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Smart pooling: AI‑powered 
COVID‑19 informative group 
testing
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Silvia Restrepo4 & Pablo Arbelaez1,10*

Massive molecular testing for COVID-19 has been pointed out as fundamental to moderate the spread 
of the pandemic. Pooling methods can enhance testing efficiency, but they are viable only at low 
incidences of the disease. We propose Smart Pooling, a machine learning method that uses clinical 
and sociodemographic data from patients to increase the efficiency of informed Dorfman testing for 
COVID-19 by arranging samples into all-negative pools. To do this, we ran an automated method to 
train numerous machine learning models on a retrospective dataset from more than 8000 patients 
tested for SARS-CoV-2 from April to July 2020 in Bogotá, Colombia. We estimated the efficiency 
gains of using the predictor to support Dorfman testing by simulating the outcome of tests. We also 
computed the attainable efficiency gains of non-adaptive pooling schemes mathematically. Moreover, 
we measured the false-negative error rates in detecting the ORF1ab and N genes of the virus in 
RT-qPCR dilutions. Finally, we presented the efficiency gains of using our proposed pooling scheme 
on proof-of-concept pooled tests. We believe Smart Pooling will be efficient for optimizing massive 
testing of SARS-CoV-2.

COVID-19 is an acute respiratory illness caused by the novel coronavirus SARS-CoV-21,2. It has rapidly spread 
to most countries, causing 182 million confirmed infections and over 3.9 million deaths as of June 29th 20213. 
In order to contain the ongoing pandemic, countries have rushed to implement massive testing to control the 
spread of the disease by identifying and isolating carriers. Massive testing is a fundamental strategy to curb the 
disease4, mainly due to its asymptomatic transmission5. Large-scale testing is costly and requires scarce reagents. 
As there is a global need to make testing more accessible to larger populations, strategies to increase the number 
of people that can be tested with the same amount of test kits are urgent.

Dorfman proposed pooling methods6 to diagnose syphilis among the US military during World War II by 
combining samples from multiple soldiers in a single test tube. Different pooling strategies, such as Dorfman’s 
two-stage pooling6,7 and matrix pooling8, offer higher efficiency gains for different combinations of test sensitiv-
ity and disease prevalence.

Existing works have demonstrated that using prior information to exclude samples likely to be positive from 
pools can increase testing efficiency. In informative group testing, as stated by Bilder et al., the different prob-
abilities of individuals testing positively are exploited by grouping their samples into pools that are more likely to 
be all negative9. McMahan et al. proposed to threshold individuals as “high” or “low risk” and to use risk-specific 
algorithms while simultaneously identifying pool sizes to minimize the expected number of tests10. Taylor et al.11 
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used a complementary microscopic examination of samples in the grouped detection of malaria and Lewis et al.12 
used clinical information in patients’ forms in the grouped detection of chlamydia and gonorrhea.

Previous studies in group testing aim to reduce the number of tests by finding the optimal design choices 
such as the pool sizes and the number of stages, and the assignment of specimens to the pools, as explored in13 
by estimating the probability of disease positivity. Aprahamian et al. proposed to maximize the classification 
accuracy by reducing the number of false negatives under a budget constraint and evaluated an adaptive risk-
based pooling scheme on Chlamydia screening in the US14. Additionally, pooling has also been used in genetic 
sequencing15,16 and drug screening17, among other applications. In the context of COVID-19, pooling strategies 
have been explored as potential ways to increase testing capacities. Bloom et al. use simple pooling to detect 
SARS-CoV-2 through next-generation sequencing instead of the traditional RT-PCR procedure18. Libin et al. 
explore the use of a pooling strategy that groups individuals that belong to the same household19. However, the 
selection of samples to pool for both of these approaches could be improved by using a broader context of the 
individuals.

In this paper, we present Smart Pooling, a machine learning (ML) method for optimizing massive testing of 
SARS-CoV-2. We exploit clinical and sociodemographic characteristics of samples from a retrospective dataset 
with patient-level information to estimate their posterior probability of testing positive for COVID-19. These 
characteristics include variables related to their health situation, such as comorbidities, symptoms, date of onset 
of symptoms, previous contact with confirmed COVID-19 cases, and personal information from individuals 
such as sex, age, occupation, health system affiliation, and recent travels. As Fig. 1b shows, our method uses the 
estimated probabilities to arrange samples into pools that maximize the probability of yielding a negative result 
within the majority of pools. Samples predicted to be positive are tested individually, reducing the number of 
kits required to diagnose the same amount of individuals. Our method can be used jointly with existing pool-
ing algorithms to enhance their efficiency. Smart Pooling can be thought of as an informative group testing10 
in which the patients’ probability of positivity is learned from clinical data through state-of-the-art Artificial 
Intelligence (AI) techniques.

Figure 1.   Smart Pooling makes pooling methods efficient even at high disease prevalences. (a) In standard 
Dorfman’s testing methods, samples are pooled randomly. As prevalence increases, the efficiency of pooling 
without a priori information drops rapidly, making the strategy unviable. (b) Smart Pooling tackles this problem 
by thresholding samples according to the automated predicted risk probability, based on the sociodemographic 
characteristics. If the risk probability of a sample surpasses the defined threshold, this sample goes directly to 
individual testing. We arrange samples into pools with similar risk probability. (c) The Smart Pooling pipeline 
directly integrates machine learning with laboratory procedures.
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Empirical tests have confirmed the ability of pooled sampling to reliably detect SARS-CoV-2 in a pool com-
prising one positive and up to 31 negative specimens20,21. Moreover, preliminary trials show that pools of 522 
and 1023 samples can increase efficiency without strongly compromising sensitivity. At the same time, Bayesian 
non-adaptive pooling schemes demonstrate increased efficiency for low prevalences in experiments in vitro24. 
Pooling strategies could facilitate detection of early community transmission25. However, they begin to fail as 
disease prevalence increases26, as shown in Fig. 1a.

In the context of COVID-19, AI-based models have been used to classify the novel virus from its genetic 
sequencing27, to support diagnosis from CT scans28, to assist clinical prognosis of patients29, and to forecast the 
evolution of the pandemic30. Menni et al.31 used regression models trained with patient-reported symptoms and 
laboratory test results to predict infection. Using these strategies for diagnostics risks compromising sensitivity 
and confidence. Smart Pooling does not seek to replace current molecular testing but assists it by improving its 
efficiency.

Smart Pooling is easily adaptable to any pooling procedure. We propose a five-step pipeline between the labo-
ratory procedures and the Smart Pooling analysis. Figure 1c illustrates this process. First, the laboratory acquires 
samples and complementary data from patients. Secondly, the Smart Pooling platform processes the data and 
triages the samples. Thirdly, samples are pooled according to this ordering in the laboratory. Then, molecular 
tests are run on the ordered pools until there is a diagnosis for each sample. Lastly, the laboratory feeds the results 
of the tested samples into the Smart Pooling platform to improve the model continuously.

Smart Pooling decreases the expected number of tests per specimen to 0.36 and 0.94 at a disease prevalence 
of 5% and up to 50%, respectively, including a regime in which Dorfman’s testing procedure no longer offers effi-
ciency gains compared to individual testing (see Fig. 2). In this context, we define efficiency as the inverse of the 
expected number of tests per specimen. Additionally, we calculate the possible efficiency gains of one- and two-
dimensional two-stage pooling strategies and present the optimal strategy for disease prevalences up to 25%. We 
discuss practical limitations to conduct pooling in the laboratory. Pooled testing has been a theoretically alluring 
option to increase diagnostics coverage since its proposition by Dorfman. Although there are examples of suc-
cessfully using pooled testing to reduce diagnostics costs, its applicability has remained limited because efficiency 
drops rapidly as prevalence increases. Not only does our method provide a cost-effective solution to increase 
the coverage of testing amid the COVID-19 pandemic, but it also demonstrates that artificial intelligence can 
be complementary to well-established techniques in the medical praxis. To ensure reproducibility and promote 
further research, we make a portion of our dataset available for public use in the supplementary information.

Methods
We used an automated Machine Learning (ML) method32 to train several models on a retrospective dataset of 
RT-qPCR tests for SARS-CoV-2, including clinical and sociodemographic information of samples. We used the 
predictions of the best ML model to simulate the Smart Pooling process. We also found the theoretical optimal 
pooling protocols for a given prevalence. Then, we evaluated the sensitivity of pooled RT-qPCR SARS-CoV-2 
testing for dilutions between 0x and 28.9x. Finally, we executed proof-of-concept experiments of our proposed 
AI-assisted Dorfman’s pooled testing. This study was approved by the ethics committees at Universidad de los 
Andes and the Health Authority of Bogotá after the due revision process, and it was performed following the 
Declaration of Helsinki regulations. As an anonymized retrospective study, the need for informed consent was 
waived by the ethics committee at Universidad de Los Andes.

Dataset.  The data we used correspond to the molecular tests conducted by Universidad de Los Andes for 
the Health Authority of Bogotá, Colombia. We tested samples individually following the Berlin Protocol33 and 
the protocol for the U-TOPTM COVID-19 Detection kit from Seasun Biomaterials34, before and after April 18th 
respectively. Our dataset consists of two different data groupings, representing the diversity of available data, the 
Patient Dataset and the Test Center Dataset. On the one hand, the goal of the Patient Dataset is to capture the 
epidemiological and social characteristics of individuals that may lead to infection of COVID-19. On the other 
hand, the goal of the Test Center Dataset is to depict the temporal evolution of the pandemic at a group level. 
Our work has the ethics committee’s approval at Universidad de Los Andes, and, as an anonymized retrospective 
study, the need for informed consent was waived.

Patient dataset.  In this partition of the dataset, we had access to additional information for each sample, such 
as sex; age; date of onset of symptoms; date of the medical consultation; initial patient classification; information 
about the patients’ occupation; affiliation to the health system; travels (international or domestic); comorbidi-
ties; symptoms; and if they had come into contact with a confirmed or suspected COVID-19 case. We collected 
2068 samples with an overall prevalence of 6.91% from April 18th to July 15th 2020. These samples correspond 
to 1142 male patients (55%) and 926 (45%) female patients. The patients’ ages ranged from 0 to 93 years, with 
a median age of 36 years. This additional information followed the protocol by the Colombian Public Health 
Surveillance System (SIVIGILA).

Test center dataset.  We organized the second group of data according to the test center that collected the sam-
ple. We had access to information about the test centers, such as their location, name, the number of positive and 
total tests per center on a given date (although not daily reports), but no information regarding the individual 
patients. This dataset included 7162 samples, from 101 test centers, from April 6th to May 25th 2020 with a 
prevalence of 15.04%.
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Training of the predictors.  Dataset division.  For the Patient Dataset, the distribution of epidemiologi-
cal and social characteristics of individuals that get tested for COVID-19 can change drastically within a day. 
We cannot explicitly model the time variations in this dataset because we do not have longitudinal patient data. 
Thus, the best way to exploit all of the specific information that we have from individuals is to create a two-fold 
cross-validation scheme, where we use one data fold for training and the held-out fold for evaluating the model. 
We created the folds using a stratified sampling strategy, where each fold had the same data distribution. How-
ever, notice that, even though we trained on a cross-validation scheme, our method can be evaluated in a real-life 
scenario where we perform daily predictions (see the Proof-of-concept Smart Pooling Implementation Section).

For the Test Center Dataset, we modeled the data according to each test center and its progression through 
time. The prevalence in the test centers evolves with the pandemic’s development. We defined three temporal 
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Figure 2.   Smart Pooling decreases the expected number of tests per specimen. (a) Smart Pooling’s expected 
number of tests per specimen compared to standard testing methods on Patient Dataset. Efficiency improves by 
reducing the expected number of tests per specimen. Smart Pooling achieves higher efficiencies than Dorfman’s 
and individual testing for prevalences of the disease of up to 50%, with a fixed pool size of 10. (b) Smart 
Pooling’s expected number of tests per specimen trained with the coarse metadata from the Test Center Dataset. 
Efficiency improves by reducing the expected number of tests per specimen. Despite not having detailed 
patient metadata, Smart Pooling can produce higher efficiencies than Dorfman’s pooling for the simulated 
prevalence of the disease of up to 25%, with a fixed pool size of 10. (c) Expected number of tests per specimen 
for the proof-of-concept Smart Pooling Implementation. Each point on the graph represents the performance 
of both methods for a day in the proof-of-concept stage. The x-axis depicts the incidence of the corresponding 
day. Efficiency improves by reducing the expected number of tests per specimen. Smart Pooling has a similar 
efficiency compared to Dorfman’s testing since the daily incidence is lower than 10%. However, for every day of 
the implementation, Smart Pooling has a higher efficiency than individual testing.
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divisions of the data chronologically for our experiments: the training, validation, and test splits. For validation 
and testing, we held out five dates to predict in accordance with data availability. To obtain our final results in 
the test set, we retrained the best model with the training and validation samples, that is, those up to May 7th.

Training the models.  We used the AutoML library from H2O35 to explore multiple ML models and their hyper-
parameters in the validation sets, namely Random Decision Forests36, Generalized Linear Models37, Gradient 
Boosting Machines (GBM)38, Fully Connected multi-layer Neural Networks39, and Stacked Ensembles. Among 
the available models, we did not include deep learning algorithms because of the relatively small size of the 
datasets.

Patient Dataset. We trained our method to predict the label of a sample as positive or negative for COVID-
19 by optimizing the Area under the Precision-Recall Curve. For these experiments, we defined a per-sample 
descriptor in which each feature dimension corresponds to a variable from the patient and location informa-
tion, previously defined in the Patient Dataset subsection. The trained model’s output is a probability for each 
patient to test positive. We obtained the final prediction via our cross-validation scheme by merging each split’s 
prediction. For simplicity, in our main results, we used a pool size of 10, and we compare in the Supplementary 
Fig. 1 this strategy and the optimal strategies per prevalence according to the findings from the Optimal pooling 
strategies Section.

The best model for this task was a GBM38 with 30 trees, a mean depth of 9, a minimum of 12 leaves, and a 
maximum of 22 leaves. We include a comparison of different models in the first section of the supplementary 
information.

Test Center Dataset We trained our model to predict the fraction of positive tests for a center on the current 
date. Afterwards, we assigned this value as the sample’s incidence given the test center and date. For these experi-
ments, the descriptors to predict the incidence for a date in the validation and test set included the cumulative 
tests of each institution up to every date within the time series, i.e., the institution prevalence, and the total 
number of tests from all the institutions on the corresponding date. In addition, the temporal information was 
encoded using the current date, relative dates (such as the number of days since the first date on the time series 
and from the first n number of positive tests in each test center), and a variable that captured the distance between 
two consecutive entries from the same test center. As such, we compute the descriptor’s features by analyzing 
the relative differences between variables on the last known date and those from the training days in the current 
difference of days. For a more in-depth description of the Test Center Dataset’s training process we refer the 
reader to the supplementary information.

Mathematical formulation.  Let I = {i1, i2, ..., in} be the set of n samples arriving to a testing facility, and I  be 
space of all possible samples, I ⊂ I  . To enhance the performance of the Dorfman testing, Smart Pooling follows 
a similar approach of McMahan et al.’s Optimal Dorfman with Threshold procedure10. Let f be an ML model, 
f : I → [0, 1] , that computes the individual probability p = f (i) of a sample i ∈ I  from having the disease. Note 
that f is trained on a set It ⊂ I  that does not intersects I, i.e. I ∩ It = ∅ . First, f extracts every probability 
pj = f (ij) for all ij ∈ I and creates a new ordered set I ′ = {i′1, i

′
2, ..., i

′
n} , where f (i′j) ≤ f (i′j+1) , ∀j ∈ {1, 2, ..., n− 1} . 

Then, given a fixed pool size of c and a threshold T, we splitted I ′ into two subsets I ′<T = {i′|i′ ∈ I ′ s.t. f (i′) < T} 
and I ′≥T = {i′|i′ ∈ I ′ s.t. f (i′) ≥ T} . The samples within I ′≥T are tested individually, and the ones belonging on 
I ′<T are tested on a Dorfman’s pooling fashion. For the latter, we splitted I ′<T into m =

⌈

|I ′<T |

c

⌉

 groups, where ⌈·⌉ 
is the ceil operation. Let I ′k = {i′j|i

′
j ∈ I ′<T s.t. (k − 1)c + 1 ≤ j ≤ kc} , for k ∈ {1, 2, ...,m} , be the set of the k’th 

ordered set, with 
⋃m

k=1 I
′
k = I ′<T . We followed the commonly used Dorfman’s testing on these sets, including the 

consequent individual testing whether the group test was positive.
The efficiency of the aforementioned process is computed by counting the number of test kits used to gen-

erate the results divided by n. That is, the efficiency E of the set I, given a threshold T, a pool size c and an ML 
model f, is:

where I(I ′k) is equal to one if at least one sample within I ′k is positive, and otherwise is zero. Thus, to determine 
T for the Patient Dataset we optimized the efficiency in the training folds. Given the models f1 and f2 trained on 
the folds It1 and It2 , respectively, the threshold is:

For the Test Center Dataset, to compute T we selected the optimal threshold on the validation set V, given 
the pool size c and a model f:

Evaluation.  We estimated the efficiency gains by calculating the expected number of tests per specimen. When 
this value is minimized, efficiency is maximized. To estimate the expected number of tests per specimen at differ-

(1)E(I ,T , c, f ) =
1

|I|











|I ′≥T | +
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|I′
<T |

c
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�

k=1

1+ |I ′k|I(I
′
k)








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(2)TPatient = argmin
T ∈[0,1]

[

E(It1 ,T , c, f2)+ E(It2 ,T , c, f1)
]

(3)TTest Center = argmin
T ∈[0,1]

[

E(V ,T , c, f )
]
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ent prevalences of the disease, we synthetically produced subsets of the dataset by randomly excluding negative 
samples. We performed 10 replicates of these experiments and computed the average and the standard deviation. 
For our experiments, we assumed a perfect sensitivity from the molecular tests. We refer the readers to the work 
of McMahan et al.10 for an analysis of the effects of reduced sensitivity on group testing efficiency.

Results
Efficiency gains from smart pooling.  We identify that using complementary information to arrange 
pools can improve the efficiency of testing. Figure 2 show Smart Pooling’s simulated expected number or test 
per specimen at disease prevalence ranging from 5% up to 50% in the Patient Dataset and from 5% up to 25% 
in the Test Center Dataset, with a fixed pool size of 10. We compare our AI-enhanced Dorfman’s testing against 
its original counterpart and the individual testing procedure. Note that these ranges are higher than those appli-
cable for optimal standard pooling methods. Overall, Smart Pooling’s efficiency outperforms that obtained by 
simulating Dorfman’s two-stage pooling and individual testing.

We rank samples according to the model’s predicted probability of yielding a positive result. Figure 3 shows 
how the simulated predictions from the AI method have most of the positive samples at the top of the ranking. 
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Figure 3.   Comparison between Smart Pooling and Random ordering. Left: samples arranged by Smart Pooling. 
Right: random ordering of samples. Note that Smart Pooling groups positive samples generating long groups of 
negative samples, reducing the number of times it is necessary to perform the second stage of Dorfman’s testing, 
increasing the efficiency.
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The key idea of Smart Pooling is that it maintains the prevalence artificially low, even under scenarios with a 
high overall prevalence of COVID-19, by triaging samples from a priori complementary information before the 
pooling takes place.

Smart Pooling is not limited to Dorfman’s testing procedure; it can be coupled with multiple pooling strategies 
and improve efficiency regardless of the strategy. Supplementary Fig. 1 shows Smart Pooling’s simulated expected 
number of tests per specimen with a fixed pool size of 10, an adaptive pooling strategy based on the optimal 
strategies explored in the Optimal pooling strategies Section, Dorfman’s standard testing, and the individual test-
ing. When coupled with Smart Pooling, these alternatives reduce the expected number of tests per specimen, 
thus are more efficient than Dorfman’s two-stage pooling and individual testing.

Optimal pooling strategies.  In this section, we find the pooling protocols that maximize efficiency for a 
given prevalence p, assuming a fixed bound c on pool size. The efficiency, as mention previously, is defined as the 
inverse of the expected number of tests per specimen.

We explored the following two kinds of pooling protocols: 

1.	 Dorfman’s pooling protocols6: Given m samples, we make a single pool with all of them. We denote this 
protocol by Sm.

2.	 Matrix pooling protocols8: Given a collection of m× n samples, we place them into a rectangular m× n 
array. We create pools by combining samples along the rows and columns of this array (for a total of m+ n 
pools). In the second phase, we test each sample at the positive columns and rows intersection individually. 
We denote this protocol by Sm×n.

Quantifying pooling efficiency.  We define pooling efficiency as our main tool to quantitatively compare dif-
ferent pooling protocols, which depends on the prevalence p of the sample. Assuming independence among 
patients, pooling efficiency can be computed analytically6,8: 

1.	 For Dorfman’s pooling Sm the efficiency is given by 

2.	 For the matrix pooling protocol Sm×n the efficiency is given by 

The efficiency functions above show the key property behind pooling: at low prevalences, efficiency can be 
considerably greater than one, but as the prevalence increases, H(p) decreases, with efficiency gains becoming 
negligible after prevalences around 30% . Figure 4 illustrates these efficiency gains (and how they vanish) for 
two-stage pooling.

Optimizing pooling strategies.  Practice in the laboratory constrains the maximum pool size. In the context of 
COVID-19, we will focus on the cases c = 5 and c = 10 since these are the most useful in practice (see supple-
mentary information for details). Finding the optimal pooling strategies for a given prevalence equals finding 
the pooling protocol of maximum efficiency by comparing the values of H(p) for the different protocols40. The 
maximum efficiency is obtained by minimizing the expected number of tests per specimen. Figure  5 shows 
the expected number of tests per specimen curves of the best pooling protocols of the form Sm and Sm×n with 
maximum pool size c ≤ 10 and c ≤ 5 . There is an optimal pooling strategy for each prevalence; Table 1 shows 
the optimal protocols and their respective intervals of optimality when c = 10 and c = 5 respectively. Even while 
using optimal protocols, it is clear that efficiency gains quickly disappear as the prevalence increases (effectively 
vanishing when p ≥ 30.7% ), which we improve by using Smart Pooling.

Sensitivity experiments in diluted samples.  To test for possible sensitivity reduction from sample 
dilution in a realistic setting, we performed the following experiment: We diluted a positive sample successively 
1.4× ten times in negative samples, from an expected Ct of  38 to  43, in 8 replicates. The diluted samples were 
processed using the U-TOP COVID-19 Detection Kit (SeaSun Biomaterials)34 with the recommended param-
eters, except that we increased the number of cycles to 43. The average Ct (for the wells that give a reading) 
increases with dilution but, deviates from the expected value (the observed one is lower), and the number of 
wells with no reading increases from none, in the initial dilutions, to most, in the higher dilutions. We show the 
expected average Ct and fraction of wells with no reading for markers N and ORF1ab in Table 2.

We combined the data for both genes and linearly interpolated it to convert this value into an estimate of 
the number of false negatives. We tabulated the measured Ct s of the positive samples from 20,000 tests (2678 
samples) and the expected Ct s for different dilutions. Assuming the threshold Ct for testing individual samples 
in a pool is adjusted according to the dilution, the number of samples that would give no reading if in a pool 
with only negatives for a given dilution can be estimated by convolving the distribution of Cts with the failure 
rate for the resulting Ct s after dilution.

H(p) =
1

1
m + 1− (1− p)m

H(p) =
1

1
m + 1

n + p+ (1− p)(1− (1− p)m−1)(1− (1− p)n−1)
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The estimate is an upper bound since the calculations are performed for each marker gene separately. The 
criterion used in practice is to consider a sample positive if Ct is below 38. The latter does not consider the 
probability that the sample could be in a pool with other positives. For our experiment, we limited the number 
of cycles to 43. However, a higher number of cycles could give a better performance for more diluted samples. 
Furthermore, pooling schemes that include the same sample in multiple pools, such as the 8x2 scheme, are less 
susceptible to this type of error. Table 3 shows the false-negative rate, obtained as explained for single pools of 
up to 16 samples for markers N and ORF1ab.

Proof‑of‑concept smart pooling implementation.  This section describes the deployment of Smart 
Pooling in the GenCore laboratory of the Universidad de Los Andes in Bogotá, Colombia. The project COV-
IDA, an active surveillance program, provides samples that we use to implement Smart Pooling. COVIDA’s two 
main objectives are: first, to trace new cases of infection with an active surveillance strategy. Second, the project 
supports decision-makers by providing relevant information for developing public health policies in Bogotá. 
Our proof-of-concept experiment in the GenCore laboratory lasted seven days. On average, GenCore tests 300 
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Figure 4.   Efficiency of two-stage Dorfman’s pooling as a function of prevalence p and pool size c.
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samples from COVIDA every day. More than 4700 tests were processed during our experiment using the Smart 
Pooling methodology, and 2012 kits were saved using Smart Pooling instead of individual testing.

For this proof-of-concept stage, the GenCore laboratory implemented Smart Pooling with a pool size of 2. 
Taking into account that in this stage, we use scarce laboratory resources (equipment and personnel), it was not 
feasible to evaluate the performance of Dorfman’s testing in the exact same samples for a real-life comparison 
with Smart Pooling. However, we simulated the theoretical performance of Dorfman’s testing for each day’s 
samples in the proof-of-concept.

Figure 2 shows the comparison between the performance of Smart Pooling’s results after implementation and 
Dorfman’s testing simulation. Each point on the graph represents the expected number of tests per specimen for 
a day in the proof-of-concept stage. The x-axis depicts the incidence of the corresponding day. We show that the 
performance of Dorfman’s testing is comparable with Smart Pooling; these results are expected due to the low 
prevalence of the samples in the COVIDA project. The prevalence in the samples is lower than 10% as a result of 
the project’s active surveillance nature. Nevertheless, implementing Smart Pooling provides further benefits such 
as an epidemiological overview of the daily state of the pandemic and clear identification of high-risk patients to 
prioritize the processing of their samples. We also demonstrate that the performance of Smart Pooling follows 
our initial observation, which pointed out that, regardless of the prevalence, Smart Pooling has higher efficiency 
than individual testing. Even though the proof-of-concept was done under a limited pool size of 2, our results 

Table 1.   Optimal pooling strategies restricted by a maximum pool size c. Prevalence intervals and their 
respective optimal pooling strategy. Sm are single pooling protocols and Sm×n are matrix pooling protocols.

Pooling protocol

Prevalence Interval (%)

Lower bound Upper Bound

c = 10

S10 0.00 1.25

S9 1.25 1.375

S10×10 1.375 4.875

S9×10 4.875 5.25

S9×9 5.25 5.875

S8×9 5.875 6.375

S8×8 6.375 7.375

S7×8 7.375 8.125

S7×7 8.125 9.625

S6×7 9.625 10.875

S6×6 10.875 12.125

S4 12.125 12.375

S3 12.375 25.00

c = 5

S5 0.00 6.625

S4 6.625 12.375

S3 12.375 25.00

Table 2.   Expected Ct, average Ct , and the fraction of wells with no reading for markers N and ORF1ab for 
successive dilutions of the same sample.

Dilution

ORF1ab N

Expected Ct Average Ct Fail fraction Expected Ct Average Ct Fail fraction

0X 38.4 39.0 0.00 38.0 37.5 0.00

1.4X 38.9 39.0 0.13 38.5 38.0 0.00

2X 39.4 40.1 0.00 39.0 38.5 0.00

2.7X 39.9 40.5 0.00 39.5 38.9 0.00

3.8X 40.3 40.9 0.63 39.9 39.3 0.13

5.4X 40.8 42.1 0.67 40.4 39.9 0.33

7.5X 41.3 41.6 0.50 40.9 399.0 0.50

10.5X 41.8 – 1.00 41.4 40.2 0.57

14.8X 42.3 42.0 0.88 41.9 40.6 0.75

20.7X 42.8 41.3 0.88 42.4 39.4 0.75

28.9X 43.3 41.7 0.88 42.9 40.3 0.88
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prove that Smart Pooling can be successfully implemented in laboratories, and it can be easily scaled up for other 
testing facilities with capacities of performing pooling with larger pool sizes.

To increase the usefulness of Smart Pooling in a lab context, we have to consider some practical implications. 
First, the samples might arrive at different times in the lab, and it would not be helpful to wait until all the samples 
from a day are ready to use Smart Pooling. With this problem in mind, we designed our methodology to be adapt-
able to any amount of samples and to take less than a minute to perform inference. Thus, the lab would perform 
tests using the Smart Pooling procedure multiple times in a day, depending on their samples’ arrival time. Second, 
the samples might belong to different collection containers. Since pooling is performed after RNA extraction, 
the samples will already be organized in a PCR plate. Choosing a specific location for each pool combination 
might be tedious and time-consuming for the lab technicians. To solve this problem, we devised a strategy that 
automates choosing the best sample combination for a pool, taking into account the constraint that they should 
be either in the same row for different columns of the plate or in the exact same location for different plates. This 
automated solution allows the lab to perform pooling in a more practical way with an eight-channel pipette.

Discussion
Our computational experiments show that, regardless of the level of granularity of the data available (Fig. 2), 
Smart Pooling obtains efficiency gains for all simulated prevalences up to 25% for the Test Center Dataset and 
for the Patient Dataset up to 50% when comparing against the standard Dorfman’s testing. For instance, with 
Smart Pooling at a prevalence of 10% and an expected number of tests per specimen around 0.5, even with coarse 
data in the test center approach, the estimated number of patients that could be tested with the same number of 
tests is doubled compared to individual testing. These results show that Smart Pooling could be viable in various 
settings and does not depend on the availability of rich complementary data.

Figure 3 illustrates the working principle of Smart Pooling: it enhances efficiency by artificially reducing the 
incidence in the samples arranged in pools by testing individually the samples most likely to yield a positive result.

The machine learning model takes advantage of complementary data to compute the probability that the 
sample results positively. For the Patient Dataset, this could come from reported symptoms or the knowledge 
that the patient belongs to a particular group (for instance, being a health worker). For the Test Center Dataset, 
the machine learning model could be exploiting underlying correlations in the samples41 that could be related to 
the location the samples were taken. The center where the samples are taken could act as a proxy for sociodemo-
graphic characteristics of the patients since it could be a location close to their workplace or home. Additionally, 
COVID-19 outbreaks are usually related to specific geographical regions due to the transmission nature of the 
virus. Therefore, the model could learn and exploit the underlying correlations present in the test center location 
to output better predictions. In other words, Smart Pooling could be seen as the assembly of pools with corre-
lated samples where the Dorfman’s protocol’s independence assumption in the underlying binomial distribution 
no longer holds (within the pool of correlated samples)41. Samples in this dataset were acquired during strict 
measures limiting mobility in the city of Bogotá. People tested at the same center likely shared epidemiological 
factors. The model could also be learning the different probability distributions of samples being positive in 
various city locations.

Smart Pooling enhances but does not replace molecular testing.  Smart Pooling uses AI to 
enhance the performance of well-established diagnostics. It demonstrates that data-driven models can comple-
ment high-confidence molecular methods. Its robustness to the variability of the available data, prevalence and 
model performance, and its independence of pooling strategy, make our work compelling to apply at large scales. 

Table 3.   Estimated upper bound for the error (false negative) rate for single pools of up to 16 samples for 
markers N and ORF1ab.

Dilution Error rate ORF1ab (%) Error rate N (%)

2× 0.2 0.2

3× 0.2 0.2

4× 0.6 0.5

5× 2.6 1.5

6× 2.7 2.6

7× 3.5 3.2

8× 4.3 3.9

9× 5.0 4.4

10× 5.4 4.8

11× 6.4 5.8

12× 7.0 6.4

13× 7.6 7.0

14× 8.3 7.6

15× 9.0 8.2

16× 9.7 8.7
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Additionally, Smart Pooling’s continuous learning should make it robust to our understanding of the pandemic 
and its evolution.

Smart Pooling could ease access to massive testing.  This pandemic has presented challenges to all 
nations. As the number of infected people and contagion risk increases, more testing is required. However, the 
supply of test kits and reagents cannot cope with the demand, with most countries not able to perform 0.3 new 
tests per thousand people3. Adopting Smart Pooling could translate into more accessible massive testing. In the 
case of Colombia, this could mean testing 50,000 samples daily, instead of 25,000, in mid-July 202042. If deployed 
globally, Smart Pooling truly has the potential of empowering humanity to respond to the COVID-19 pandemic 
and save thousands of lives. It is an example of how AI can be employed to bring social good.

Data availability
The Test Center Dataset used during the current study is available at the Smart​ Pooli​ng repos​itory. Patient Dataset 
belongs to a Colombian government entity and given the confidentiality agreements it is not publicly available.

Code availability
The main code to reproduce our results is available at the Smart​ Pooli​ng repos​itory. More information can be 
found at the Smart​ Pooli​ng websi​te.
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