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Abstract: Maize is one of the most widely grown cereals in the world. However, to address the
challenges in maize breeding arising from climatic anomalies, there is a need for developing novel
strategies to harness the power of multi-omics technologies. In this regard, pleiotropy is an important
genetic phenomenon that can be utilized to simultaneously enhance multiple agronomic phenotypes
in maize. In addition to pleiotropy, another aspect is the consideration of the regulatory SNPs (rSNPs)
that are likely to have causal effects in phenotypic development. By incorporating both aspects in our
study, we performed a systematic analysis based on multi-omics data to reveal the novel pleiotropic
signatures of rSNPs in a global maize population. For this purpose, we first applied Random
Forests and then Markov clustering algorithms to decipher the pleiotropic signatures of rSNPs,
based on which hierarchical network models are constructed to elucidate the complex interplay
among transcription factors, rSNPs, and phenotypes. The results obtained in our study could help to
understand the genetic programs orchestrating multiple phenotypes and thus could provide novel
breeding targets for the simultaneous improvement of several agronomic traits.

Keywords: multi-omics; regulatory SNPs; incremental feature selection; random forest; markov
clustering; hierarchical network model; gene expression profiles

1. Introduction

Maize is an exceptional source of food, feed and fuel. It has become one of the most
important cereal crops that feed the world by contributing 30% of the food calories for
4.5 billion people [1]. Over the past decade, maize production has increased remarkably by
more than 1.16 million tons (FAOSTAT), but there is still a need for further yield increases
to offset the food insecurity caused by the exponential increase in the world’s population.
However, the dramatic fluctuations in global mean temperatures observed over the past
decades pose a serious threat to sustainable crop production and demand better strategies
of crop improvement.

To deal with above-mentioned issues, several biochemical, physiological and mor-
phological traits of maize (such as grain yield and biomass) have been of individual
importance in breeding research [2–13]. For this purpose, several association studies have
been conducted for marker-assisted selection of superior genotypes by applying conven-
tional genome-wide association studies (GWAS), which could provide essential information
about the genetic architecture of genotype × phenotype interactions [14]. Despite the rich
literature on GWAS and their application in plant breeding, they are still criticized for
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high false positive rates [15–17], requirement of large sample sizes for the detection of
rare alleles [18] and missing heritability [19]. In order to overcome these limitations to
certain extents, machine learning (ML) approaches, like Random Forests (RFs) or convo-
lutional neural networks (CNNs), have been successfully applied to large genomic data
sets, which employ non-parametric methods to decipher genotype × phenotype interac-
tions [17,20–26]. Especially, recent studies [16,17,27,28] have demonstrated the utility of RF
based-models for the analysis of a large number of loci and the identification of promising
SNP candidates having strong associations with phenotypes. For example, Klees et al. [20]
recently applied the RF approach to identify associations between the rapeseed oil content
and regulatory SNPs (rSNPS), which are located in the promoter regions of genes and
have a strong impact on the binding sites of transcription factors (TFs), thus affecting the
development of phenotypes.

Another fundamental aspect of single-SNP-based studies (including rSNPs) is their
utility to detect associations between a SNP and multiple phenotypes. Such type of associa-
tions of a single-SNP or a gene is referred to as pleiotropy [29–31], which, by definition, is a
phenomenon of having a single genetic variant responsible for multiple phenotypes. Given
the importance of pleiotropy, the aspect of investigating rSNPs could be quintessential
for understanding the influence of variation in quantitative traits and their improvement
against biotic and abiotic stresses. However, a limited number of studies have reported
pleiotropic effects in maize [32–40]. The lack of such type of studies in maize can be com-
pensated using modern multi-omics technologies, which have enabled the researchers
to rapidly sequence large breeding populations and measure several phenotypes [41],
facilitating pleiotropic studies. In particular, transcriptomics, proteomics, genomics, and
phenomics are increasingly being used in plant sciences to gain a comprehensive under-
standing of complex genetic traits [20,42].

Recently, Liu et al. [43] generated a comprehensive multi-omics dataset of global
maize germplasm, comprising genomic, transcriptomic and multiple phenotypic data of
368 maize inbred lines representing stiff-stock, non-stiff-stock, tropical, semi-tropical and
mixed backgrounds [44] to identify genome-wide associations between individual SNPs
and phenotypes [45–49].

Leveraging these multi-omics data, the main objectives of our study are to identify
pleiotropic signatures of rSNPs in a systematic analysis and to construct hierarchical
network models that could lead to new hypotheses to determine the crucial role of TFs
controlling the development of different phenotypes in maize breeding research. Our
analysis pipeline primarily consists of four distinct phases. In the first phase, rSNPs
are identified, while in the second phase, the RF algorithm is used to identify relative
importance of individual rSNP in phenotype associations [17,20]. Based on these association
results, we identify pleiotropic rSNPs in the third phase using the Markov clustering
algorithm [50], which is followed by the construction of hierarchical network models in
the fourth phase that elucidate the complex interplay among TFs, rSNPs, and multiple
phenotypes. Our findings demonstrate that systematic analysis of multi-omics data of
global maize populations: (i) enables the identification of pleiotropic signatures of rSNPs
along with their consequences on TF binding sites and; (ii) provides new insights into the
genetic architecture and new breeding targets for the corresponding multiple phenotypes
in maize.

2. Materials and Methods

In this section, we describe the multi-omics dataset analyzed and the methods applied
in this study. Our analysis framework is structured as shown in the Figure 1. In particular,
we start with the preprocessing of multi-omics data of 368 maize inbred lines and their
systematic analysis towards the identification of pleiotropic signatures of rSNPs. For this
purpose, we first identified the rSNPs from the genotype dataset by applying the MATCH™
algorithm [51] together with a non-redundant plant position weight matrix (PWM) library
obtained from the TRANSFAC database [52]. Second, the Random forest algorithm [53]
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was applied together with its specific feature selection wrapper, the Boruta algorithm [54],
to assess the relative importance of each rSNP in terms of its involvement in the characteri-
zation of 20 agronomic phenotypes under study. This step was followed by the incremental
feature selection (IFS) procedure [55,56] to find the optimal list of associated rSNPs for
each phenotype. Next, using the Markov clustering algorithm (MCL) algorithm [50] the
pleiotropic relationship signatures of rSNPs were uncovered, as suggested in [57]. Finally,
we constructed hierarchical network models to elucidate the complex interplay among TFs,
rSNPs, and multiple phenotypes by incorporating the corresponding transcriptome dataset
to evaluate the importance of pleiotropic rSNPs. Detailed information on these analysis
steps are given in Section 2.2 from Phase 1 to 4.

Figure 1. Overview of the analyses pipeline highlighting key machine learning algorithms for the
identification of pleiotropic signatures of regulatory SNPs (rSNPs) to establish complex interplay of
transcription factors (TFs), rSNPs and multiple phenotypes. The genotypic data (A1), consisting of
1.03 m SNP markers was filtered for MAF (<0.05) and 31,000 SNPs found within promoter regions of
37,407 maize genes were considered for association analysis with 20 quantitative agronomic traits (A2).
RNA-seq (A3) dataset was utilized for the validation of pleiotropic rSNPs on the underlying gene
expression. As of first step in the data analysis, rSNPs were identified (B) for their impact on the
gain or loss of TFBSs, after which their association with multiple phenotypes was determined using
random forest (RF) using the Boruta algorithm and incremental feature selection (IFS) technique
(C). Pleiotropic signatures of rSNPs were then established by pruning weaker connections in the
overall network into smaller non-overlapping fully connected clusters, using Markov clustering
(MCL) algorithm (D) which provided the basis for the construction of hierarchical network models
with three distinct layers modelling the complex interplay of TFs, rSNPs and multiple phenotype (B).
Further, the boxplots show the impact of pleiotropic rSNPs at gene expression level as a function of
gain or loss of TFBSs (E).
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2.1. Multi-Omics Data
2.1.1. Genotype Dataset

The genotypic data of 368 inbred lines was obtained from: (i) CIMMYT; (ii) the Germplasm
Enhancement of Maize (GEM) project in the USA; (iii) temperate and tropical/subtropical
breeding programs in China. The inbred lines represent non-stiff stock, stiff stock, mixed, tropi-
cal and semi-tropical backgrounds. The genotyping has been performed using the MaizeSNP50
BeadChip with 56,110 SNP markers [58] which was further incremented to 1.03 million SNP
markers using deep RNA-Seq data [43]. Similar to previous studies [47,59], SNPs with an MAF
<0.05 are discarded, and genomic coordinates for SNP markers are lifted over from reference
genome V2 to V5 using CrossMap [60]. Consequently, after filtering, the genotype dataset
comprises 31,934 SNPs for 368 maize lines which are located on the chromosomes 1 to 10
including 37,407 genes.

2.1.2. Phenotype Dataset

The corresponding phenotypic data of the maize lines was collected in 2009 and
2010 in five different environments in China. The experimental units were completely
randomized with a row length of 3 m, 11 plants per row, 25 cm spacing between plants, and
60 cm spacing between rows. The mean observed value of five randomly selected plants
for 20 agronomic (quantitative) traits was taken, which additionally were converted into
the best linear unbiased predictions (BLUPs) [40,48,49].

2.1.3. Transcriptome Dataset

Paired-end deep RNA-seq data for the 368 inbred lines, generated by Liu et al. [43],
was retrieved from the European Nucleotide Archive (ENA) browser (study accession:
PRJNA208608). Raw sequencing data were adapter and quality trimmed using Trim
Galore [61]. High-quality reads were then mapped to the Zea mays L. reference genome, V5
(available at https://download.maizegdb.org/Zm-B73-REFERENCE-NAM-5.0/Zm-B73-
REFERENCE-NAM-5.0.fa.gz) (accessed on 16 April 2021), using STAR (v2.7.3a) [62]. Raw
read counts for each transcript were obtained using HTSeq [63] and normalized using the
median-of-ratios normalization method implemented in the R package DESeq2 [64].

2.2. Data Analysis

Our analysis framework consists of four phases to decipher the complex interplay
among transcription factors (TFs), regulatory SNPs (rSNPs) and multiple phenotypes using
the multi-omics dataset under study.

Phase 1: We identified rSNPs from the genotype dataset by applying our analysis
pipeline introduced in [14], which consists of the following steps. First, considering the
promoter region of genes (−500 bp to +100 bp relative to the transcription start site), all
SNPs in these regions were selected. Second, we extracted the flanking sequence of each
selected SNP, which covers ±25 bp relative to the SNP position. In total, each sequence
is 51 bp long and the SNP is located in the central position. Then, two copies of the
extracted sequences were constructed: while the first copy contains the reference allele at
the SNP position, the second has the alternate allele. Next, by employing the MATCH™
program [51], we scanned each sequence to predict binding sites of transcription factors
with their affinity scores ∈ [0, 1]. For the application of the MATCH™ program, we used a
non-redundant plant position weight matrix (PWM) library obtained from the TRANSFAC
database [52]. Finally, mainly focusing on the alterations of transcription factor binding
sites (TFBSs) in the sequences of each SNP, we collected its potential consequence as:
(i) ”Loss of TFBS”: only the sequence with the reference allele contains the TFBS of a
specific transcription factor (TF), but the same TFBS is not found in the sequence with
alternate allele; and (ii) “Gain of TFBS”: the TFBS can be found only in the sequence with
the alternate allele; and (iii) “No Strong Effect”: indicating that the SNP consequence has
either no effect or entails a slight change in binding affinity of TFs. As suggested in the

https://download.maizegdb.org/Zm-B73-REFERENCE-NAM-5.0/Zm-B73-REFERENCE-NAM-5.0.fa.gz
https://download.maizegdb.org/Zm-B73-REFERENCE-NAM-5.0/Zm-B73-REFERENCE-NAM-5.0.fa.gz


Int. J. Mol. Sci. 2022, 23, 5121 5 of 15

previous studies [14,20,65], we consider in our following analysis a SNP as an rSNP if it
leads to a “Gain of TFBS” or a “Loss of TFBS” for at least one TF.

Phase 2: Following the association analysis strategy described in [16,17,20], we used
a Random Forest (RF)-based feature selection approach to assess the relative importance
of each rSNP in predicting the response variable (phenotype) of interest. To this end,
we applied the Boruta algorithm [54], a powerful wrapper designed specifically for the
RF-based feature selection technique, to rank the importance of variables (in this case
rSNPs). Consequently, by constructing multiple decision trees based on random subsets
of features, the Boruta algorithm calculates an importance score for each rSNP and thus
provides a ranking.

Using the ranked rSNPs determined by the Boruta algorithm, we further performed
the incremental feature selection (IFS) procedure to retrieve the optimal list of features
as suggested in [55,56]. During the IFS application, the rSNPs were incrementally added
from higher to lower ranks in the ordered feature set, based on which an RF classifier was
constructed. The predictive performance of RF was examined based on the R2 values. This
enabled us to determine the optimal numbers of associated rSNPs for a certain phenotype
of interest (see Figure 2).

Figure 2. A plot to show the change of R2−values versus the number of rSNPs in association with
the phenotype pollen shed. The incremental feature selection (IFS) curves were drawn using the
ranking of rSNPs. The R2− value reached a peak when considering the first 90 rSNPs. These rSNPs
were used for the further analysis of this phenotype.

These analyses were repeated for each of the 20 phenotypes to identify the optimal
numbers of the associated rSNPs, that are are given in Table 1.

Phase 3: To reveal the unique pleiotropic relationship signatures of rSNPs and thus
decipher their complex interplay with TFs and with multiple phenotypes, we applied the
Markov clustering algorithm (MCL). MCL is a very effective network-based clustering
algorithm that detects distinct groups in a network by eliminating negligible connections
(edges) based on their weights [50].
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Table 1. Phenotypes and the optimal numbers of their associated rSNPs determined by incremental
feature selection (IFS) procedure.

Phenotype Max R2 #rSNPs

Leaf number above ear 0.490740 89

Ear leaf width 0.484029 70

Cob diameter 0.445720 64

Ear height 0.509523 109

Kernel width 0.418115 172

Ear leaf length 0.553292 112

Tassel main axis length 0.498562 96

Pollen shed 0.581765 90

Heading date 0.537987 49

Ear length 0.434011 82

Silking time 0.506520 122

Ear diameter 0.481445 110

Cob weight 0.460850 37

X100 grain weight 0.389332 51

Tassel branch number 0.507112 142

Ear row number 0.491663 46

Kernel number per row 0.350717 27

Plant height 0.532837 72

kernel length 0.580691 168

Kernel thickness 0.437589 64

For the detection of pleiotropic relationships, Weighill et al. [57] have successfully ap-
plied the MCL algorithm by constructing a profile matrix which represents the SNP × phe-
notype associations. Following this idea and thus the main concept of MCL, we first created
such a profile matrixM, where rows correspond to rSNPs determined by the IFS procedure
and columns refer to names of both the phenotypes and TFs. The entry ofM at position
(i, j) ,Mij is defined as:

Mij =


1 if rSNPi is associated with phenotype j
1 if the consequence of rSNPi is “Gain” or “Loss” for TF j
0 otherwise

M was then converted into an rSNP association matrix, An×n (n is the number of
rSNPs (rows) in M), using the Proportional Similarity Index [66]. The entry of A at a
position (k, l) is calculated between the rSNPs (rows) k and l inM as:

Akl = 2 ·
∑j min(Mkj, Ml j)

∑j(Mkj +Ml j)

Next, we employed MCL [50] using the matrix A to cluster rSNPs in subgroups based
on their similar relationship signatures. Consequently, each of the resulting clusters reflects
a collection of rSNPs and their complex interplay with TFs and phenotypes, based on which
we designed a hierarchical network model using three layers. These layers are: (i) TFs
whose binding site is lost or gained due to the rSNPs; (ii) rSNPs located in the promoter of
the genes; and (iii) phenotypes whose development is strongly connected to the expression
level of the corresponding genes. In a final step, we carefully removed the rSNPs from the
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hierarchical network models if they were associated with only one phenotype for ensuring
the pleiotropy in the clusters [57].

Phase 4: For the assessment of the consequences of pleiotropic rSNPs on TF-binding
activities, which in turn affect the regulation of gene expression and thus the development
of the phenotype, we evaluated their potential effects using the corresponding RNA-
seq data. For this purpose, we focused only on genes with pleiotropic rSNPs in their
promoters. By considering these genes, we divided the 368 maize lines into two groups for
each pleiotropic rSNP: While the plants in the first group have the reference allele at the
corresponding genomic position, the plants in the second group contain an alternate allele
of the rSNP under study. As a result, we compared the gene expression values between
those two groups using the Wilcoxon test in order to determine whether the consequence of
a pleiotropic rSNP on a certain TF-binding activity (“Gain” or “Loss”) leads to a significant
alteration in the expression of the corresponding gene.

In our following analysis, we further pruned the hierarchical network models by
removing the rSNPs and corresponding TFs whose binding activities do not result in a
significant change in the related gene expression values.

3. Results and Discussion

In this study, we systematically analyzed a multi-omics dataset of 368 maize inbred lines
to decipher the complex interplay among TFs, rSNPs and multiple phenotypes. For this
purpose, we first identified the rSNPs from genotype dataset and then applied the Boruta
algorithm followed by IFS procedure to determine the rSNPs having a strong association
with the phenotypes of interest. The number of associated rSNPs along with corresponding
phenotypes is given in Table 1 and Figure 3. Next, considering the multi-phenotypic associations
of the rSNPs as well as their consequences on TF binding, we employed the MCL algorithm
to cluster the rSNPs, which is additionally used to construct hierarchical network models to
elucidate the relationship signatures between TFs and rSNPs together with those between rSNPs
and multiple phenotypes, indicating their pleiotropic functions.

Figure 3. Number of associated rSNPs determined by the incremental feature selection (IFS) pro-
cedure for each phenotype and their overlap represented in matrix layouts using the UpSet tech-
nique [67]. Black circles in the matrix layout are related to the phenotypes that are part of the
intersection. For the sake of clarity, not all intersections are displayed.
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3.1. Pleiotropic Association Signatures of rSNPs

The application of the MCL algorithm to the rSNPs determined by the IFS procedure
(Table 1) results in eleven clusters that reveal the unique pleiotropic relationship signatures
of rSNPs arising from their complex interplay with TFs and multiple associated phenotypes.
A brief description of the clusters is given in Table 2 and additional information about
rSNPs and genes are provided for each cluster in Supplementary File S1.

Table 2. Result of Markov clustering algorithm (MCL) including the numbers of rSNPs together with
their related genes and their associated multiple phenotypes.

Cluster Numbers of Pleiotropic Phenotypes
rSNPs Genes

Cluster-1 15 10 Heading date, Pollen shed, Silking time and Ear height

Cluster-2 9 7 Cob weight, Heading date, Pollen shed, Tassel main axis length, Ear leaf
length, Plant height, Ear leaf width, Ear row number and Ear height

Cluster-3 7 6 Kernel length, Kernel thickness, Kernel number per row, Ear diameter and
X100 grain weight

Cluster-4 6 5 Ear diameter, Cob diameter and Ear row number

Cluster-5 6 4 Heading date, Pollen shed, Silking time, Ear height and Tassel branch num-
ber

Cluster-6 5 3 Ear diameter, Cob diameter and Ear row number

Cluster-7 3 3 Ear height, Plant height and Ear row number

Cluster-8 3 3 Kernel width, Kernel length, Kernel thickness and X100 grain weight

Cluster-9 2 2 Ear leaf length, Leaf number above ear, Kernel length

Cluster-10 2 2 Ear length and Kernel number per row

Cluster-11 2 2 Ear diameter, Tassel main axis length and Cob weight

As shown in Table 2, the individual clusters are quite different regarding the numbers of
pleiotropic rSNPs as well as their related phenotypes. The largest cluster contains ten genes
(Zm00001eb354560, Zm00001eb403000, Zm00001eb328980, Zm00001eb137870, Zm00001eb366710,
Zm00001eb190550, Zm00001eb364380, Zm00001eb156700, Zm00001eb337030, Zm00001eb397560)
each associated with four phenotypes. Among these genes, Zm00001eb137870, which encodes
the VIN3-like protein 1, is associated with heading date, silking time and pollen shed. Its homo-
logue in arabdopsis, AT3G24440, is known as the Vernalization Insensitive 3-like 1 (VIL1) gene
that regulates expression of the Flowering Locus C (FLC:floral repressors) and the Flowering
Locus M (FLM) in response to vernalization. VIL1 and VIN3 (Vernalization Insensitive 3) are es-
sential for epigenetic modification of the FLC and FLM loci [68,69]. The VIL1 gene acts upstream
of many biological processes including administration and regulation of histone methylation,
vernalization response and regulation of flower development. Additionally, it is a negative
regulator of gene expression, which is achieved by its role in the positive regulation of histone
H3-K27 methylation [70]. VIL1 is also involved in photoperiodism, flowering, vernalization
response and response to cold [71]. Other genes in this cluster are known for their involve-
ment in protein metabolism (Zm00001eb354560, Zm00001eb403000, Zm00001eb364380) and fat
metabolism (Zm00001eb328980), however, the functionality of the remaining genes in this cluster
is currently not known.

Another interesting instance of pleiotropy in action can be seen in Cluster-2, where
most of the phenotypes are clustered together, representing a highly complex and coordi-
nated developmental program of the disparate phenotypes in this cluster. The cluster con-
tains genes belonging to protein metabolism (Zm00001eb131510, Zm00001eb288200), carbo-
hydrate and fat metabolism (Zm00001eb372200, Zm00001eb418690), along with flowering
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time genes (Zm00001eb188340, Zm00001eb418690). Among these genes, Zm00001eb131510
encodes an intracellular protein transporter and is associated with ear leaf length and
cob weight. This protein transporter is known for its role in exocytosis, golgi to plasma
membrane transport and intracellular protein transport [70]. Its arabidopsis homologue,
AT4G02350, is vital for pollen tube growth, pollen germination and acceptance in ara-
bidopsis [72]. Such a gene may play an important role in the source-sink relationship
between the developing maize kernels and the flag leaf for translocation of proteins. The
arabidopsis homologue, AT1G66430, of the oil content related gene, Zm00001eb372200
is associated with ear row number and ear leaf height in this cluster and is also known
for its role in carbohydrate biosynthetic, fatty acid biosynthetic, and fructose metabolic
processes [73]. Several genes in this cluster indicates the co-regulation of floral transition
and seed development in maize.

A closer look at Cluster-4 reveals that it contains six pleiotropic rSNPs found within
five genes (Zm00001eb068110, Zm00001eb140090, Zm00001eb424640, Zm00001eb049750,
Zm00001eb057150), associated with only ear traits (ear diameter, cob diameter and ear row
number). The genes in this cluster are involved in riboflavin (Zm00001eb068110) [74] and
the fatty acid metabolism (Zm00001eb049750) [47], protein relocalization to mitochondrion
(Zm00001eb140090) [75] as well as acy carrier activity (Zm00001eb049750) [76]. The gene
Zm00001eb049750 encoding the acyl carrier protein is known for its association with
maize kernel oil contents [47], while the fax1 (AT3G57280) mutants, a homologue of
Zm00001eb424640, are characterized by a decrease in biomass, plant height, stem thickness,
reduced male sterility and defective pollen cell wall biosynthesis [77].

Among the smallest clusters are the Clusters 9-11, containing two pleiotropic rSNPs
and two corresponding genes each. Additionally there are within the Cluster-10 another
two kernel and ear development genes (Zm00001eb213840, Zm00001eb349520). The ara-
bidopsis homologue (AT4G07960.1) of Zm00001eb213840 is known to encode XyG glucan
synthase. Arabidopsis mutants of this gene have smaller rosettes and inflorescence stems,
weak inflorescence stems and a reduced number of pollen tubes after pollination [78].
Moreover, the product of Zm00001eb349520 is known as a aspartic acid proteinase inhibitor.
Today it is well known that high levels of aspartic acids are observed in maize cobs during
early reproductive development [79]. Aspartic acids accumulate in kernels as N-assimilates,
suggesting its role in kernel growth.

3.2. Construction of Hierarchical Network Models

To further elaborate the complex interplay between pleiotropic rSNPs and TFs by
assessing their potential impact on the expression level of the respective genes, we con-
structed a hierarchical network model for each cluster found by the MCL algorithm. These
network models help explain the potential biological functions of TFs in regulating gene
expression and, hence, assess the importance of individual pleiotropic rSNPs. They also
provide with new hypotheses to advance our knowledge of why the consideration of
the TFs could play a crucial role in maize breeding research to understand the genetic
mechanisms underlying the development of different phenotypes. An example of our
hierarchical network model is presented in Figure 4, showing the complex regulatory
circuitry of Cluster-7 phenotypes. The phenotype set in this cluster represented by layer 3
(Figure 4D) comprises ear height, plant height and ear row number, whereas the layer 2
lists three associated rSNPs, three corresponding genes and their pleiotropic associations.
Finally, in the first layer the TFs and the change in their binding activity is highlighted,
showing loss of binding for ten TFs (in red) and gain of six (in green) TFs. In this cluster, a
pleiotropic rSNP in Zm00001eb047590 (opf6 gene) results in the loss of a TFBS for GAMYB
but in the gain for a GT1 binding site. The transcription factor GAMYB in arabidopsis
is known for its role in Gibberelic acid (GA) signalling regarding floral transition [80,81],
whereas the factor GT1 is vital to the regulation of stress tolerance in rice as well as response
to light [82,83]. GT1 binds upstream of the light-responsive, rbcS-3A (RUBISCO) gene in
peas, hence plays a crucial role in the regulation of photosynthesis [84]. The functional
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analysis of GT1 in arabidopsis shows its regulation in the target promoters that may have
a repressive function in transcription activity [85]. Our findings indicate that the replace-
ment of GAMYB with GT1 at the opf6 promoter (a transcription repressor gene) results
in its significantly higher levels of gene expression (Figure 4A). This variation in gene
expression may have an impact on the regulation of the GA pathway. For their role in
flower development and flowering time [86], GA dynamic of the cells may contribute to
the development of associated phenotypes (plant height, ear height and ear row number).
Another pleiotropic rSNP in the bzip41 (Zm00001eb060810) promoter in this cluster results
in loss of TFBSs for several SQUAMOSA-promoter binding protein-like TFs (SPL family
TFs), whereas a TFBS is gained for C1 TF, resulting in significant change in gene expression
(Figure 4B). C1 is known for regulating pigmentation in the aleurone layer of the maize
kernels [87], whereas ERF112 is a potential negative regulator of the JA-responsive gene
expression [88]. SPL proteins are a plant specific family of TFs and are known as potential
candidates for the genetic improvement of agronomic traits due to their role in the physi-
ological and reproductive development of plants [89]. For example, SPL4 is required for
developmental transition and plays an important role in the determination of flowering
time [90,91], whereas SPL12 is known to be expressed during plant development [92] and
is responsive to abscisic acid biosynthesis in heat stress [93]. The association of this rSNP
and recruitment of respective TFs is in line with the development of associated phenotypes.
The pleiotropic rSNP (chr5:76811467) results in the loss of TFBSs for several ethylene re-
sponsive transcription factors (ERFs), which significantly increases the gene expression
(Figure 4C). ERF TFs in this cluster mainly act as inhibitor of transcription [88,94], hence
loss of their TFBS is translated as higher promoter activity on this gene, which may further
contribute to the development of the associated phenotypes. Our results also show the
importance of hierarchical network models in explaining the impact of pleiotropic rSNP
on the expression of corresponding genes, which may directly influence all the associated
phenotypes. TF−rSNPs(gene)−Phenotype network models for all other clusters are given
in the Supplementary File S2.

Figure 4. Hierarchical network model constructed using Cluster-7 to elucidate the complex interplay
among TFs−rSNPs(genes)−Phenotypes. (A–C) show the significant changes in the gene expression
values resulting from the consequences of pleiotropic rSNPs. (D) Hierarchical network model with
three layers.
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4. Conclusions

Pleiotropy and rSNPs are the two main concepts in the field of genetics by providing
novel targets for the acceleration of plant breeding strategies. Therefore we considered in
this study both of these concepts together and established hierarchical network models
for elucidating the complex interplay among TFs−rSNPs−Phenotypes using multi-omics
data. Our results show that most of the identified TFs and genes play essential roles for
the development of multiple phenotypes. Our findings further suggest common genetic
mechanisms underlying several interrelated phenotypes found in Clusters-1 or -8 as well
as disparate phenotypes, like plant height and kernel traits, found as in Clusters-2 or -5.
To the best of our knowledge, by mainly focusing on the important role of rSNPs and
their consequences on TFs, this is the first study which provides the pleiotropic relations
of several agronomically important phenotypes of maize. The outcomes of our analysis
could be highly relevant for the understanding of the genetic programs governing the
development of multiple phenotypes. Therefore, further molecular biology progress is
needed not only to assess the potential role of these rSNP candidates, but also to gain a
deeper insight into the genetic mechanisms underlying biological processes in maize.

5. Future Directions

Unraveling the genetic architecture of complex traits is a key component for improving
plants against biotic and biotic stresses. In this context, plant breeding strategies focus on
developing QTL maps for different types of stresses, accounting for linkage disequilibrium
and high false positive rate, standardizing genome-wide polygenetic scores [95,96], and
incorporating epistatic effects into genome-wide association studies to explain missing
heritability and pleiotropy using traditional marker-assisted selection (MAS) and genomic
prediction (GS) strategies as well as ML approaches [97–99]. As the desired and undesired
traits could share a pleiotropic relationship, consideration of pleiotropy is essential to direct
breeding programs. Additionally consideration of pleiotropic signatures of rSNPs in the
analysis of large genomic datasets with regarding MAS and GS, polygenetic scores, and
polygenetic biotic interactions can impact the outcome of the analysis. We suggest that the
incorporation of pleiotropic effects of rSNPs in the analysis of genomic data could improve
outcome of MAS as well as GS studies.
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