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In addition to its profound implications in the fight against cancer, pyroptosis have

important role in the regulation of neuronal injury. Microglia are not only central members

of the immune regulation of the central nervous system (CNS), but are also involved in

the development and homeostatic maintenance of the nervous system. Under various

pathological overstimulation, microglia pyroptosis contributes to the massive release

of intracellular inflammatory mediators leading to neuroinflammation and ultimately to

neuronal damages. In addition, microglia pyroptosis lead to further neurological damage

by decreasing the ability to cleanse harmful substances. The pathogenic roles of

microglia in a variety of CNS diseases such as neurodegenerative diseases, stroke,

multiple sclerosis and depression, and many other neurological disorders have been

gradually unveiled. In the context of different neurological disorders, inhibition of microglia

pyroptosis by targeting NOD-like receptor family pyrin domain containing (NLRP) 3,

caspase-1 and gasdermins (GSDMs) by various chemical agents as well as natural

products significantly improve the symptoms or outcome in animal models. This study

will provide new ideas for immunomodulatory treatment of CNS diseases.

Keywords: microglia, pyroptosis, GSDMs, neuroinflammation, neurological diseases

INTRODUCTION

The term “pyroptosis” is of ancient Greek origin, meaning fire and falling, it is characterized
by early rupture of the plasma membrane and release of proinflammatory intracellular contents
(Black et al., 1989). Therefore, pyroptosis is also known as inflammatory cell death in recent
years (Van Opdenbosch and Lamkanfi, 2019). External stimuli such as pathogen-associated
molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), dsDNA, multiple
bacterial, viral antigenic components initiate cellular pyroptosis by activating different types of
inflammasome receptors (Xue et al., 2019). Cell pyroptosis is mainly executed by the gasdermin
family of proteins (Shi et al., 2017). The N-terminal end of the GSDM is activated by the shearing
action of caspase family members. The activated GSDM-N terminus has membrane pore-forming
properties and induces the formation of transmembrane pore channels and pyroptosis, along with
the release of intracellularly activated inflammatory mediators (Bergsbaken et al., 2009; Shi et al.,
2017). The GSDM plays an important role in the body’s anti-infection and anti-cancer immunity
and is expected to be a new target for anti-cancer therapy (Man et al., 2017; Loveless et al., 2021;
Wu et al., 2021). However, cellular damage and inflammation caused by excessive and abnormal
pyroptosis have been found to be important pathogenic factors in a variety of diseases, such as
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cardiovascular diseases, motor system diseases, autoimmune
diseases (McKenzie et al., 2018; Tao et al., 2020; Wang et al.,
2020c). Recent studies have shown that neuronal pyroptosis
is associated with neurodegenerative diseases, stroke, traumatic
brain injury (TBI), infection-induced brain damage, and a variety
of central nervous system (CNS) pathologies such as epilepsy
(McKenzie et al., 2020a). Pyroptosis has become the focus of
research on the pathogenic mechanisms of the CNS.

Microglia are the resident innate immune cells of the
CNS with important immunomodulatory functions and play a
critical role in the neuronal development, myelin repair, and
regeneration of the nervous system (Colonna and Butovsky,
2017; Lloyd and Miron, 2019). They can regulate inflammation
and oxidative stress and influence synaptic plasticity and
blood-brain barrier (BBB) stability, which are essential for
the regulation of CNS homeostasis (Li and Barres, 2018;
Zhou et al., 2019; Ronaldson and Davis, 2020). Although the
concept of microglia polarization is currently controversial,
the binary classification of microglia according to their
beneficial or harmful function is still widely used today (Hu
et al., 2015; Ransohoff, 2016a; Wan et al., 2022b). Recent
studies suggest that its function is not limited to regulating
development and simply removing cellular debris in disease,
but that its abundance of modifiable genes also provides a
large number of targets for regulating neurological diseases
(Prinz et al., 2021). Given the multifunctional regulatory
properties of microglia in the CNS, their association with
epilepsy, neuropathic pain, ischemic stroke, neurodegenerative
diseases, and depression are also being preliminarily revealed
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(Orihuela et al., 2016; Nestle et al., 2020; Yao et al., 2021).
The links between the physiopathological functional state
of microglia and various neurological diseases have been
extensively investigated.

Microglia pyroptosis is an important manifestation
of neuroinflammation and is closely associated with the
development of several neurological diseases, such as ischemic
brain injury, stroke, and neurodegenerative diseases. Microglia
pyroptosis-induced inflammatory responses are associated with
neurodegeneration and cell death in the brains of Parkinson’s
patients (Zhang et al., 2016). IL-1β and IL-18 levels were
found to be significantly higher in the cerebrospinal fluid of
Parkinson’s patients with microglia pyroptosis than in the
healthy controls (Zhang et al., 2016; Chang et al., 2020; Hu
et al., 2020; Xu et al., 2021b). In addition, it was shown that
inhibition of microglia pyroptosis by reducing the levels of the
NLRP3 complex with CD73 or reduced advanced oxidation
protein products (AOPPs) alleviated spinal cord injury (SCI)
induced by persistent neuroinflammation (Liu et al., 2020; Xu
et al., 2021b). In a mouse model of intracerebral hemorrhage
(ICH), inhibiting microglia pyroptosis by suppressing NLRP3
complexes could improve SCI symptoms. In the ICH mouse
model, the anti-inflammatory effect of Didymin was partially
associated with its anti-microglia pyroptosis effect (Gu et al.,
2022). This paper reviews the recent association between
microglia pyroptosis and various neurological disorders, as
well as the currently available or potential agents that regulate
microglia pyroptosis, thus providing new ideas for the treatment
of neurological disorders.

PYROPTOSIS

Pyroptosis as a Phenotype of Inflammatory
Cell Death
Pyroptosis is a type of programmed cell death but is different
from apoptosis and necrosis. Both pyroptosis and necrosis
are part of the same lytic programmed death and eventually
release contents leading to inflammation (Frank and Vince,
2019). However, the mechanisms and cell morphology are
different, which may be due to the different biochemical
activities of the gasdermin D (GSDMD) and mixed lineage
kinase domain-like proteins (MLKL) that mediate pyroptosis
(Jorgensen and Miao, 2015). Pyroptosis is one of the defense
mechanisms of host cells against pathogens. Usually external
pathogens promote cellular pyroptosis activation, while a
few pathogens have the ability to inhibit host cell pyroptosis
(Bergsbaken et al., 2009). With the rupture of the plasma
membrane, exposed extracellular pathogens are further
targeted and cleared by recruited immune cells. Classical
microglia pyroptosis is divided into two main steps. The
initiation step refers mainly to microbial and inflammatory
mediator-mediated activation of inflammation-associated
genes. This is followed by the activation of inflammasome and
downstream pyroptosis-related pathways, culminating in cell
death mediated by the pore-forming protein GSDMD (Vande
Walle and Lamkanfi, 2016; Fang et al., 2020). In addition,
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the non-classical pyroptosis pathway GSDMD activation is
independent of caspase-1. Caspase-4/5/11 are directly stimulated
by LPS and thus activate downstream GSDMD (Shi et al.,
2014).

Mechanism and Regulation of Pyroptosis
Inflammasomes are multiprotein complexes containing pattern
recognition receptors (PRRs) that mediate the innate immune
response of the body to infectious microbes and host protein
molecules. The PRR family typically contains multiple members,
including Toll-like receptors (TLRs), Nod-like receptors
(NLRs) (Kanneganti et al., 2007; Sahoo, 2020). PRRs in
inflammasomes sense and recognize PAMPs and DAMPs of
host or environmental origin (Guo et al., 2015). In mammals,
in addition to the most common NLRP3, different types of
inflammasome receptors such as absent in melanoma 2 (AIM2),
NLRC4, NLRP1b, and NLRP6 recognize different activation
signals and activate downstream caspase-1 (Xue et al., 2019;
Fang et al., 2020). Upon activation, caspase-1 mediates the shear
activation of IL-1β and IL-18, as well as GSDMD, leading to
the formation of membrane pores, cell swelling, release of cell
contents, and ultimately pyroptosis (Voet et al., 2019; Wang
et al., 2019; Xue et al., 2019). Because NLRP3 inflammasomes
have a wide recognition range, targeting NLRP3 to regulate
pyroptosis has become one of the focal points of current
research. Isoflurane general anesthesia induces pyroptosis by
activating NLRP3 inflammasomes, while NLRP3 inhibitor
MCC950 attenuates pyroptosis-related cognitive dysfunction
(Fan et al., 2018). Additionally, isoliquiritin and kanglexin
improve depression by downregulating NLRP3 levels and
subsequent neuronal pyroptosis (Bian et al., 2020; Li et al.,
2021a).

GSDMD is highly expressed in the epithelium and skin of the
gastrointestinal tract, yet its function remains largely unknown.
As the executioner of pyroptosis, GSDMD is only one member
of the GSDM family, with other members including GSDMA,
GSDMB, GSDMC, GSDMD, DFNA5, and DFNB59 (Shi et al.,
2017). In the GSDM family, the sequence homology is about 45%,
with the GSDM-N structural domain being the most conserved
region. It was concluded that the GSDM-N domain of GSDMD
is thought to possess extremely strong pore-forming toxicity and
then induce pyroptosis (Shi et al., 2015; Ding et al., 2016). In
studies in mouse models, different species of GSDM activation
have similar pore-forming properties. At present, the upstream
and downstream signal regulation mechanism of pyroptosis
executive protein GSDMD is clearly studied (Shi et al., 2017).
Recent studies have found that streptococcal pyrogenic exotoxin
B shears GSDMA and thus induce pyroptosis, while the upstream
regulatory mechanisms of the remaining GSDM members are
still unknown (Deng et al., 2022). The GSDMD proteins are in
an autoinhibited state in the normal state (Ding et al., 2016).
GSDMD contains about 480 amino acids, and it is connected
to two structural domains, GSDM-N terminus and GSDM-C
terminus, by a long loop. Activated caspase-1 and caspase-11
efficiently cleave the GSDMD at an aspartate site within the loop.
This cleavage is essential for release of pore-forming GSDM-
N terminus (Shi et al., 2015). The role of pyroptosis in CNS

disease has emerged in multiple animal disease models. VX-765,
a small molecule inhibitor of caspase-1, reduces the expression
of inflammasomes and pyroptosis-associated proteins in the
CNS, thereby inhibiting axonal injury in multiple sclerosis (MS)
(McKenzie et al., 2018). Caspase-1 gene ablation in mice model
significantly inhibited TBI-induced pyroptosis and neurological
damage (Liu et al., 2018).

Studies on the molecular regulation of its non-canonical
pathway of pyroptosis, especially caspase-11-related, are
currently more limited. LPS-mediated caspase-11-dependent
non-classical pyroptosis pathway can be inhibited by ethyl
pyruvate (Qiu et al., 2020). Regulation of caspase-11 is thought to
be possibly related to phosphodiesterase 8A (PDE8A) mediated
cyclic adenosine monophosphate (cAMP) metabolism (Hou
et al., 2019). Adenosine diphosphate (ADP) -ribosylation
of caspase-11 was found to protect cells from pyroptosis in
Shigella-infected mice (Li et al., 2021b). AIM2 is also a target
for regulating pyroptosis. In vitro, andrographolide significantly
inhibited AIM2 inflammasomes and blocked caspase1/GSDMD-
mediated myeloid-derived macrophage pyroptosis (Gao et al.,
2019). LncRNA MEG3 induced cellular pyroptosis of middle
cerebral artery occlusion (MCAO) mice in ischemic brain
by sponging miR-485 targeting AIM2 (Liang et al., 2020a).
Thus, non-coding RNAs are also important for regulating
pyroptosis. In cellular experiments in diabetic retinopathy,
overexpression of miR-590-3p was found to downregulate
caspase-1-dependent pyroptosis via downregulation of NLRP1
and downstream NADPH oxidase 4 (NOX4) pathway (Gu
et al., 2019). As the study of pyroptosis in human diseases has
advanced, chemotherapeutic drugs and miRNAs have now been
found to inhibit malignant progression of tumors by inducing
tumor pyroptosis (Xia et al., 2019). Targeting pyroptosis has an
unignorable role in the treatment of diseases.

Crosstalk Between Pyroptosis and Other
Kinds of Cell Death
There is a link between apoptosis and pyroptosis. After apoptosis,
the absence of macrophages to remove the apoptotic cells trigger
GSDMD-mediated secondary cell death with a pathological
pattern similar to pyroptosis (Kovacs and Miao, 2017; Rogers
et al., 2017). When GSDMD expression is too low or in the
presence of GSDMD defects, caspase-1 induces apoptosis via
the Bid-caspase 9-caspase 3 axis or caspase-7 (Taabazuing et al.,
2017; Tsuchiya et al., 2019). However, if the cleavage site of
GSDMD is designed as a recognition site for caspase-3, it may
convert apoptosis into pyroptosis (Wang et al., 2017). In addition,
oxidation of phospholipids may also be associated with GSDMD
activation-induced pyroptosis. Glutathione peroxidase 4 (GPX4)
and vitamin E inhibit pyroptosis in mouse macrophages by
suppressing lipid peroxidation (Imai and Nakagawa, 2003). In
contrast, myeloid-specific GPX4 deficiency leads to a significant
increase in caspase-1 and caspase-11-mediated GSDMD lysis
(Kang et al., 2018). Meanwhile, GPX4 plays an important role
in regulating ferroptosis. This suggests the potential connection
between pyroptosis and ferroptosis.
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MICROGLIA PYROPTOSIS AND
NEUROLOGICAL DISEASES

Neurodegenerative Diseases
Neurodegenerative diseases are a series of disorders caused
by progressive loss of neurons in the CNS (Yu et al., 2017).
The main pathological changes include amyloid deposition and
progressive neurodegenerative changes. Among them, amyloid
proteins including Aβ, tau and α-synuclein exhibit similar
properties to prion proteins in pathological experiments and are
able to self-replicate and spread throughout the nervous system
(Vaquer-Alicea and Diamond, 2019; Tian et al., 2020). Microglia
play an important role in the course of neurodegenerative
diseases (Wan et al., 2022a). In the development of Alzheimer’s
disease (AD), the caspase activation and recruitment domain
(CARD/ASC)-containing bridging proteins released bymicroglia
pyroptosis rapidly bind to Aβ and increase the formation of
Aβ oligomers and aggregates (Venegas et al., 2017). The formed
ASC-Aβ complex also leads to multiple responses in surrounding
cells, such as increased caspase-1 activation, IL-1β maturation
and GSDMD cleavage, and promotes NLRP3 inflammasome
formation and pyroptosis in neighboring microglia (Heneka
et al., 2018; Luciunaite et al., 2020). In addition, microglia
pyroptosis lead to more ASC release, thereby exacerbating
pyroptosis-induced neuroinflammatory damage (Friker et al.,
2020). The ASC-Aβ complex also promotes microglia activation
and secretion of inflammatory mediators and neurotoxic
cytokines, while the efficiency of Aβ degradation in microglia
is reduced (Sarlus and Heneka, 2017). In the early stages
of AD, microglia in patients are activated by Aβ, which is
removed by receptor-mediated phagocytosis and degradation,
inhibiting to some extent the deposition of Aβ in the interstitial
(Newcombe et al., 2018). However, as Aβ accumulates, microglia
are continuously activated and produce excessive amounts
of pro-inflammatory cytokines (Van Zeller et al., 2021). In
addition, the autocrine secretion of membrane receptors from
microglia that bind and help microglia phagocytose Aβ gradually
decreases, and the activity of various degradative enzymes, such
as enkephalinase, insulin-degrading enzymes, and angiotensin-
converting enzyme I (ACEI) decreases, further leading to reduced
clearance of Aβ and continued microglial cell stimulation (Yu
and Ye, 2015; Van Zeller et al., 2021). Researchers have speculated
that tau and Aβ are functionally similar. Tau protein also
activates inflammasomes and induces microglia pyroptosis via
the NLRP3-ASC axis (Stancu et al., 2019). This finding is
supported by the results of several necropsy analyses (Ransohoff,
2016b; Leyns and Holtzman, 2017).

The pathological marker of Parkinson’s disease (PD) differs
considerably from that of AD. The pathological marker of
PD is fibrillar α-synuclein, which tends to accumulate in
neurons and eventually leads to the formation of Lewy bodies
(Przedborski, 2017). Similar to Aβ, α-synuclein also induces
the activation of microglia NLRP3 inflammasomes and thus
promotes the release of ASC from microglia and the formation
of extracellular ASC patches (Zhou et al., 2016; de Alba, 2019).
Delayed and strong activation of NLRP3 inflammasomes and a
significant increase in extracellular ASC release were observed

in LPS and α-synuclein-stimulated activated mouse microglia,
but microglia did not undergo pyroptosis (Gordon et al.,
2018). Furthermore, activation of pyroptosis-related pathways
was associated with the metabolism of α-synuclein. It was
shown that the activation and aggregation of inflammasomes in
neuronal cells are closely related to the cleavage of extracellular
α-synuclein (Wang et al., 2016; Hu et al., 2022). In BE (2)-M17
human dopaminergic neuroblastoma cells, caspase-1 activated
by inflammasomes was found to cleave α-synuclein in vitro and
produce aggregates with neuronal toxicity (Wang et al., 2016).
In a rat model of PD induced by LPS and 6-hydroxydopamine
(6-OHDA), NLRP3 inflammasomes components were found
to be highly expressed in microglia, and caspase-1 inhibitor
(Ac-YVAD-CMK) reversed this result (Mao et al., 2017).
This suggests that microglia pyroptosis may be associated
with pathological cleavage of extracellular α-synuclein and
the formation of Lewy bodies. However, whether α-synuclein
ultimately induces microglia pyroptosis may depend on the
concentration of α-synuclein, and the quantification of this
concentration needs to be determined by further studies.
Furthermore, in N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP)-induced PD mice, baicalein inhibited NLRP3/caspase-
1/GSDMD pathway-mediated microglia pyroptosis, thereby
reducing PD symptoms (Rui et al., 2020). These studies
suggest that inhibition of microglia pyroptosis may alleviate the
progression of PD.

Caspase-1 plays a key role in the process of pyroptosis. The
activation of Caspase-1 exists in the brain of Huntington’s disease
(HD) patients and in HD mouse models, and the inhibition of
caspase-1 in HD mouse models can slow down the progression
of the disease (Ona et al., 1999; Paldino et al., 2020). Huntington’s
protein (HTT) is the key to the disease and activated caspase-
1 hydrolyzes and cleaves HTT to produce an N-terminal
mutated fragment (N-htt), leading to neuronal dysfunction and
death (Kim et al., 2001; Sanchez Mejia and Friedlander, 2001).
This suggests that pyroptosis may be potentially linked to the
pathological generation of HTT. The current study shows that
HD patients have distinct neuroinflammatory features at the site
of brain lesions, while no upregulation of immune cells from the
periphery, such as lymphocytes and neutrophils, was found in the
brain tissue of HD patients (Bjorkqvist et al., 2008; Palpagama
et al., 2019). Significant NLRP3 activation was found in microglia
in a mouse model of HD, suggesting a potential link between
neuroinflammation triggered by microglia pyroptosis and HD
(Siew et al., 2019). However, a different result has been obtained
that NLRP3 expression levels were significantly elevated in other
cells of the striatum of HD mice, but no significant NLRP3
activation was found in microglia (Paldino et al., 2020). This
heterogeneity of results due to the spatial location of the brain
needs to be elucidated by more in-depth studies.

Ischemic Stroke
Ischemic stroke and secondary cerebral ischemia-reperfusion
injury are both very serious cerebrovascular diseases (Graeser
et al., 2019). Ischemia and hypoxia trigger a series of
neurological damage responses such as oxidative stress and
neuroinflammation (Langhauser et al., 2012; Nabavi et al., 2015).
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Neuroinflammation induced by microglia pyroptosis is thought
to be a key factor promoting neuronal damage after ischemia
(Ceulemans et al., 2010). On the one hand, neuroinflammation
promotes the clearance of dead cellular debris induced by
reduced cerebral blood flow and ischemia-reperfusion (Xu et al.,
2019a). On the other hand, it may lead to infarct exacerbation
and low neuronal plasticity (Kriz, 2006). Microglia are one of
the most important phagocytic cells for the removal of necrotic
substances, but hyperactivation-induced microglia pyroptosis
is an important cause of exacerbation of neuroinflammation-
related damage after stroke (Iadecola and Anrather, 2011; Xu
et al., 2019a). In the mouse MCAO-induced I/R model, microglia
GSDMD expression is elevated in the ischemic region, which
mediates microglia pyroptosis and neuroinflammation-related
injury (Voet et al., 2019; Zhang et al., 2019; Wang et al., 2020b).

It has been found that NLRP3 expression is increased in
microglia of ischemic stroke patients, and increased expression
of NLRP3 inflammasomes component proteins and downstream
products IL-1β and IL-18 was also observed in the mouse
MCAO/R model (Fann et al., 2013). Many studies have revealed
that the mechanism of NLRP3 inflammasome in microglia
involved in the regulation of cerebral ischemic injury may
be related to the NF-κB pathway, mitogen-activated protein
kinase (MAPK) signaling pathway, Hypoxia Inducible Factor-1α
(HIF-1α), reactive oxygen species (ROS) production (Ma et al.,
2014; Fann et al., 2018; Jiang et al., 2020). In oxygen-glucose
deprivation and reoxygenation (OGD/R) and MCAO/R-treated
rat BV2 microglia, Salidroside (Sal) was found to inhibit
microglia NLRP3 inflammasomes activation by suppressing
the TLR4/NF-κB signaling pathway, thereby inhibited I/R-
induced BV2 cells pyroptosis and further neuronal damage
(Liu et al., 2021). A similar phenomenon was observed from
the Meisoindigo-treated MCAO mouse model (Ye et al., 2019;
Liu et al., 2021). These studies suggest that amelioration of
ischemic stroke can be achieved by inhibiting the TLR4/NF-
κB signaling pathway. In a human cell assay, ROS levels
in OGD/R-treated human BV2 microglia were significantly
higher than those in the untreated group, and co-culture with
hypoxia-pretreated olfactory mucosa mesenchymal stem cells
(OM-MSCs) showed reduced ROS levels and less pyroptosis
(Huang et al., 2020). OM-MSCs have immunomodulatory
and reparative functions and replace or repair damaged cells,
and OM-MSCs upregulate the expression and release of
HIF-1α under OGD/R conditions, suppressing the expression
of NLRP3 inflammasome and pyroptosis-related proteins
in co-cultured BV2 microglia and reducing the pyroptosis
of BV2 microglia under OGD/R conditions (Coppin et al.,
2019; Dabrowska et al., 2019; Huang et al., 2020). These
studies suggest that ischemia-induced production of HIF-1α
and ROS play a key role in pyroptosis regulation in BV2
microglia under OGD/R conditions. Another study found
that NLRP3 inflammasomes expression levels were not altered
in a mouse OGD model, and only NLRC4 inflammasome
expression was upregulated and induced BV2 microglia
pyroptosis. Knockdown of NLRC4 by siRNA significantly
reduced pyroptosis in microglia under ischemic conditions
(Poh et al., 2019). The difference in NLRP3 and NLRC4

expression under ischemic stroke conditions remains to
be elucidated.

Multiple Sclerosis
MS is an incurable progressive demyelinating disease of the
CNS characterized by multiple demyelinating plaques in the
white matter, neurodegeneration, and axonal transection or
loss (Kornek and Lassmann, 2003; Dendrou et al., 2015). The
etiology of MS is not yet clear. Previous studies have shown
increased expression of NLRP3 inflammasomes activation and
its downstream products in CNS tissue and peripheral serum
in MS patients compared to non-MS patients, leading to BBB
damage and neurotoxicity (Huang et al., 2004; Burm et al., 2016;
McKenzie et al., 2018). In addition, a study found a large number
of GSDMD-immunopositive cell fragments in the frontal white
matter of cadavers from MS patients, suggesting a potential
link between GSDMD-mediated microglia pyroptosis and MS
(McKenzie et al., 2018). Because MS is a human-specific disease,
it can only be partially simulated in animal models, such as
the animal experimental autoimmune encephalomyelitis (EAE)
model, which has approximately the same neuropathological
features as MS and assist in determining the factors influencing
MS (Ransohoff, 2012; Kipp et al., 2017). It has been found that
the expression level of NLRP3/ASC-caspase/GSDMD pathway
is significantly increased in mouse EAE models, while the use
of Liraglutide significantly downregulates the protein level of
caspase-1 and microglia pyroptosis levels (Song et al., 2022).
Another study showed that in addition to caspase-1, caspase-
3 and caspase-7 also mediated microglia pyroptosis in post-
mortem brain tissue from patients with progressive MS and in
a mouse EAE model. This study found that caspase-1 activates
caspase-3/7 in MS patients and EAE mouse models, and caspase-
3/7 and its substrates, such as PARP, DFF45 and ROCK1,
after cleavage activation, induce GSDMD-mediated microglial
cell pyroptosis by disrupting the cellular protein hydrolysis
network and promoting microglial cell nuclear cohesion glial cell
pyroptosis (McKenzie et al., 2020b).

Major Depressive Disorder
Major depressive disorder (MDD) is a serious neuropsychiatric
disorder that remains a medical management challenge (Malhi
and Mann, 2018). The direct pathogenesis of depression remains
unclear, and some studies now suggest a close relationship
between MDD and neuroinflammation triggered by NLRP3
inflammasomes (Raedler, 2011; Dey and Hankey Giblin, 2018).
In patients with MDD, untreated patients have increased levels
of IL-1β and IL-18 in the circulation and increased expression
of NLRP3 compared to patients treated with the antidepressant
amitriptyline (Raedler, 2011). The expression of NLRP3 was
increased. Elevated IL-1β mRNA and protein levels were also
found in the prefrontal cortex in a chronic mild stress (CMS)-
induced depression model in rats, while no similar phenomenon
was observed in blood (Pan et al., 2014). The same phenomenon
was not observed in blood. In the chronic unpredictable mild
stress (CUMS)-induced depression mouse model, researchers
found significantly elevated levels of IL-1β protein in serum
and hippocampus, but not in NLRP3 knockout mice, probably
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because NLRP3 knockout inhibited MAPK pathway and NF-
κB pathway activation (Su et al., 2017). Many studies have
also revealed other mechanisms involved in the regulation of
MDD by NLRP3 inflammasomes in microglia, which may be
related to dysregulation of miRNA-27a/SYK/NF-κB pathway,
nuclear factor-erythroid 2 -related factor 2 (Nrf2) (Ajami et al.,
2011; Eggen et al., 2013; Arioz et al., 2019; Li et al., 2021a).
In the LPS-induced mouse Depressive-like behavior (DLB)
model, Melatonin pretreatment inhibited Keap-1-mediated Nrf2
proteasomal degradation, suppressed NLRP3 inflammasomes
activation, downregulated GSDMD cleavage, and ultimately
protected N9 microglia from pyroptosis (Arioz et al., 2019).
Similarly, in MDD patients and in LPS or chronic social
defeat stress (CSDS)-induced depression models in mice, the
use of Isoliquiritin upregulated miRNA-27a expression and
downregulated SYK expression, thereby protecting microglia
from pyroptosis and alleviatingMDD symptoms inmice (Li et al.,
2021a). These experiments illustrate that microglia pyroptosis
is closely linked to MDD. Interestingly, in a CMS-induced
mouse depression model, astrocyte NLRP3 inflammasomes and
GSDMD in the hippocampus of mice were found to activate and
induce cell pyroptosis, while microglia did not show significant
pyroptosis (Catanese et al., 2021) (Figure 1).

REGULATION OF MICROGLIA
PYROPTOSIS FOR TREATMENT OF
NEUROLOGICAL DISEASES

Targeting the Regulation of NLRP3
Targeting NLRP-related proteins to regulate microglia pyroptosis
affect the progression of multiple neurological diseases. Targeting
NLRP to inhibit pyroptosis plays a neuroprotective role
in stroke. The human-specific gene CHRFAM7A inhibits
NLRP3 inflammasomes activation and reduces intracellular
levels of NLRP3, a pyroptosis-related protein, thereby reducing
OGD/R-induced neurological damage (Cao et al., 2021). The
triggering receptor expressed on myeloid cells (TREM)-1
antagonist LP17 inhibited microglia pyroptosis and effectively
improved neurological function in subarachnoid hemorrhage
(SAH) patients (Liang et al., 2020b; Xu et al., 2021a). C-C
chemokine receptor 5 (CCR5) activation promotes microglia
pyroptosis and neurological deficits after ICH in mice via
the protein kinase A (PKA)/cAMP response element binding
(CREB)/NLRP1 signaling pathway. Maraviroc inhibition of
CCR5 improves neurological function in ICH patients (Yan et al.,
2021). Dexmedetomidine (Dex) inhibits microglia pyroptosis by
blocking the purinergic 2X7 receptor (P2X7R)/NLRP3 pathway,
thereby providing protection against ischemic brain injury
(Sun et al., 2021). Andrographolide and Curcumin effectively
reduce neurostructural damage and functional impairment
caused by stroke by inhibiting NF-κB signaling and NLRP3
inflammasomes-mediated microglia pyroptosis (Li et al., 2018;
Ran et al., 2021). Salvianolic acids for injection (SAFI) reduced
brain ischemia reperfusion injury (BIRI) by reducing the
shift in microglia phenotype from M1 to M2 and inhibiting
microglia NLRP3 inflammasomes-induced pyroptosis (Ma et al.,

2021). The plasma containing Melatonin has been shown to
reduce BIRI. Melatonin-containing plasma exosomes inhibited
ischemia-induced inflammatory responses and pyroptosis by
modulating the TLR4/NF-κB signaling pathway (Wang et al.,
2020a).

Targeting NLRP3 to inhibit microglia pyroptosis inhibition
alleviates cognitive impairment. NLRP3 inhibitors MCC950
and the ethyl acetate fraction of Bungeanum improve cognitive
function in mice by inhibiting LPS-induced caspase-1 activation
and pyroptosis in microglia (Dempsey et al., 2017; Zhao
et al., 2021). Curcumin treatment significantly improved
diabetes mellitus (DM)/chronic cerebral hypoperfusion
(CCH)-induced cognitive impairment by modulating the
TREM2/TLR4/NF-κB pathway and reducing NLRP3-dependent
pyroptosis (Zheng et al., 2021). Studies have shown that chronic
aluminum exposure is associated with the development of
AD and cognitive impairment (Klotz et al., 2017). Aluminum
exposure causes microglia pyroptosis and neuroinflammation
through the DEAD-box helicase 3 X-linked (DDX3X)/NLRP3
inflammasomes signaling pathway, while Resveratrol alleviates
aluminum exposure-induced neurological damage by activating
sirtuin1 (SIRT1) (Hao et al., 2021). Hypoxic preconditioning
of the Ca2+/calcium/calmodulin-dependent protein kinase
II (CaMKII)/CREB signaling pathway inhibited microglia
pyroptosis and thereby improved Amyloid precursor protein
(APP)/CREB signaling in presenilin-1 (PS1) mice with brain
damage (Song et al., 2021).

A variety of agents effectively inhibit PD progression by
targeting microglia pyroptosis. Baicalein reverses MPTP-induced
neuroinflammation in mice by inhibiting the NLRP3/caspase-
1/GSDMD pathway and has a role in PD treatment (Rui et al.,
2020). Kaemperfol ameliorates behavioral deficits in PD rats
by inhibiting p38MAPK/NF-κB pathway, inhibiting microglia
activation, and downregulating pyroptosis-related proteins (Cai
et al., 2022). In a mouse model of depression, Quercetin (Qu) and
Isoliquiritin treatment inhibited microglia pyroptosis-mediated
neurotoxicity and thus exerted antidepressant effects (Han et al.,
2021; Li et al., 2021a).

Notably, nuclear factor-kappa B (NF-κB) signaling plays
a key role in the formation of NLRP3 inflammasomes in
the study of the whole range of pyroptosis regulation-related
signals (Yuan et al., 2021). Para-aminosalicylic acid (PAS-Na)
antagonizes Mn-induced activation of NLRP3 inflammasomes
in the basal ganglia of rats by inhibiting activation of the NF-
κB pathway and oxidative stress induced by BV2 cell pyroptosis
(Peng et al., 2020). Nrf-2 activates heme oxygenase-1 (HO-1),
and Dimethyl itaconate (DI) are involved in the Nrf-2/ HO-1
pathway inhibit NLRP3 inflammasomes assembly and GSDMD
cleavage and induces cellular autophagy (Yang et al., 2021).
Sulforaphane (SFN) and Dimethyl fumarate (DMF) activate
nuclear factor erythroid 2-related factor 2 (Nrf2) and inhibit
NF-κB, thereby inhibiting NLRP3 inflammasomes formation
and subsequent microglial cell pyroptosis in mice (Tastan
et al., 2021; Tufekci et al., 2021). In palmitic acid-treated BV2
cells, miR-124 inhibited microglia pro-inflammatory responses
by suppressing the TLR4/myeloid differentiation factor 88
(MyD88)/NF-κB signaling pathway (Yang et al., 2022). Microglia
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FIGURE 1 | Pathologies of neurological diseases associated with microglia pyroptosis. In various neurological diseases, NLRP3 inflammasome in microglia can be

activated and then the caspase-1 is activated. Activated caspase-1 on the one hand cleaves GSDMD, which produces N-terminal structural domain and induces cell

membrane perforation and subsequent pyroptosis. On the other hand, activated caspase-1 cleaves IL-1β and IL-18 precursors, rising the extracellular level of IL-1β

and IL-18 and amplify neuroinflammatory responses. In neurodegenerative diseases, various misfolded aggregated proteins are taken up by microglia, leading to

NLRP3 inflammasome activation and microglia pyroptosis. While in ischemia stroke, ischemic necrotic cell debris is taken up by microglia performing immune

clearance functions, leading to microglia NLRP3 inflammasome activation. Microglia NLRP3 inflammasome activation is also present in MDD and MS. All these

diseases lead to NLRP3-dependent microglia pyroptosis and neuroinflammation. Moreover, worsening neuroinflammation promotes the production of multiple

pathological markers of neurological disease and induces microglia pyroptosis, which leads to persistent disease progression.

pyroptosis plays a crucial role in secondary injury of SCI
(Xu et al., 2020). Celastrol inhibits microglia activation and
NF-κB/p-p65 expression in vivo and in vitro, and attenuates
the inflammatory response in SCI induction (Dai et al.,
2019).

Regulation of Caspase and GSDM
Given the important role of caspases and GSDM family-related
proteins in cell pyroptosis, numerous drug trials targeting them
have been initiated. AC-YVAD-CMK, a selective inhibitor
of caspase-1, was found to inhibit microglia pyroptosis
and induce an anti-inflammatory phenotype in microglia,
thereby improving ICH mice (Lin et al., 2018). The caspase-
1 inhibitor VX765 has been found to reduce neurological
damage after TBI by inhibiting pyroptosis and the high-
mobility cassette-1/TLR4/ NF-κB pathway activity, resulting
in a better therapeutic effect on TBI (Sun et al., 2020). Clinical
doses of sevoflurane exacerbated AD progression via the
NLRP3/caspase-1/GSDMD axis. VX-765 significantly inhibited
the activation of microglia pyroptosis-related pathways and

attenuated sevoflurane-induced release of IL-1, IL-18 and
tau-related kinases and phosphatases (Xu et al., 2019b; Tian
et al., 2021a). Paeoniflorin (PF) exerted antidepressant effects by
inhibiting caspase-11-dependent pyroptosis signaling induced
by hyperactivation of hippocampal microglia in ricin-treated
mice, and attenuated neuroinflammatory responses (Tian et al.,
2021b). Under neuroinflammatory conditions, caspase-3/7
activation promotes GSDMD-associated microglia pyroptosis,
and inhibition of GSDMD by siRNA transduction inhibits
microglia pyroptosis, providing a new therapeutic opportunity
for neuroinflammatory diseases such as MS (McKenzie et al.,
2018, 2020b).

Mafenide (MAF) inhibits GSDMD cleavage through
direct binding to the GSDMD-Asp275 site, downregulates
p30-GSDMD expression, and suppresses bone marrow-
derived macrophages (iBMDM) and BV2 microglia
pyroptosis (Han et al., 2020b). In contrast, Sulfa-4 and
Sulfa-22 target GSDMD cleavage, inhibit pyroptosis and
inflammatory factor release, and have a therapeutic effect
on neuroinflammation in AD (Esmaeili-Mahani et al.,
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TABLE 1 | Regulation of microglia pyroptosis by various reagents for treatment of neurological diseases.

Reagent Objectives Significance Mechanism References

OGD/R Cerebral I/R injury patients Attenuated cerebral I/R injury Inhibiting microglia pyroptosis in a

NLRP3/Caspase-1

pathway-dependent manner and

promoting microglia polarization to

M2 phenotype

Eggen et al., 2013

LP17 SAH mouse model Ameliorated microglial pyroptosis Diminishing levels of GSDMD-N and

IL-1β production

Catanese et al., 2021

LP17 MCAO rat model Ameliorated neuronal damage and

alleviates neuro-inflammation

Reducing oxidative stress and

pyroptosis

Cao et al., 2021

MVC Adult male ICH mice Ameliorated neuronal pyroptosis and

neurological deficits

Inhibiting CCR5/PKA/CREB/NLRP1

signaling pathway

Xu et al., 2021a

Dex p-MCAO rat model Inhibited microglia pyroptosis Blocking the

P2X7R/NLRP3/Caspase-1 pathway

Liang et al., 2020b

Andro Adult SBI male rats Inhibited microglia pyroptosis and

reduced neuronal cell death and

degeneration

Inhibiting NF-κB signaling pathway

and suppressing the assembly of

NLRP3 inflammasome

Yan et al., 2021

curcumin MCAO mice model Attenuated microglial pyroptosis Suppressing NF-κB/NLRP3 signaling

pathway

Sun et al., 2021

SAFI MCAO/R rat model and

OGD/R co-cultured primary

neurons and primary

microglia model

Exert neuroprotective effect Reducing neuronal apoptosis,

switching microglial phenotype from

M1 toward M2, and inhibiting NLRP3

inflammasome/ pyroptosis axis in

microglia

Li et al., 2018

Basal plasma exosomes

melatonin

Focal cerebral ischemia rat

model

Decreased neuroinflammation and

microglial pyroptosis

Regulation of the TLR4/NF-κB

signaling pathway

Ran et al., 2021

MCC950 APP/PS1 mouse model Reduced Aβ accumulation and

improved cognitive function

Inhibiting caspase 1, inflammasome

and microglial activation

Ma et al., 2021

Z. bungeanum Aging mice model and

LPS/ATP-induced BV-2

microglial cells

Ameliorated cognitive deficits Ameliorating oxidative stress and

suppressing the NLRP3

inflammasome pathway and

GSDMD-mediated pyroptosis

Wang et al., 2020a

Curcumin DM and CCH rat model Improved DM/CCH-induced cognitive

deficits and attenuated neuronal cell

death

Suppressing neuroinflammation

induced by microglial activation,

regulating the TREM2/TLR4 /NF-κB

pathway, alleviating apoptosis and

reducing NLRP3-dependent

pyroptosis

Dempsey et al., 2017

Rsv AlCl3 mice model Ameliorated neuroinflammation and

cognitive deficits

Activating SIRT1 Zheng et al., 2021

U50488H APP/PS1 mouse model Inhibited microglia pyroptosis and

improved the synaptic plasticity

Inhibiting the Ca 2+/CaMKII/CREB

signaling pathway

Klotz et al., 2017

MPTP PD mice model Reversed MPTP-induced

neuroinflammation

Suppressing

NLRP3/caspase-1/GSDMD pathway

Hao et al., 2021

6-OHDA PD rat model and BV2

inflammatory cells

Inhibited microglia pyroptosis and

neuroinflammatory response

Inhibiting p38MAPK/NF-κB signaling

pathway

Song et al., 2021

Isoliquiritin Depressed patients and

mice

Decreased microglia pyroptosis Inhibiting miRNA-27a/SYK/NF-κB

signaling pathway

Deng et al., 2022

Qu Depression and PD mouse

models

Ameliorated neuronal injury Inhibiting mtROS-mediated NLRP3

inflammasome activation

Rui et al., 2020

Mn BV2 microglial cell line and

male rats

Inhibited NLRP3 inflammasome

dependent pyroptosis

Inhibiting NF-κB pathway activation

and oxidative stress

Han et al., 2021

DI BV2 microglial cells line Inhibited microglia pyroptosis Regulating Nrf-2/HO-1 pathway Yuan et al., 2021

SFN Murine microglial cells Suppressing NLRP3 inflammasome

and microglia pyroptosis

Inhibiting NF-κB nuclear translocation

and Nrf2 mediated miRNAs

expression modulation

Peng et al., 2020

DMF N9 microglial cells Inhibiting pyroptotic cell death Decreasing miR-146a and miR-155

and regulating Nrf-2/HO-1 pathway

Yang et al., 2021

(Continued)
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TABLE 1 | Continued

Reagent Objectives Significance Mechanism References

Palmitic acid BV2 cells Preventing microglial proinflammatory

response

Downregulating TLR4/MyD88/NF-κB

p65 signaling

Tufekci et al., 2021

- SCI BV2 cells Enhancing microglial pyroptosis Activating PI3K/AKT pathway and

promoting the expression of

lncRNA-F630028O10Rik

Tastan et al., 2021

Celastrol SCI rat model Attenuated inflammatory response Inhibiting the expression of

NF-κB/p-p65

Yang et al., 2022

AC-YVAD-CMK ICH mice model Inhibited pyroptosis Reducing caspase-1 activation and

inhibiting IL-1 β production and

maturation

Xu et al., 2020

VX765 CCI mouse model Inhibited pyroptosis and inflammatory

mediator expression

Inhibiting caspase-1 activation and

HMGB1/TLR4/NF-kappa B pathway

Dai et al., 2019

VX765 Septic mice model Reversed cognitive dysfunction Inhibiting caspase-1 Lin et al., 2018

Sevoflurane APP/PS1 mice model Aggravated the progression of AD Activating

NLRP3/caspase-1/GSDMD axis

Sun et al., 2020

PF Depression mouse model Alleviated neuroinflammation and

exerted antidepressant effects

Inhibiting the enhanced expression of

GSDMD and pyroptosis signaling

transduction including caspase−1,

NLRP3, and IL-1β

Xu et al., 2019b

VX-765 MS animal model, EAE Reduced pyroptosis Inhibiting the expression of caspase-1 Wang et al., 2020c

MAF Mouse BV2 microglia Inhibited GSDMD cleavage and

reduced the levels of inflammatory

factors

Directly binding to the

GSDMD-Asp275 site

Tian et al., 2021a

LPS and nigericin APP/PS1 double transgenic

mouse model

Improved the memory ability and

behavior

Inhibiting the release of inflammatory

cytokines

Han et al., 2020b

CD73 C57BL/6J CD73 deficient

mice and wild-type mice

Decreased microglia pyroptosis Suppressing the activation of NLRP3

inflammasome complexes

Xu et al., 2021b

OGD/R, oxygen-glucose deprivation/reoxygenation; I/R, ischemia-reperfusion; SAH, subarachnoid hemorrhage; TREM-1, triggering receptor expressed on myeloid cells 1; GSDMD-N,

N-terminal fragment of GSDMD; IL, interleukin; MCAO, middle cerebral artery occlusion; MVC, maraviroc; ICH, intracerebral hemorrhage; CCR5, C-C chemokine receptor 5; PKA, protein

kinase A, CREB, cAMP response element binding; NLRP1, nucleotide-binding domain leucine-rich repeat pyrin domain containing 1; Dex, Dexmedetomidine; p-MCAO, permanent

MCAO; P2X7R, purinergic 2X7 receptor; Andro, Andrographolide; SBI, secondary brain injury; TLR4, toll-like receptor 4; NF-κB, nuclear transcription factor-κB; SAFI, Salvianolic Acids

for Injection; MCAO/R, MCAO/reperfusion; APP, amyloid precursor protein; PS1, presenilin 1; Rsv, Resveratrol; AlCl3, aluminum chloride; SIRT1, sirtuin 1; KOR, κ opioid receptor; CaMKII,

calcium/calmodulin dependent protein kinase II; CREB, cyclic adenosine monophosphate response element binding protein; MPTP, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; PD,

Parkinson’s disease; KAE, kaemperfol; 6-OHDA, 6-hydroxydopamine; Qu, Quercetin; Mn, manganese; PAS-Na, sodium para-aminosalicylic acid; DI, dimethyl itaconate; Nrf 2, nuclear

factor erythroid 2 related factor 2; HO 1, heme oxygenase 1; SFN, sulforaphane; DMF, dimethyl fumarate; SCI, spinal cord injury; lncRNAs, long non-coding RNAs; CCI, controlled

cortical impact; HMGB1, high-mobility cassette-1; AD, azheimer’s disease; PF, paeoniflorin; MAF, mafenide; EAE, experimental autoimmune encephalomyelitis.

2021). MiRNA-22 was negatively correlated with the
expression of inflammatory factors in AD patients (Han
et al., 2020a). Adipose-derived mesenchymal stem cells miRNA-
22 loaded exosomes (Exo-miRNA-22) inhibited microglia
pyroptosis and decreased inflammatory factor release by
targeting GSDMD, and improved neurological function in
AD mice (Zhai et al., 2021). GSDMD-mediated microglia
pyroptosis is involved in kainic acid-induced seizures, and
DMF, as an inhibitor of GSDMD N-terminal fragments

(GSDMD-N), significantly reduce microglia pyroptosis
and the expression of inflammatory factors such as IL-

1 and IL-18, and play a certain role in the treatment of

epilepsy (Xia et al., 2021). In SCI, the immunosuppressive
molecule CD73 attenuates GSDMD-mediated microglia
pyroptosis by promoting the phosphatidylinositol 3-kinase
(PI3K)/AKT/Foxo1 signaling pathway (Xu et al., 2021b). Table 1
graphically covers the mechanisms in which the various drugs
mentioned above modulate neurological disorders by targeting
microglia pyroptosis.

SUMMARY AND FUTURE PROSPECT

Microglia pyroptosis is now a common cause of secondary
neuronal injury. However, direct studies on microglia pyroptosis
are still lacking. And there are still many questions related to
pyroptosis that remain to be addressed. For example, it is true
that some bacteria are thought to have evolved mechanisms to
resist pyroptosis and thus evade immunity, such as Shigella.
However, it is still widely believed that pathogen-associated
PAMP and DAMP activate the pyroptosis pathway by activating
GSDMD-associated proteins in the downstream pathway. The
pyroptosis pathway has been more extensively studied and
more activation pathways have been identified. In addition to
the classical caspase-1-mediated pyroptosis pathway, the LPS-
mediated caspase-4/5/11 non-classical pyroptosis pathway, and
pyroptosis via apoptotic transformation.

Currently, inhibition of microglia pyroptosis has been
affirmed in various neurological disease models for its associated
therapeutic effects. Dexmedetomidine, Andrographolide,
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Curcumin and Salvianolic acids for injection have shown their
relevant therapeutic effects by targeting NLRP3, caspases and
GSDMs. This provides new ideas for immunomodulatory
therapy of the CNS. However, there are still some questions
about the place of NLRP3 in pyroptosis in specific neurological
diseases. For example, in a mouse model of OGD studying
ischemic stroke, elevated NLRC4 is thought to contribute to
microglia pyroptosis without a significant association with
NLRP3. Significantly elevated levels of NLRP3 expression in
other cells of the striatum of HD mice, but no significant NLRP3
activation was found in microglia. In a CMS-induced depression
model in mice, astrocytes in the hippocampus showed cellular
pyroptosis, while microglia did not show significant pyroptosis.
In contrast, in PD, microglia pyroptosis may be related to
α-synuclein concentration. Therefore, the initiation mechanism

of microglia pyroptosis in different diseases and its differences in
spatial and temporal aspects need to be more elucidated.
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