enhanced through disinhibition of GABA [116]. These effects may be short
lived, however. Long-term running enhances GABAergic signaling within the dentate
gyrus [31], which likely aids in long-term survival and growth of new neurons [117], so
the inhibitory effects of β-endorphin on GABAergic interneurons are compensated for at
some point. This may be due to a corrective return of MORs to baseline levels in long-
term running conditions [112] or habituation in running-induced release of β-endorphin
peripherally or centrally. However, this has not been directly investigated.

8. Circumstantial Evidence for β-Endorphin Roles in Neurogenesis—A Need for More
Behavioral Studies Utilizing Endogenous Opioids

If β-endorphin release during exercise directly promotes neurogenesis increases in
adult rodents, β-endorphin should cause behavioral changes indicative of increasing
neurogenesis in the hippocampus of adult rodents alone. This is problematic for two
reasons. First, behavioral changes have been somewhat difficult to find by solely increasing
neurogenesis, independent of experiences such as environmental enrichment or exercise.
For example, utilizing a transgenic mouse with induced deletion of a Bax gene that pro-
motes apoptosis allows for artificially enhanced neurogenesis and cell survival in the
dentate gyrus. With this model, mice have shown enhanced pattern separation under
baseline conditions and reduced stress physiology and depressive-like behaviors only
under chronic stress conditions [118–120]. Although these experiments show functional
benefits of increasing neurogenesis in the hippocampus, there has not yet been the wide
range of functional effects seen through ablation studies or through enhanced neurogenesis
by experiences such as exercise, as described earlier.

Second, the picture becomes even more difficult when trying to directly relate these
behavioral effects of artificially enhanced neurogenesis to the increases in neurogene-
sis through β-endorphin signaling that would occur during exercise. The majority of
studies examining the effects of β-endorphin on behaviors related to hippocampal neuro-
genesis, such as spatial learning and memory and behaviors related to stress and mood
use acute models to study real-time effects of injected β-endorphin into experimental
rodents [111,121,122]. This is difficult not just because rodent exercise effects involve chron-
ically elevated β-endorphin levels for weeks, but because any behavioral effects dependent
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on enhanced neurogenesis would also likely require weeks for new neurons to integrate
into dentate gyrus circuitry, similar to effects of antidepressants [123]. However, chronic
β-endorphin treatment studies are currently lacking.

If β-endorphin studies like this are lacking, it could be informative to look at other
opioid treatments that act on the same receptors that β-endorphin does. Problematically,
chronic exogenous opioid administration through morphine injections largely suppresses
hippocampal cell proliferation and neurogenesis [124] and induces a depressive state [125]
suggesting negative effects in absence of physical exercise. However, chronic treatment
with dermorphin, a MOR-specific agonist, decreases elevations of corticosterone following
stress [126]. Similar to β-endorphin effects on BDNF, these effects seem to be only for the
MOR, as DOR agonists do not affect corticosterone levels [126], and in all suggests that the
suppressive effects of chronic morphine administration can be dissociable from effects of
β-endorphin, perhaps through differences in opioid receptor activity. Additionally, experi-
ments using opioid receptor antagonists throughout exercise would be helpful. However,
these experiments are lacking. Although naloxone, a non-specific opioid receptor antago-
nist, exacerbates increased cell proliferation during treadmill running, which could imply
that β-endorphin signaling during exercise is actually suppressive on neurogenesis [127],
these effects are only after acute bouts of running, making it difficult to compare directly to
chronic running and β-endorphin effects.

It would be tempting to consider β-endorphin knockout rodents as evidence to-
wards a link between adult neurogenesis and β-endorphin signaling, particularly when
β-endorphin knockout mice show similar behavioral traits as neurogenesis-inhibited
mice [128,129]. However, because β-endorphin knockouts have similar neurogenesis
rates to wildtype controls [106], these models would be most helpful under exercise con-
ditions, when neurogenesis would be affected by reduced β-endorphin. Unfortunately,
experiments investigating β-endorphin knockouts under exercise conditions have only ex-
plored analgesic and addictive properties of β-endorphin [85,130], behaviors not primarily
implicating hippocampal neurogenesis, so there is a lack of direct evidence in this domain.
The opposite models, enhanced β-endorphin, would be helpful to show positive effects of
running without the confounding additional physiological effects of exercise. Interestingly,
an adenovirus has recently been created which chronically enhances β-endorphin levels
centrally [131]. However, it is too soon to know whether this model can be used to imitate
effects of running on behaviors related to the hippocampus and adult neurogenesis.

9. Implications and Conclusions

To better establish the connection between exercise-induced increases in β-endorphin
and adult neurogenesis in the dentate gyrus, further studies are recommended. First, the
mechanisms by which β-endorphin enter and act in the hippocampus following periods of
exercise need to be established. Concurrently, how the actions of β-endorphin in the dentate
gyrus potentially change longitudinally during long-term running, in both the levels of
β-endorphin present and pharmacodynamics of it, would be important to connect to what
is known about changes in adult neurogenesis over the same time frame. Second, chronic
studies utilizing long-term increases in β-endorphin, peripherally or centrally, should be
performed to see if solely increasing β-endorphin can mimic exercise effects on either
hippocampal behaviors or adult neurogenesis. Third, long-term studies combining chronic
exercise and either opioid receptor antagonists or β-endorphin knockouts should be used
to see if blocking endogenous opioid signaling during exercise affects either hippocampal
behaviors or adult neurogenesis.

Finally, growing research suggests that not only are there sex effects on exercise,
endorphins, and the hippocampus, but that sex steroid hormones themselves mediate
the effects of opioid peptides. Evidence in humans suggest that men and women have
different β-endorphin levels peripherally during certain periods of aerobic exercise [132].
These potential sex differences in β-endorphin release may explain some sex differences in
exercise effects on behavior. For example, male and female rodents show different degrees
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of cross-tolerance to morphine following chronic exercise [133], stress physiology and
depressive behavior [134–137], and spatial and non-spatial learning and memory [138].
Despite behavioral differences, hippocampal cell proliferation is similarly increased by
exercise in male and female rats [46,47], although there have been sex differences observed
in neurogenesis and survival of new neurons generated during exercise [139,140]. How sex
effects on β-endorphin release during exercise might functionally impact hippocampal neu-
rogenesis and/or behavior is unknown, but these possibilities deserve direct investigation
moving forward. Across both sexes, sex steroid hormones modulate central β-endorphin,
including the hippocampus [141,142], suggesting that there can be a wide variability of
β-endorphin even within the sexes based on timing and experience. How these hormone
effects influence exercise-induced concentrations of β-endorphin is currently unknown,
save for differences between female athletes based on ovulatory status [143], and deserve
further exploration.

From studies that have been conducted, it seems that under baseline conditions,
β-endorphin and endogenous opioid signaling affect adult neurogenesis (and by proxy
hippocampal physiology and behavior) minimally. However, under stressful conditions,
the actions of endogenous opioids are more pronounced. Naloxone administration wors-
ens the effects of acute stress on learning [144], suggesting that endogenous opioids may
help buffer the aversive effects of stress. Additionally, although blocking endogenous
opioid activity during stress with naltrexone fails to prevent stress-induced decreases in
hippocampal cell proliferation [145], the opposite may very well be true—endogenous
opioid activity may uniquely buffer the dentate gyrus from the effects of running stress on
cell proliferation to allow for greater neurogenesis. This preservation and even enhance-
ment of adult neurogenesis despite the physical stress of running may provide ethological
advantages to rodents in the wild, similar to how endogenous opioids help to keep mus-
cle pain low during extended runs [146]. Stress-filled environments generally produce
reductions to adult neurogenesis and bias rodent behavior towards more caution—lower
degrees of exploration and foraging and higher degrees of novelty avoidance—all of which
may be beneficial for survival amid an unpredictable or dangerous environment [147].
By contrast, rodents with high levels of physical activity are likely freely exploring their
environments, so diminished exploration and spatial learning through lower neurogenesis
would be maladaptive. Therefore, having a mechanism through β-endorphin to mitigate
the negative effects of stress on adult neurogenesis during running may continue to foster a
hippocampal environment that biases reward seeking and confidence in a richer and safer
environment [148]. For humans, the potentially positive effects of β-endorphin signaling
on hippocampal plasticity further highlights the importance of exercise as an everyday
experience and treatment option for a variety of physical and mental conditions. Further,
increased experimentation detailing how β-endorphin is functionally involved in promot-
ing hippocampal plasticity provides avenues for the development of new treatments for
those for whom regular exercise is difficult or impossible to partake.
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