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Abstract
Oscillatory brain activity is believed to play a central role in neural coding. Accumulating evi-

dence shows that features of these oscillations are highly dynamic: power, frequency and

phase fluctuate alongside changes in behavior and task demands. The role and mecha-

nism supporting this variability is however poorly understood. We here analyze a network

of recurrently connected spiking neurons with time delay displaying stable synchronous

dynamics. Using mean-field and stability analyses, we investigate the influence of dynamic

inputs on the frequency of firing rate oscillations. We show that afferent noise, mimicking

inputs to the neurons, causes smoothing of the system’s response function, displacing

equilibria and altering the stability of oscillatory states. Our analysis further shows that

these noise-induced changes cause a shift of the peak frequency of synchronous oscilla-

tions that scales with input intensity, leading the network towards critical states. We lastly

discuss the extension of these principles to periodic stimulation, in which externally applied

driving signals can trigger analogous phenomena. Our results reveal one possible mecha-

nism involved in shaping oscillatory activity in the brain and associated control principles.

Introduction

Brain signals are rife with oscillatory spectral patterns. These rhythmic features, uncovered
through both intracranial and non-invasive recordings, have been shown to correlate strongly
with cognitive processes, memory, and sensorimotor behavior [1, 2, 3], and are thus believed to
be dynamic signatures of specific neural computations. As such, oscillatory activity is ubiqui-
tous throughout the nervous system and represents the focus of an effervescent area of research
[4, 5, 6].
Brain oscillations are however far from being static. Indeed, cortical rhythms are commonly

subjected to sudden shifts induced by variations in behavior and cognitive states. Such spectral
transitions are notably observed across normal sleep stages [7] or during the recruitment of
attention [8]. The variability of oscillatory neural activity within the gamma band has been
thoroughly studied and linked to changes in visual stimuli statistics and timely adjustments in
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local synaptic wiring [9, 10, 11]. However, shifts in brain oscillatory activity are also reliably
observed at slower frequencies. Alpha oscillatory activity, in particular, has been found to be
highly volatile [12]. It has been found that the iAPF accelerates during cognitive [13], memory
[14] and sensorimotor [15] task performance as well as following a strenuous bout of physical
exercise [16]. In addition, recent studies provide strong evidence that alpha oscillations are one
candidate mechanism for gating the temporal window of sensory integration, and thus dictat-
ing the resolution of conscious sensory updating. Specifically, deliberate alterations of the iAPF
within individual subjects, induced by transcranial alternating current stimulation, has been
found to influence visual stimuli [17]. Consistent with this, individuals with higher iAPF have
vision with finer temporal resolution, and within an individual, spontaneous fluctuations in
iAPF predict visual perception [18]. Furthermore, in a temporal cueing task, forming predic-
tions about when a stimulus will appear can instantaneously bias the phase of ongoing alpha-
band oscillations toward an optimal phase for stimulus discrimination [19]. Taken together,
these findings suggest that the magnitude of the iAPF is indicative of the level of arousal/atten-
tion, preparedness and performance of recruited cortical nets, in which “the faster the better”.
Given that alpha activity operates on much broader spatial and temporal scales [20], spectral
transitions observedwithin those frequency ranges likely relies on more global and distributed
mechanisms.
To this day, the mechanism supporting these larger scale frequency transitions has been

poorly understood. A key question is whether such transitions could be triggered by external
stimulation. Recent studies have indeed shown that weak electric fields can perturb individual
alpha oscillations and have a direct effect on visual stimulus perception [17,21] and task perfor-
mance by reinforcing endogenous slow-wave rhythms [1,22].
To explore this question, we here investigate a non-linear network of spiking neurons with

time delay, exhibiting alpha-like oscillatory activity. Our results reveal that despite the noisi-
ness of the connectivity, stimuli implement an online gain-control mechanism where the peak
frequency reflects the activation state of the neurons. We show that neural inputs, here mod-
eled by noise, change the shape of the neuron response function, significantly changing the sys-
tems equilibria and stability. Using mean-field analysis of the network collective dynamics, we
demonstrate that noise causes the system to shift from slow non-linear oscillations to fast linear
oscillations, bringing the system towards a critical state. We also derive a frequency tuning
curve that relates the network’s synchronous frequency to the noise intensity driving its con-
stituent neurons. We lastly explore how these results also apply to periodic stimuli, opening
new perspectives on how external brain stimulation can be used to control neural synchronous
activity.

Model

In the present work, we analyze the dynamics of a generic network of spiking neurons (Fig 1A)
whosemembrane potential ui(t) evolves according to the following set of non-linear differen-
tial equations

a� 1 d
dt

uiðtÞ ¼ � uiðtÞ þ N � 1SN
j¼1

wijXjðt � tÞ þ IiðtÞ ð1Þ

where α is the membrane time constant, wij = [W]ij are synaptic weights and where τ is a mean
conduction delay. The membrane potential ui(t) represents the deviation from the neurons
resting potential that is present in the absence of synaptic and external input. The presynaptic
spike trains XjðtÞ ¼ Sftlgdðt � tlÞ obey the non-homogenous Poisson processesXi! Poisson

(f[ui]) with rate f and the Dirac distribution δ(t). The firing rate function f has a non-linear
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sigmoid shape and is defined by f[ui] = (1 + exp[−βui])−1,i.e. the maximum firing rate
approaches f = 1 for large membrane potentials. All neurons are subjected to afferent pre-syn-
aptic inputs. The synaptic connectivity scheme was randomly set (Fig 1B), such that

wij ¼ g þ s Zij; ð2Þ

where g is the mean synaptic strength, s is the weight variance and nij are zero-mean indepen-
dent Gaussian white noise such that< nijnkl>NxN = δikδjl with the Kronecker symbol δnm and
where<>NxN is an average evaluated over all possible pairs of indices of the matrixW.

Fig 1. Frequency transitions in a random network of spiking neurons. A. Schematic illustration depicting some features of the

network model, in which interconnected cells are driven by independent sources of noise. Individual cells are connected via excitatory (red)

and inhibitory (blue) synaptic connections. B. Synaptic connectivity matrix. Weights are randomly distributed around a mean value g (See

Eq 2). C. Sample network activity, in which neurons spike timing is modulated by global, slow-wave synchronous oscillations in both low

(grey; D = 0.01) and high (blue; D = 0.50) input conditions. Faster and more irregular firing modulations characterize the high-input state. D.

Power spectral density of the network mean activity �u in low (grey; D = 0.01) and high (blue; D = 0.50) input conditions. Other parameters

are α = 100Hz, β = 300mV, g = −10mV/Hz, s = 20mV/Hz, τ = 25ms.

doi:10.1371/journal.pone.0161488.g001
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We also consider other sources of synaptic inputs which we model as stochastic elements
IiðtÞ ¼

ffiffiffiffiffiffi
2D
p

xiðtÞ given the independent Gaussian white noise processes ξi with zero mean and
< ξiξj>T = δij, where<>T is an average evaluated over an epoch of duration T or over an
ensemble of realizations of processes. Such noise is meant to represent the effect of synaptic
bombardment on neural membrane potentials. Such inputs can be shown to be well approxi-
mated by Gaussian processes in the diffusion limit case [23,24] and this is the approach we use
in the following analysis. In the present work, we also consider a network of neurons whose
spatial mean synaptic action is inhibitory with< 0.
Under the choice of a specific synaptic connectivity and other model parameters, the net-

work spontaneously engages in synchronous activity at a baseline frequency of 10Hz while
external input is absent. However, this frequency is found to be highly volatile in the presence
of stochastic input: if the noise level is increased, the network spiking activity becomesmore
irregular and the synchronous frequency increases, cf. Fig 1C. The power spectrumof the net-
work mean activity is plotted in Fig 1D, where peaks can be observed at the systems natural fre-
quency and higher harmonics. As noise intensity is increased in the system, the peak frequency
and associated harmonics gradually shift towards higher a frequency range.

Mean Field Representation for Stochastic Input

To better understand the impact of inputs on the dynamics, let us derive mean-field equations
for our system. In the limit where the number of neurons is large, i.e.N!1, and the mean
firing time scale 1/f is much smaller than the time scale of dendritic currents [25] we can use
the response function f to approximate the rate at which recurrent pre-synaptic inputs perturb
the activity of a neuron. To this end, one averages ui(t) over a very short time window and
introduces a so-called coarsening in time [25, 26]. This well-established transformation allows
to translate population spiking activity to population rate dynamics

N � 1SN
j¼1

wijXjðt � tÞ � N � 1SN
j¼1

wijf ½ujðt � tÞ� ð3Þ

In the following, we use the same symbol for the original and the temporally coarse-grained
membrane potential for notational simplicity. Let us further assume that emerging oscillations
occur in a mean-driven regime in which the local dynamics can be seen as small independent
fluctuations around the network mean activity i.e.

uiðtÞ ¼ �uðtÞ þ niðtÞ ð4Þ

where the network mean activity is given by

�uðtÞ ¼ N � 1 SN
i¼1

uiðtÞ �< u>N ð5Þ

and<>N is an average performed over theN unit of the network. In the following, we re-scale
time by αt! t for notational simplicity. As an ansatz, local fluctuations vi from the mean obey
the Ornstein-Uhlenbeck processes

d
dt

vi ¼ � vi þ
ffiffiffiffiffiffi
2D
p

xiðtÞ: ð6Þ

Then, using Eq (4) above, and taking the mean over N neurons

d
dt

�uðtÞ ¼ � �uðtÞþ < N � 1 SN
i¼1

wijf ½�uðt � tÞ þ vjðt � tÞ�>N ð7Þ

Controlling Oscillations in Spiking Neurons

PLOS ONE | DOI:10.1371/journal.pone.0161488 September 26, 2016 4 / 15



Then, as N!1 [27],

< N � 1 SN
i¼1

wijf ½�uðt � tÞ þ vjðt � tÞ�>N � �w
Z þ1

� 1

f ð�uðt � tÞ þ vÞrðvÞdv ð8Þ

where ρ is the probability density function of the solution of Eq (6), i.e. a zero-mean Gaussian
distribution with variance var[v] = D. Moreover �w ¼ < wij>N ¼ g is the mean network con-
nectivity. In Eq (8), we have used the fact E[XY] = E[X]E[Y] for the expectation value E of a
product of two statistically independent random variables X and Y. This applies in Eq (8) since
vj and wij are statistically independent.
Whenever the response function gain β is very large, [u]�H[u], whereH is the Heaviside

step functionwithH[u] = 0 for all u< 0 andH[u] = 1,u� 0. Then the right hand side of Eq (8)
reads

�w
Z þ1

� 1

Hð�uðt � tÞ þ vÞrðvÞdv �
�w
2

1þ erf
�uðt � tÞ
ffiffiffiffiffiffi
2D
p

� �� �

: ð9Þ

Combining previous results, the mean-field dynamics of our spiking network can be well
approximated by the scalar non-linear delay-differential equation

d
dt

�uðtÞ ¼ � �uðtÞ þ
�w
2

1þ erf
�uðt � tÞ
ffiffiffiffiffiffi
2D
p

� �� �

ð10Þ

Eq (10) shows that pre-synaptic noise generically results in a linearization of the neurons
response function [28,29] cf. Fig 2, bottom panels. This linearization shapes the input-output
relationship of driven neurons, but also alters the features displayed by emergent activity pat-
terns such as synchronous oscillations [30]. Fig 2 illustrates that increasing the external noise
tunes the frequency of the network mean activity.

Stochastic Stability Analysis

To investigate the frequency tuning observed in Fig 2, we take a closer look at the solutions of
Eq (10). Synchronous activity in our network emerges as a consequence of an expected super-
critical Hopf bifurcation commonly seen in recurrent delayed nets [31]. The single fixed point
�uo of �u result from Eq (10) by setting d�u

dt ¼ 0

�uo ¼
�w
2

1þ erf
�uoffiffiffiffiffiffi
2D
p

� �� �

� �

ffiffiffiffiffiffiffi
pD
p

g
ffiffiffi
2
p

g � 2
ffiffiffiffiffiffiffi
pD
p ; ð11Þ

where the last equation assumes small noise intensity D. Fig 3A shows that the mean-field fixed
point �uo decreases with increasing noise level.
We use the knowledge about the noise-dependent fixed point �uo to better understand the

network stability. The linearization of the mean-field Eq (10) about the fixed point �uo from Eq
(11) yields

d
dt

wðtÞ ¼ � wðtÞ þ R½�uo;D�wðt � tÞ ð12Þ

with deviationsw from the fixed point where R½�uo;D� ¼ �wffiffiffiffiffiffi
2pD
p exp � �u2

o
2D

h i
is the network suscepti-

bility. Stability of the network equilibrium �uo is determined by settingwðtÞ ¼ ~uelt with l 2 C
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leading to the characteristic equation

l ¼ � 1þ R½�uo;D�e
� lt: ð13Þ

Solutions to Eq (13) define the spectrumof the linearized system in Eq (12). Collective oscil-
latory solutions form in the network if the susceptibility reaches a critical value Rc for λ = i ωc

satisfying the complex relationship

ioc ¼ � 1þ Rce
� i oct ð14Þ

whereoc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Rc � 1

p
is the critical Hopf frequency i.e. the frequency of network synchronous

oscillations close to the instability.
As seen in Fig 3B, in the absence of noise, the susceptibility is well below the critical value,

and the network exhibits strong non-linear oscillations. This implies that R< Rc for D = 0 and
the system evolves in a nonlinear limit cycle oscillation beyond a supercritical Hopf bifurcation
while the fixed point is asymptotically unstable. As such, in the weak noise limit, the system is
set robustly in the synchronous state.

Fig 2. As noise increases, global oscillations accelerate and become gradually more linear. Pre-synaptic noise generically results in

a linearization of the neurons response function, altering the network stability and further shaping the frequency of ongoing oscillations.

The network mean activity �u is shown (top panel) with a close up view of a few cycles (middle panel) with the associated response function

(bottom panel), for various levels of noise. A. D = 0.001. B. D = 0.01. C. D = 0.1. Other parameters are identical to parameters used in Fig 1.

doi:10.1371/journal.pone.0161488.g002
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However, upon the presence of noise, linearization of the neurons response function trans-
lates into a gradual increase of the susceptibility towards Rc: global synchronous oscillations in
the network not only accelerate under the action of noise, but also becomesmore linear. As
such, noise brings the system closer to the bifurcation threshold and hence moves the network
towards a critical asynchronous state. The effect of noise on the characteristic eigenvalue spec-
trum is plotted in Fig 3C. As noise intensity increases, the eigenvalues undergo a gradual shift
towards the left hand side of the complex plane, bringing pairs of eigenvalues closer to the imag-
inary axis and thus closer to the bifurcation threshold. This occurs because the system’s suscep-
tibility approaches the critical susceptibility under the effect of noise. As such, afferent inputs
engage the network and drive it towards the asynchronous state and the transition trajectory in
parameter space is characterized by an gradual increase in the network peak frequency.

Stochastic Frequency Tuning

Finding explicit frequency relationships in the fully non-linear regime is challenging. Yet, to
approximate the dependence of the network frequency on the noise driving the neurons, one
might use the Galerkinmethod [32, 33]. Whenever f[u]�H[u] holds for sufficiently large val-
ues of the gain β, this approach seeks to find a frequencyωminimizing the measure

J ¼
Z 2p=o

0

d
dt

�u � F½�u�
� �

� cosðotÞdt ð15Þ

where F½�u� ¼ � �uðtÞ þ �w
2

1þ erf �uðt� tÞffiffiffiffi
2D
p

h i� �
. Using the ansatz �uðtÞ ¼ AcosðotÞ þ �uo while

expanding F to third order about the steady state �uo, one obtains for the first iteration,

J ¼ �
1

2

Að
ffiffiffi
2
p

p �wcosðotÞ � 2
ffiffiffi
p
p 3 ffiffiffiffi

D
p
Þ

o
ffiffiffiffiffiffiffi
pD
p : ð16Þ

Fig 3. Network stability and equilibrium are shaped by noise. A. Fixed point of the system as per Eq (11) as a function of increasing

noise intensity. Noise generically decreases the equilibrium, due to an increased recruitment of recurrent connections. B. Network

susceptibility as a function of noise intensity. A gradual shift towards the critical susceptibility Rc occurs under the action of noise, causing

the system to transit from slow non-linear oscillations to fast linear oscillations. C. System’s eigenvalues for moderate (D = 0.01) and strong

(D = 0.1) noise levels. The eigenvalues gradually shift towards the left hand side of the imaginary plane. Critical eigenvalues (pairs of roots

inside the black boxes) translate towards the imaginary axis (Re(λ) = 0) i.e. closer to the critical state. Other parameters are α = 100Hz, β =

2500/mV, g = −2mV/Hz, s = 4mV/Hz, τ = 25ms.

doi:10.1371/journal.pone.0161488.g003
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For J = 0, one can solve Eq (16) for ω> 0 to obtain a first order approximation for the sto-
chastic frequency

o �
1

t
cos� 1

ffiffiffiffiffiffiffiffiffi
2pD
p

�w
� �

: ð17Þ

Expanding to third order for weak noise, i.e.D� 0

o �
p

2t
�

ffiffiffiffiffiffiffiffiffi
2pD
p

�wt
�

1

3

ffiffiffiffiffiffiffiffiffiffiffiffi
2p3D3
p

�w3t
þ OðD5=2Þ ð18Þ

leading to the frequency tuning curve

o � oo � ð1þ DðDÞÞ ð19Þ

where Δ(D) is a noise-induced shift with Δ(D)> 0. Fig 4 shows the frequencywith respect to
the noise intensity. Together with the results above, while approximate, demonstrate that
under the action of noise, the network oscillation frequency gradually shifts from a non-linear
baseline frequencyoo ¼

p

2t
� 10Hz ðD ¼ 0Þ towards the critical frequency

oc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Rc � 1

p
� 15Hz. Eqs (18) and (19) thus imply that as noise increases in the system, the

network transits from slow non-linear rhythms to fast linear oscillations. This can also be
understood by looking at the susceptibility, which gauges the relative influence of recurrent
interactions in the network, plotted in Fig 3B. As susceptibility decreases under the action of
noise, the system accelerates and shifts from a recurrent deeply synchronous state to an asyn-
chronous input driven regime.

Fig 4. Frequency tuning curve. Frequency of the network synchronous oscillations as a function of noise

intensity. Noise causes the peak frequency of the network oscillations to shift from the baseline frequencyωo

towards the critical frequency ωc. The peak frequency is plotted according to numerical simulations of the

network dynamics (red dotted curve), the mean-field approximation (grey; as per Eq 10) and using the

frequency tuning curve (black; as per Eq 17). Other parameters are taken from Fig 3.

doi:10.1371/journal.pone.0161488.g004
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Mean Field Analysis for Periodic Stimulation

We have seen that noise shapes the stability and oscillatory features of non-linear networks by
linearizing the neurons response function.However, this feature is not exclusive to noisy
inputs. Indeed, numerous studies have shown that, in addition to changes in brain state, ongo-
ing oscillatory activity can be modulated by noninvasive stimulation, something that is increas-
ingly capitalized upon in basic research and clinical practice [34, 35, 36, 37, 38, 39]. Recent
results have further shown that exogenous electric rhythmic stimulation (i.e. periodic forcing),
in addition to resonance and entrainment, can also provoke non-linear acceleration of endoge-
nous oscillations and shift the baseline frequency of driven neural systems [40], causing reso-
nance curves and Arnold tongues to bend in stimulation parameter space ([40] cf Fig 4). To
explore the mechanism behind this non-linear effect, we here revisit the analysis performed in
the stochastic case and adapt it to the presence of periodic forcing.
In the presence of global periodic stimulation with frequency fs and amplitude I0, the net-

work dynamics obeys

d
dt

uiðtÞ ¼ � uiðtÞ þ N � 1 SN
j¼1

wijXjðt � tÞ þ I0sinð2pfstÞ: ð20Þ

First, we consider activity course-grained in time with

SN
j¼1

wijXjðt � tÞ � SN
j¼1

wijf ½ujðt � tÞ� ð21Þ

similar to the stochastic case. Then we assume two temporal scales in the evolution of the
potentials with uj =mj + vj: the slow modemj and the fast mode vj. Inserting this relation into
Eq (20), we obtain

d
dt

vi ¼ � vi þ I0 sinð2pfstÞ ð22Þ

and

d
dt

miðtÞ ¼ � miðtÞ þ N � 1 SN
j¼1

wijf ½mjðt � tÞ þ vjðt � tÞ� ð23Þ

Since the experimental observation reflects the average activity in the neural ensemble, we
consider spatially homogeneous slow activitymj ¼ �uðtÞ. Then averaging over the time interval
of one short stimulus cycle, one can express the spatio-temporal mean dynamics �uðtÞ in the
adiabatic regime for fast stimuli

d
dt

�uðtÞ ¼ � �uðtÞþ < N � 1 SN
j¼1

wijf ½�uðt � tÞ þ vjðt � tÞ�>T;N : ð24Þ

Here <�>T,N denotes a spatial average and a time average taken over a time intervalT small
compared to the dynamics of the network i.e. for 1/fs� T� 2π/ωo, i.e.

< uiðtÞ>T;N ¼
XN

i¼1

Z tþ1=fs

t
uiðtÞ dt ð25Þ

for the local activity ui(t). Again, this implies that the driving frequency fs is large compared to
the systems self-sustained oscillation frequency. By virtue of this time scale separation, it is rea-
sonable to assume stationarity in the time interval of duration T. The solutions of Eq (22) for
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large frequencies and large times t!1 obey

viðtÞ � �
I0

2pfs
cosð2pfstÞ; ð26Þ

i.e. the fluctuations about the spatial mean synchronize and converge to a single solution. Then

< N � 1 SN
j¼1

wijf ½�uðt � tÞ þ vjðt � tÞ�>T;N � �w
Z þ1

� 1

f ð�uðt � tÞ þ vÞrðvÞdv ð27Þ

with the probability density

rðvÞ ¼
Z tþ1=fs

t
d v þ

I0

2pfs
cosð2pfstÞ

� �

dt ¼
1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � v2
p ð28Þ

with μ = I0/2πfs. Here, we have used the time scale separation between the slow evolution of
�uðtÞ and the fast synchronous fluctuations. Eq (28) has the same form as Eq (8) in the case of
stochastic stimulation. Again, similar to the stochastic case, the external stimulation leads to a
convolution of the nonlinear response function f with the probability density function of the
stimulus-induced fluctuations about the spatial mean.We note that, in contrast to the stochas-
tic case, the notion of a probability density function in the present deterministic systemmay
appear counter-intuitive. This interpretation however is reasonable since ρ(v) is proportional
to the residence time of the oscillation vi(t) at amplitude v [41] that motivates the interpretation
of a probability density.
Now assuming [u]�H[u], Eq (28) reads

~F ½�u� �
Z m

� m

f ð�uðt � tÞ þ vÞ
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � v2
p dv ¼

1

p
sin� 1ð�u=mÞ þ

1

2
; � 1 � �u=m � 1 ð29Þ

and ~F ½�u� ¼ 1 for �u
m
> 1 and ~F ½�u� ¼ 0 for �u

m
< � 1. Combining previous results, the dynamics in

presence of periodic forcing becomes

d
dt

�uðtÞ ¼ � �uðtÞ þ �w~F ½�uðt � tÞ� ð30Þ

Stability and Frequency Tuning

Taking a closer look at the slope of the new response function ~F 0½u� ¼ d~F=du, we find

d ~F0
dm

< 0 ð31Þ

for � m � �u � m, and d ~F0
dm
¼ 0 otherwise.Hence the nonlinear response function flattens and

becomes increasingly linear for increasing μ similar to the stochastic case for increased noise
level. Fig 5 (bottom panels) shows ~F for three different stimulus amplitudes, i.e. different values
of m, confirming this analytical finding.
To gain insight into the dynamics of �u, we consider the fixed point �uo and small deviations

about it. Similar to Eq (12), the corresponding characteristic roots are defined by

l ¼ � 1þ R½�uo; m�e
� lt

with the susceptibilityR ¼ �w~F 0½�uo�. Since dR
dm
> 0, similar to the stochastic case fast external

periodic drivingmoves the system from a nonlinear regime far from the bifurcation threshold
to a linear regime close to to the stability threshold, cf. Fig 3C.
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Using the Galerkin approach as in Eq (15), one obtains an analogous expression to Eq (17)
for the oscillation frequency but for the periodic forcing case

o �
1

2pt
cos� 1ð1=�w~F 0½�uo�Þ ð32Þ

for small periodic driving amplitudes I0 and with the fixed point �uo ¼
~F ½�uo� � pm�w=2ðmp � �wÞ

for small μ. Then after few calculus steps one finds

do

dm
e �

d~F
dm

> 0 ð33Þ

for small values of μ. Hence linearising the response function by fast external stimulation
increases the oscillation frequency of the system. Fig 5 shows numerical simulations of Eq (30)
for three different driving amplitudes. The oscillation frequency increases with increasing driv-
ing amplitude in accordance to the analytical result in Eq (28). This finding resembles the sto-
chastic case for increasing noise level.

Fig 5. As period driving amplitude increases, global oscillations accelerate and become gradually more linear. The network mean

activity �u is shown (top panels) with a close up view of a few cycles (center panels) with the associated response function (bottom panels),

for various input amplitudes. A. Io = 0.01. B. Io = 0.1. C. Io = 1.0. Other parameters are α = 100Hz, β = 2500/mV, g = −2mV/Hz, s = 4mV/Hz,

τ = 25ms.

doi:10.1371/journal.pone.0161488.g005
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To summarize the results above, periodic forcing not only interacts with the dynamics of
the network by resonance or entrainment, but also shapes its activity via non-linear effects.
This thus implies that the use of weak, high frequency stimulation can mediate frequency tran-
sitions in a similar fashion as stochastic inputs.

Discussion

Previous experimental and theoretical work has shown that gamma-like oscillatory activity is
highly dynamic, changing according to stimulus intensity [42]11), spatial features [43,44] and
is strongly correlated to the phase of slower frequencies [45,46]. Such gamma oscillations have
been shown to build on highly local circuits shaping the timing of interactions between excit-
atory pyramidal cells and inhibitory interneurons [11]. Slower frequencies, such as alpha activ-
ity, have also been shown to be variable. Shifts in the peak alpha frequency have been reliably
reported during changes in attentional states [13, 18, 19], during sensorimotor task perfor-
mance [15], and following intense physical exercise [16].
Alpha oscillations have been shown to engage more spatially extended connections[47], in

which propagation delays play an important role [20], suggesting that the mechanisms
involved in shaping the peak alpha frequency is different from the one involved for faster,
more local frequencies such as gamma for example. Most of the research on synchronous neu-
ral dynamics has been devoted to the study of input-induced transitions in- and out of syn-
chronous states, where network firing rate oscillations emerge in presence of strongly
correlated drive [30,48,49]. In contrast, we here characterize a smooth approach towards a
delayed-induced bifurcation in which the equilibria, stability and peak frequency are impacted
by noise or external periodic driving. Using mean-field approaches, we have detailed the stabil-
ity of the network oscillatory states and derived a frequency tuning curve that relates the fre-
quency of synchronous oscillations to the intensity of the input driving the neurons.
While we have considered constant values of the input intensity in our analysis, results

extend to time-varying inputs as well. For instance, the level of noiseD(t) driving neurons
would vary according to particular sets of stimuli and\or tasks. In such a case, fluctuations in
the noise intensity would be mirrored by concomitant changes in the network peak frequency.
What are implications of this dynamic behavior with respect to neural coding? Similarly,
experimental setups involving electric periodic stimulation, such as in deep brain stimulation
[50,51,52], electric stimulation [53,54].or visual stimulation [55], will induce a shift of fre-
quency [40].
According to the framework we detailed, shifts in the magnitude of inputs to the neurons

translate into changes in synchronous oscillations frequencies. Network mean output activity
can thus be describedby the heuristic relationship

uðtÞ � A sin½2pðfo þ DÞt þ �� ð34Þ

where fo is the baseline frequency, Δ is an input-dependent frequency shift,A is an amplitude
parameter (which may depend on input parameters) and ϕ is a random phase. From this per-
spective, the frequency tuning mechanism can be seen as implementing a frequencymodula-
tion (FM) communication scheme coding for input intensity. This hypothesis has been
considered on numerous occasions [56,30], and lately gainedmomentum alongside the devel-
opment of the “Communication Through Coherence” (CTC) hypothesis in which neural
assemblies engage into long-distance communication based on the coherence between oscil-
latory states [57]. Hence, we hypothesize that the stochastic frequency tuning explored here
could potentially implement a gating mechanism allowing the routing of information towards
different distal networks, and thus represent an aspect of large-scale neural coding.
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4. Wang XJ, Buzsáki G (1996) Gamma oscillation by synaptic inhibition in a hippocampal interneuronal

network model. J Neurosci 16(20):6402–6413. PMID: 8815919

5. Engel AK, Singer W. (2001) Temporal binding and the neural correlates of sensory awareness. Trends

Cogn Sci 5:16–25. PMID: 11164732

6. Engel AK, Fries P, Singer W. (2001) Dynamic predictions: oscillations and synchrony in top-down pro-

cessing. Nat Rev Neurosci 2:704–16. PMID: 11584308

7. Steriade M, Timofeev I, Grenier F. (2001) Natural waking and sleep states: a view from inside neocorti-

cal neurons. J Neurophysiol. 85(5):1969–85. PMID: 11353014

8. Klimesch W. (2012): alpha-band oscillations, attention, and controlled access to stored information. In:

Trends in cognitive sciences 16 (12), S. 606–617. doi: 10.1016/j.tics.2012.10.007 PMID: 23141428

9. Whittington MA, Traub RD, Jefferys JG (1995) Synchronized oscillations in interneuron networks

driven by metabotropic glutamate receptor activation. Nature 373:612–615. PMID: 7854418

10. Ray S, Maunsell JH (2010) Differences in gamma frequencies across visual cortex restrict their possi-

ble use in computation. Neuron 67:885–96. PMID: 20826318

11. Jadi MP, Sejnowski TJ (2014) Cortical oscillations arise from contextual interactions that regulate

sparse coding. Proc Natl Acad Sci U S A. 111:6780–5. doi: 10.1073/pnas.1405300111 PMID:

24742427

12. Chiang AK, Rennie CJ, Robinson PA, van Albada SJ, Kerr CC. (2011) Age trends and sex differences

of alpha rhythms including split alpha peaks. Clin Neurophysiol. 122(8):1505–17. doi: 10.1016/j.clinph.

2011.01.040 PMID: 21349761

Controlling Oscillations in Spiking Neurons

PLOS ONE | DOI:10.1371/journal.pone.0161488 September 26, 2016 13 / 15

http://www.ncbi.nlm.nih.gov/pubmed/10209231
http://www.ncbi.nlm.nih.gov/pubmed/10576479
http://www.ncbi.nlm.nih.gov/pubmed/8815919
http://www.ncbi.nlm.nih.gov/pubmed/11164732
http://www.ncbi.nlm.nih.gov/pubmed/11584308
http://www.ncbi.nlm.nih.gov/pubmed/11353014
http://dx.doi.org/10.1016/j.tics.2012.10.007
http://www.ncbi.nlm.nih.gov/pubmed/23141428
http://www.ncbi.nlm.nih.gov/pubmed/7854418
http://www.ncbi.nlm.nih.gov/pubmed/20826318
http://dx.doi.org/10.1073/pnas.1405300111
http://www.ncbi.nlm.nih.gov/pubmed/24742427
http://dx.doi.org/10.1016/j.clinph.2011.01.040
http://dx.doi.org/10.1016/j.clinph.2011.01.040
http://www.ncbi.nlm.nih.gov/pubmed/21349761


13. Haegens S, Cousijn H, Wallis G, Harrison PJ, Nobre AC (2014) Inter- and intra-individual variability in

alpha peak frequency. NeuroImage 92:46–55. doi: 10.1016/j.neuroimage.2014.01.049 PMID:

24508648

14. Klimesch W, Schimke H, Pfurtscheller G (1993) Alpha frequency, cognitive load and memory perfor-

mance. Brain topography 5, 241–251. PMID: 8507550
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