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Review

Introduction

As an opportunistic fungal pathogen of humans, Candida 
albicans usually cause fungal infections such as thrush, vagini-
tis, and life-threatening bloodborne candidiasis.1 Of the 16 Mb 
haploid genome of C. albicans, 14.9 Mb has been assembled by 
Stanford University (Stanford DNA Sequencing and Technology 
Center), which facilitates understanding of the genetic structure, 
pathogenicity, adaptability, and evolution in C. albicans. Ret-
rotransposons are mobile genetic elements capable of independent 
transposition through RNA intermediates.1 Retrotransposons are 
widespread transposable elements in eukaryotes, and constitute a 
major part of eukaryotic genomes in many cases.2-7 For instance, 
retrotransposons constitute 42% of human genomes8 and 75% 
of maize genomes.9

Two primary subclasses of retrotransposons are present in 
eukaryotic cells: long-terminal repeat (LTR) retrotranspo-
sons and non LTR retrotransposons (LINEs, long interspersed 

nuclear elements, and SINEs, short interspersed nuclear 
elements).10

LTR retrotransposons in the yeast Saccharomyces cerevisiae 
have been extensively studied. According to the sequence simi-
larity of reverse transcriptases (RTs)11,12 and the subunits of pol 
genes, there are two different types of LTR retrotransposons.1 
One is the Ty1/copia type, where the subunits are protease (PR), 
integrase (IN), reverse transcriptase (RT), and RNase H (RH) 
in order; the other is the Ty3/gypsy type, where the subunits are 
PR, RT, RH, and IN (Fig. 1).13 In S. cerevisiae, six classes of 
retrotransposons, Ty1–5 and Ty3p, belong to 2 different types, 
respectively: Ty1/copia components (Ty1, Ty2, Ty4, and Ty5), and 
Ty3/gypsy components (Ty3 and Ty3p). In these retrotransposons 
families, Ty1, Ty2, Ty3, and Ty4 have transposition activity in 
S. cerevisiae as known.14 This review summarizes the structure, 
mechanism, and influence on organism diversity of LTR-ret-
rotransposons found in C. albicans.

LTR-Retrotransposon Families in C. albicans

Compared with the 6 families present in S. cerevisiae, 34 dis-
tinct LTR-retrotransposon families pertaining to the Ty1/copia and 
Ty3/gypsy groups have been found in C. albicans.15 They are named 
by the Greek alphabet letters (α, β,… iota.), archaic Greek letters 
(sampi, san, etc.), and phonetically similar names of New Zealand 
birds (moa, tara, weka, etc.).15 According to the internal regions, 
the first 16 LTRs have been defined as Tca1–Tca16 (Table 1).

By comparing the LTR retrotransposons families in C. albi-
cans and S. cerevisiae, we can find a great difference.15 The differ-
ent number of families illustrates that the two species experience 
disparity in retrotransposons element evolution.

LTR retrotransposons contain two long-terminal repeats 
(LTRs), as shown in Figure 1, at their ends, typically 250–
600 bp in length, flanking a 5–7 kb long internal protein-coding 
domain.16 Between the two LTRs are two open reading frames 
(ORFs): gag and pol. The gag ORF encodes the structural pro-
teins that make up a virus like particle (VLP).17 The pol ORF 
encodes the enzymes required for reverse transcription and inte-
gration. The enzymes are PR, IN, RT, and RH.
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Retrotransposons constitute a major part of the genome in 
a number of eukaryotes. Long-terminal repeat (LTR) retrotrans-
posons are one type of the retrotransposons. Candida albicans 
have 34 distinct LTR-retrotransposon families. They respec-
tively belong to the Ty1/copia and Ty3/gypsy groups which 
have been extensively studied in the model yeast Saccharo-
myces cerevisiae. LTR-retrotransposons carry two LTRs flanking 
a long internal protein-coding domain, open reading frames. 
LTR-retrotransposons use RNA as intermediate to synthesize 
double-stranded DNA copies. in this article, we describe the 
structure feature, retrotransposition mechanism and the influ-
ence on organism diversity of LTR retrotransposons in C. albi-
cans. we also discuss the relationship between pathogenicity 
and LTR retrotransposons in C. albicans.
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The LTRs of retrotransposons have the transcription termina-
tion signals and promoter, and are divided into three functional 
areas: U3, R, and U5.17 U3 contains an enhancer and promoter 
region at the 3′ end of transcript; R contains both the start and 
termination sites for transcription;18 U5 only exists in the tran-
script of 5′ terminal. The process of transcription is from the 
left LTR U3/R boundary to the right LTR R/U5 boundary to 
produce a RNA molecule with both ends of R region (Fig. 2).

Thirty-four LTR retrotransposon families in C. albicans share 
the following characteristics: (1) the length of the retrotrans-
poson LTRs ranges from 127 to 780 bp with a mean length 
of 359 bp; (2) most elements have the terminal dinucleotides 
5′-TG…CA-3′ and these dinucleotides tend to form part of larger 
terminal inverted repeats; (3) the total cope number of LTRs is 
355; (4) both sides of more than half of the full-length LTR are 
short direct repeats representing target-site duplications (TSDs), 

Table 1. Properties of C. albicans retrotransposon LTR families

LTR Length (bp) TSD (bp) Associated internal region Copy numbera Accession number Gag/pol ORFsb

alpha 388 5 Tca1 10 (5–10) M94628 No

beta 395 5 Tca8 10 (6–8) Y08494 Partical

gamma 280 5 Tca2 9 (5–10) Y08494 intact

kappa 280 5 Tca6 20 (10–15) AF069450 Frag.s

zeta 508 5 Tca7 19 (10–15) AF074943 Partial

san 381 5 Tca4 5 (1–4) AF074943 intact

omega 685 5 Tca5 3 (0–5) AF093417 intact

nu 277 4 Tca3 11 AF119344 Partial

psi 470 5 Tca9 30 AF119344 No

chi 192 5 Tca10 11 AF118059 No

eta 470 5 Tca11 13 AF118059 N.D.

whio 348 5 Tca12 8 AF180289 N.D.

moa 507 5 Tca13 8 AF180291 No

lambda 512 5 Tca14 4 AF180284 N.D.

kahu 531 5 Tca15 17 AF192278 Partial

huia 127 5 Tca16 6 AF180285 Frag.s

omicron 268 4 - 9 - -

rho 275 4 - 13 - -

pi 280 4/5 - 17 - -

Iota 251 4 - 13 - -

sampia 324 5 - 9 - -

theta 366 5 - 7 - -

upsilon 264 5 - 6 - -

koppa 208 5 - 10 - -

epsilon 480 5 - 9 - -

phi 194 5 - 14 - -

episemon 518 5 - 4 - -

mu 780 5 - 4 - -

xi 387 5 - 5 - -

weka 165 5/7 - 9 - -

tui 199 5 - 19 - -

titi 336 5 - 3 - -

tara 285 5 - 9 - -

toroa 282 5 - 11 - -

aNumbers in parentheses indicate the copy number in a variety of strains as estimated by Southern blotting. bintact, long ORFs present containing all of the 
motifs characteristic of full-length, functional retrotransposons; Partial, long ORFs are present but no full-length ones discovered yet; Frag.s, no long ORFs, 
but short regions of homology to other retroelement ORFs are present; No, no long ORFs present nor any homology to other retroelements in databases.
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most of which are 5 bp in length showing a tendency toward a 
purine in the first position and a pyrimidine in the last (data 
not shown);15 and (5) these retrotransposon families in C. albi-
cans generally vary widely in coding capacity as Ty families in 
S. cerevisiae and have a low copy number. Most families have 
the similar copy number to Ty5 (7 copies) LTR in S. cerevisiae, 
but considerably lower than that of Ty1/Ty2 (251 copies), Ty3 
(41 copies), and Ty4 (32 copies).15 Most LTR families in C. albi-
cans only contain solo LTRs or LTR remnants in which the LTR-
retrotransposon sequence has been retained and the intervening 
sequence has been lost. So far, just 3 intact retrotransposons have 
been founded. They are (1) Tca2, an active retrotransposon ele-
ment which has a stop codon between two ORFs,17 (2) Tca5, a 
Ty5 like retrotransposon,19 and (3) Tca4, which belongs to Ty1/
copia group and resembles to Tca2.15 Several families of highly 
degenerate elements appear to be still capable of transposition, 
presumably via transactivation. Full-length retrotransposons are 
usually lost when two LTRs recombine with each other. This 
results in isolated solo LTRs at the original sites. A survey shows 
that 85% of Ty insertions in S. cerevisiae are solo LTRs or LTR 
fragments.15 In C. albicans, for retrotransposon element, β, there 
are some 395 bp solo LTRs.20 Both full-length retrotransposons 
and solo LTRs have short (4 or 5 bp) direct repeats on either 
end.15 Most LTR retrotransposons generate 5 bp short direct 
repeats representing TSDs, as the Ty elements in S. cerevisiae.15 
For instance, 36% of the total S. cerevisiae Ty1–4 elements are 
flanked by TSDs.21 Except for Ty3/gypsy elements (Ty3) that are 
flanked by 4 bp TSDs,22 Ty5 elements have no TSDs. The condi-
tion of Ty5 suggests frequent recombination between these ele-
ments at the telomeres.23 Recombination or mutation may have 
resulted in exchange of target site sequences between elements. 

A similar preference is apparent for the elements in C. albicans: 
14 full-length LTRs are flanked by 4 bp direct repeats, like ele-
ment pi,10 weka has a confirmed 7 bp TSD. With analysis of the 
5 bp TSDs in C. albicans and S. cerevisiae, base bias can be found: 
purine highly is enriched in the first site (55%); and pyrimidine 
is enriched in the last site (53%) and there is a strong bias for A 
and T: in the internal position 2 (72%), position 3 (76%), and 
position 4 (78%) (data not shown).15

LTR retrotransposons have a potential tRNA primer-binding 
site. At the downstream from the left of 5′ LTR is a short poly-
purine sequence (8–49 nt), termed as the primer-binding sites 
(PBSs) (Table 1), which is a 10–20 nucleotide sequence that can 
base-pair with cytoplasmic tRNA molecule partly.15 Fourteen 
different families of LTRs in C. albicans have connection with 
PBSs.

All PBSs share a common feature, the LTR terminus starting 
from 5′-TGG-3′ is base-pair with CCA sequence at the 3′ end 
of all tRNAs.15 Goodwin et al.15 had found the 3′ end of tRNA 
could be used as a primer to determine whether two LTRs were 
two independent insertions or a single retrotransposon. Further-
more, if the two LTRs belong to a family, they repeat in a direct 
orientation on a contig.15 According to the above mentioned com-
mon features, 14 families of LTRs in C. albicans have been found 
sharing the relative PBSs. There are 7 different classes of these 
PBSs (Fig. 3): some have an extensive region which is homolo-
gous to an internal region of tRNAArg(UCU) (e.g., gamma), some 
have a short region which is homologous to the same tRNA (e.g., 
whio), some are homologous to a tRNAiMet internal region (e.g., 
zeta), and some are homologous to the 3′ ends of various tRNAs 
such as, Ala, Gln, Ile, and iMet tRNAs.15 In some instances, the 
PBS is found to be located downstream of the LTR just 2–10 bp. 

Figure 1. The genomic organization of different types of LTR-retrotransposon families present in C. albicans. RT, reverse transcriptase DNA polymerase 
domain; RH, reverse transcriptase RNase H domain; PR, proteinase; iN, integrase.

Figure 2. LTRs can be subdivided into three regions: U3, R, and U5. U3 contains the enhancer and promoter sequences that drive viral transcription. 
R domain encodes the 5′ capping sequences (5′ cap) and the polyA (pA) signal.
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A short gap between the LTR and the PBS is a common feature 
of gypsy-class retrotransposons.24

Mechanisms of Retrotransposition

A general phenomenon that resides in a number of eukary-
otes is that adverse living conditions can activate retrotranspo-
sons. They can move from place to place in a genome by reverse 

transcription of a RNA transposition intermediate to enable the 
organism to adapt to the environment. It has been demonstrated 
that the retrotransposons generate new copies by reverse tran-
scription of their RNA transcripts.3

Similar to retroviruses in function, the LTRs of retrotrans-
posons play a border role in complex reverse transcription proce-
dure.25 The two DNA strands are synthesized from opposite direc-
tions: tRNA binds to the site near the 3′ end of left LTR when 
synthesizing the first strand, while the polypurine track (PPT), a 

Figure 3. The diversity of PBSs in C. albicans retrotransposons. The names of the retrotransposons and the associated LTRs are shown on the left. LTR 
sequences are underlined. The GenBank accession numbers of the tRNAs are as follows: tRNAArg, AF041470; tRNAiMet, AF069449; tRNAile, Y08492; tRNAGln, 
AF180282; and tRNAAla, Y08493.
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short purine-rich sequence17 immediately 
upstream of the right LTR, as a primer 
binds to the upstream of the right LTR 
when synthesizing the second strand.

Retrotransposons must synthesize 
mRNA at first, which can be translated 
into proteins related to replication, also 
acts as a replication template. At each 
end of the template, mRNA has a short 
repeat sequence (R, green) and U region 
(Fig. 4).26 Primer tRNA can base-pair 
with PBS sequence. When tRNA anneals 
to PBS, minus strand DNA starts syn-
thesizing under the catalysis of reverse 
transcriptase. DNA synthesized can 
reach the U5 region (red) at the 5′ end 
of the template and continue as the last 
few bases. The newly synthesized DNA 
can base-pair with the repeat sequence 
at the 3′ end of the genomic RNA.26 
Then, new strand DNA base-pair with 
3′ end of the RNA template starting 
with U3 sequence, and continues until R 
and U5 at the 5′ end of RNA template. 
After that the RNase H degrades the 
RNA template leaving fragments at the 
poly-purine tract to prime second strand 
DNA synthesis. Using the new strand 
DNA as a template reverse transcriptase 
synthesizes another strand DNA until 
U5 and R. After that, the DNA frag-
ment transfers to another end of new 
template. Synthesis then proceeds in 
both directions to give double-stranded 
DNA and LTR, making up of U5, R and 
U3, at each end.26 Integrase inserts this 
into chromosomal DNA, and transcrip-
tion initiating in one LTR and terminat-
ing in the other generates genomic RNA 
with terminal repeats.26

Specific Description

Of the 34 distinct LTR-retrotrans-
poson families in C. albicans, 16 fami-
lies still retain some internal sequences 
which have very different coding capac-
ity (Tca1–Tca16 ). Tca2, Tca4, and Tca5 
are intact and possess all the charac-
teristic features of functional retrotransposons. Tca3 and Tca8 
have no full-length elements, but still retain long and continuous 
ORFs like other retroelements; Tca6 still contains ORF frag-
ments in the internal region; Tca9 and Tca13 have 5 bp direct 
repeats at each end, intact PBSs and PPTs and identical LTRs; 
Tca10 is a compound element, whose LTR shares 99.5% identity 

and is flanked by a 5 bp direct repeat.15 Some extensive ORFs, 
the PBS and PPT regions make up the ~2 kb long internal region.

The other 18 LTR families do not have the sequences simi-
lar to retrotransposons internal regions. These retrotransposon 
families may remain solo LTRs and LTR fragments, resulting in 
some of these LTRs escaping from detection.

Figure 4. Mechanisms of retrotranspositions. The RNA transposition intermediate (brown) of an LTR 
retrotransposon provide plus strand RNA. The RNA has a tRNA (blue) base-paired sequence, the PBS, 
near its 5′ end (1). Primer tRNA anneals to binding site on RNA (2). The first sequences to be copied are 
the unique sequence at the 5′ end of the RNA (U5, red) and a short repeat sequence (R, green) pres-
ent at both ends of the RNA. in this step, single-stranded DNA R region pairs with 3′ terminus in the 
first jump (3). Reverse transcriptase starts synthesis minus strand DNA (4), starting with U3 (purple) 
adjacent to R, and continuing until U5 and R are copied a second time. tRNA primer is removed. 
The RNA template is degraded by RNase H leaving a fragment at the poly-purine tract to prime sec-
ond strand DNA synthesis (5). in the second jump, reverse transcriptase transfers to the other end 
of minus strand (7). Synthesis then proceeds (8). integrase inserts this into chromosomal DNA, and 
transcription initiating in one LTR and terminating in the other generates genomic RNA with terminal 
repeats (9).
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Many researchers have studied a few LTR retrotransposons in 
C. albicans. Now we summarize the characteristics of Tca1, Tca2, 
Tca3, Tca4, and Tca5.

Tca1, an Inactive Element without ORF

Tca1, as the first C. albicans retroelement, is of 5614 bp and 
has 388 bp LTRs.15 No significant ORF sequence27 presents in 
the internal region, suggesting that Tca1 is a degenerate and inac-
tive element. It has been demonstrated that Tca1 has two loci in 
the strain SC5314. One is referred to as Tca1–1, and the other 
is designated as Tca1–2. The Tca1 elements of the two loci have 
more than 99% similarity in sequence and almost the same struc-
ture.27 Tca1–1 was isolated from a lambda phage genomic library 
clone called CJY-3.28 This clone contains 3.25 kb and 4.8 kb long 
fragments (Fig. 5). Tca1–1 lacks any retrotransposon-like ORF. 
This differentiates Tca1–1 from Tca1–2. Tca1–2 was found in an 
approximately 6 kb clone, called CJY-4. It is highly similar to 
the insert of CJY-3, besides minor restriction site polymorphisms 
(Fig. 6).

Nucleotide sequence analysis suggests that the insert of CJY-4 
is flanked by identical direct repeat sequences, which was 99% 
identical to the LTRs of Tca1–1. Each LTR of Tca1–2 is flanked 
by 6 bp inverted repeat sequence (TGTTCG) like LTRs of other 
retrotransposons.28 The sequence in the front of 5′ LTR and 
behind of 3′ LTR of Tca1–2 is ATTGC. This suggests that the 

sequence is a copy of integration target site.29 The sequence is dif-
ferent from the one of Tca1–1, TTGGT.

Sequence analysis30 of entire Tca1–2 has not found any 
extended ORFs or potential splice sites.31 This suggests that 
Tca1–2 has been degenerated highly. Compared with about 
1400 bp of insertion region of Tca1–1, Tca1–2 is just differing in 
less than 1% (data not shown).

Previous work28 indicated that the transcription of Tca1–1 is 
affected by growth temperature. Northern blot analysis suggested 
that the transcription of Tca1 is also influenced by temperature 
in strains lacking Tca1–1 or Tca1–2.27 Thus, Tca1 elements are 
temperature-regulated retrotransopsons. The expression level of 
Tca1 at 25 °C is higher than that at 37 °C.

It has been reported that the virulence determinants of a lot 
of pathogenic bacteria (Shigella app, Yersinia app, Vibrio cholerae, 
Bordetella pertussis, and Staphylococcus aureus) were regulated by 
temperature.32 Antley et al.33 found C. albicans cells grown at 
25 °C are more virulent than those grown at 37 °C. As Ty ele-
ments can regulate adjacent gene transcription34 the Tca1 may 
control adjacent genes temperature-dependently.28 The expres-
sion of Tca1 could be similar to the invasion gene in Yersinia 
pseudotuberculosis.35

Southern blot analysis suggests that deletion of Tca1 elements 
does not result in obvious growth defects and the recombination 
between LTRs occurs readily.27 Furthermore, silencing a single 
element would lead to complete loss at that locus, suggesting that 
the Tca1 elements at both loci are hemizygous.27 It is known that 
elements may be abundant in natural populations if they provide 
some advantage to the microorganism. However, there is no clear 
reason to maintain these degenerate elements. Neither copy of 
Tca1 choose silent chromatin as preferential integration region as 
the Ty5 retrotransposon in S. cerevisiae.36-39 Although nearly 40% 
of the strains lack Tca1 elements, solo LTRs in the genome sug-
gest that they have existed in these strains for a time, and more-
over, it is not essential to maintain Tca1 in natural populations.28

Tca2 is an Abundant, Extrachromosomal DNA 
Molecule with Intact ORF

Tca2 is widespread in C. albicans and was first identified in the 
strain hOG1042, known as pCal. The pCal was a distinct band 
when the uncut C. albicans DNA was examined on an agarose 
gel, so it is an extrachromosomal retrotransposon.17 Tca2 belongs 
to Ty1/copia-type retrotransposon, and was originally identified 
as a linear double-stranded DNA molecule. It is the most abun-
dant DNA copy (about 50 copies per cell).16 Tca2 is 6426 bp 
long and has 280 bp LTRs flanked by a six-nucleotide imperfect 
inverted repeat, TGTTGG…CCATCA. The internal domain 
usually has two long gag and pol-like ORFs.16 ORF1 and ORF2 
are separated by a stop-codon (UGA).29 The structure feature is 
similar to mammalian retroviruses40 but is unique in LTR ret-
rotransposons.13 However, the pol gene can translate into protein. 
Forbes and coworkers41 demonstrated that the LTR promoter 

Figure 5. Southern blot analysis of DNA from lambda clones CJY-3 and 
CJY-4. Genomic DNA from strain SC5314 or purified DNA from lambda 
clones CJY-3 and CJY-4 was digested with ecoRi and hybridized with the 
α-element probe.
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is heat-shock induced. Like pol proteins, the expression of Tca2 
pol protein is regulated by LTR promoter. There is a novel stop 
codon bypass mechanism to made gag-pol RNA translate pol pro-
teins.13 The mechanism is read-through suppression of the UAG 
codon.17 In Tca2, the sequences between the gag and pol ORFs 
are an 8 bp purine-rich sequence, AAAACAGG, and a potential 
pseudoknot.42 They are tightly followed the UGA stop codon, 
which is essential to suppression.

Tca2 has retrotranspositional activity, and is strongly depen-
dent on the growth temperature.16 There is substantially more 
extrachromosomal DNA at 37 °C than that at 27 °C. In addi-
tion, northern blot analysis on the transcriptional activity of Tca2 
showed that the most prominent band is full-length transcripts. 
Interestingly, the number of full-length transcripts at 37 °C is 
more than that at 27 °C, suggesting that Tca2 has transposition 
activity and is in favor of higher temperature (37 °C). There is also 
a correlation between the level of Tca2 RNA and extrachromo-
somal DNA, suggesting that the synthesis of extrachromosomal 
DNA needs Tca2 RNA as intermediate. The level of Tca2 RNA is 
relative to the situation of Tca2 elements. For instance,16 the levels 
of Tca2 RNA are different at various sites in genome. In addi-
tion, the levels of RNA are disparate in different strains.16 The 
level of transcription is probably affected by strains, sequences 
and genomic context. Thus, we speculate that there may be close 
relationship between the Tca2 expression and virulence in the 
process of C. albicans evolution.

Tca3 has a Partial Coding Region

Tca3 is a Ty3/gypsy-like retrotransposon widely existing in 
C. albicans. It has 277bp LTRs and contains a little part of a 
coding region.

There are two major data sets of genome sequence have been 
determined for C. albicans strain SC5314.43 The first is Assembly 
6 and another is Assembly 19.

Assembly 6 is a high coverage sequence (~10-fold) in the 
genome. The database has two composites called as Tca3Δ,44 
sharing ~99% identity with each other. Both of them are ~4.55 
kb, having an internal region flanked by LTRs (Fig. 7A). The left 
LTR of Tca3Δ6–2328 has the same sequence as the right LTR 
of Tca3Δ6–1874, higher than its right LTR (99.4%); the right 
LTR of Tca3Δ6–2328 has 99.7% similarity to the left LTR of 
Tca3Δ6–1874 than its left LTR (99.0%).44 Figure 7A also shows 
that in the internal regions of both Tca3Δ elements there are 
extensive ORFs. The internal region of Tca3Δ6–2328 contains 
one ORF almost whole length of itself, and in Tca3Δ6–1874 a 
frameshift ORF locate in the internal region. These ORFs con-
tain the RT, RH and IN domains like Ty3/gypsy retrotransposons 
in sequence.

Assembly 19 represents an initial draft of the diploid genome, 
sharing a similar Tca3 complement to Assembly 6.44 However, it 
has some information which Assembly 6 does not contain, such as 
a composite on contig 19–10140.44 Assembly 19 contains identical 

Figure 6. Restriction site maps of the genomic inserts from lambda clones CJY-3 and CJY-4 containing Tca1–1 and Tca1–2, respectively. The locations of 
elements (LTRs) are indicated by the boxed regions. Also indicated are the plus- and minus-strand primer binding sites (1PBS and 2PBS), the 5 bp direct 
repeats flanking the elements, the ecoRi fragments associated with each locus, and the 1.8 kb Hindiii-ecoRi and 2.2kb ecoRv fragments that are used 
together as a hybridization probe of the internal region. The direction of transcription of Tca1 is from left to right.
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LTRs flanking a target site duplication instead of the internal 
region. Data suggest that the sequence of internal region is sub-
stituted by a run of Ns. Highly similarity to other Tca3 elements 
may lead the internal sequence co-assemble with them mistakenly.

Tca3 is roughly the same as other Ty3/gypsy elements in struc-
ture except for some special features. For example, elements of 
Tca3 seem to have a distinct mechanism for DNA synthesis which 
is involve in minus-strand DNA. Second, elements have a dis-
tant relationship with other Ty3/gypsy-like elements. Third, the 
ORFs of Tca3Δ elements have no obvious pol domain and shorter 
RT domain as typical Ty3/gypsy elements. Finally, losing the pol 
domain and large part of gag domain is another special feature.44

A copy of Tca3 obtained from ATCC10261 that retains the 
gag/pol region is referred to as Tca3F-1026144 (Fig. 7B). It is found 
that Tca3Δ is more common than Tca3F. Tca3F is 6134 bp long. 
The internal region contains two long ORFs flanking by identi-
cal 313 bp LTRs. Tca3F-10261 has 99% identity with Assembly 
6 Tca3Δ elements, except for the ~1.6 kb indel covering the gag/
pol region, a 42 bp indel upwards to the large indel, and some 
variation in the 5′ untranslated regions.

Goodwin et al.44 have found 5 of 6 strains emerged Tca3 
bands, suggesting that Tca3 is quite common in C. albicans. 
In the five examined strains, only 1 to 3 bands were produced, 
which indicates that the elements are present in low copy num-
ber (data not shown). This might be the chance events in evolu-
tionary process leading to excessive Tca3 elements produced. It 
may also be the result of selection, or may have connection with 
asexual reproduction in C. albicans.45,46 However, it is difficult 
to evaluate the relationship between different forms of Tca3 and 
host’s reproductive mode, on the base of indefinite reproduction 
in C. albicans.47 Sequence comparison and Southern analysis have 
shown that Tca3 is much conserved in sequence and structure, 
either in loci or in strains, suggesting that the original deletion 
event has occurred not long ago.

Tca4, an Active Element, Contains Intact ORF

Tca4 is a Ty1/copia element closely related to Tca2,16 which is 
flanked by 381 bp LTRs and contains an intact gag/pol ORFs. 
Tca4 is simple in sequence, suggesting that it has recently 

emerged. Like Tca2, Tca4 is a retrotranspositionally active ele-
ment that strongly depends on the growth temperature. High 
temperature can induce Tca4 transcription.

Tca5, an Intact LTR Retrotransposon

Tca5 is of ~5.6 kb and 4218 bp of internal sequence flanked 
by identical 685 bp LTRs.19 Only one single long ORF lies in the 
internal region. It is larger than most other yeast retrotranspo-
son LTRs. Phylogenetic analysis and sequence comparison imply 
that Tca5 has close connection with Ty5 element in S. cerevisiae. 
The S. cerevisiae Ty LTRs range in length from 251 bp for Ty538 
to 371bp for Ty4.48,49 The terminal inverted repeat sequences are 
the most conserved in Ty1-like elements, containing at least 5 nt: 
5′-TGTTG…CAACA-3′. Therefore, the Tca5 retrotransposon 
begins with TG and ends with CA, as most retrotransposons do. 
Sequencing of the PCR product revealed the left LTR, which 
was identical to the right LTR, and these LTR are designated as 
omega.

Close behind the downstream of left LTR is PBS which is 
complementary to methionine tRNAiMet15 of initiator. Upstream 
of right LTR is a tract enriched in purines (ATGGGGAAG) and 
a similar sequence (ATGGGGAGG) at position 3132 bp.19

The internal region contains a single and long uninterrupted 
ORF with a relatively low copy number, and this ORF extends 
from within the left LTR (382 bp) to within 60 bp of the right 
LTR, with no inframe stop codon or frame shift, predicting a pro-
tein with motifs characteristic of gag, protease, integrase, reverse 
transcriptase, and RNase H proteins of other retrotransposons.19

However, it is unclear where the ORF might initiate transla-
tion in vivo.19 There are several possible sites,19 all of which are 
ATG in sequence. The first one within the ORF (382 bp from 
the 5′ end of the left LTR) is the unusually deep inset within the 
LTR. The second is also within the LTR three codons beyond the 
first. The third one within the ORF is unusually far beyond the 
end of the LTR, the three ATG are in-phase. Besides, there are 
several out-of-phase ATG triplets 5′ to this candidate.19 South-
ern analysis (data not shown by original authors)19 demonstrated 
that Tca5 is a low copy number retrotransposon, with very few 
solo LTRs. It is possible that these elements contribute to the 

Figure 7. Structures of Tca3 elements. (A) The two Tca3 elements in Assembly 6 of the Stanford C. albicans sequencing project database. (B) A full-length 
Tca3 element from C. albicans strain ATCC10261. in all panels shaded boxes represent the ORFs of the elements. The locations of the conserved domains 
are indicated. Offset boxes and vertical lines within the boxes represent frameshifts and premature stop codons, respectively. The LTRs are represented 
by the boxed triangles. The common scale is shown at the bottom.
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heterogeneity of the Candida genome, either by recombination 
between the LTRs of one element or by chromosomal rearrange-
ments between two elements. Tca5 may still be active which is 
supported by the detection of full-length transcript in northern 
blot.19

In C. albicans, Tca5 is the only element showing significant 
similarity to Ty5.19 It is a suitable candidate for comparisons 
because it has all the expected structures of an active element and 
is probably intact. Comparative genomic analysis between Tca5 
and Ty5 elements will be helpful in understanding them.

LTR-Retrotransposons Improve Genetic Diversity

C. albicans is a diploid organism.50 Clinical isolates of C. albi-
cans show variform phenotypic characteristics associated with 
infection and virulence.51-57 These complex phenotypes suggest 
genetic diversity. However, C. albicans is an asexual fungus; it 
must have other mechanisms to generate various genomes. Ret-
rotransposons have contributed to the evolution of genomes and 
genes in ways that go well beyond simply increasing genome size. 
It also affects genomes on a small scale, such as mobilization 
and integration at a locus directly, or recombination with hetero-
topic element indirectly. These changes contain gene inactiva-
tion, variance in transcription ability of gene, gene deletions and 
inversions.29 It has been well documented that retrotransposons 
would mobilize in response to stress.58-60 Servant et al.61 have 
shown that the relationship between transposable activity of Ty1 
LTR retrotransposons and genome expression in S. cerevisiae. 
It seems to have a connection between stress reaction and the 
diversity of retrotransposons in C. albicans. Many organisms 

have the ability to recruit LTR-retrotransposons as alternative 
exons or promoters to drive genome evolution.62-65 The LTRs of 
Ty elements have the ability to modify genome transcription61 
and transposable elements can influence the expression of neigh-
boring host genes.61,66 In gram-positive bacteria, circularized 
form of Tn retrotransposons can promote organisms resistance 
to antimicrobial.67 There is an article33 about the relationship 
between virulence and reverse transposition of LTR retrotrans-
posons in C. albicans. Take the Tca1 for example, the expression 
level of Tca1 is related to temperature, suggesting that Tca1 may 
place adjacent to the temperature-dependent genes. Since Tca1 
exhibits higher expression at 25 °C than at 37 °C, Tca1 could 
upregulate the expression of genes required for the establishment 
of infection. Furthermore, in our original research, we found the 
transposition phenomenon of LTR-retrotransposon in strains 
which are resistant to miconazole (unpublished observation). It 
is suggested that there is a relationship between virulence and 
LTR-retrotransposons.
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