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Recent work in the area of interdependent networks has focused on interactions between two systems of the
same type. However, an important and ubiquitous class of systems are those involving monitoring and
control, an example of interdependence between processes that are very different. In this Article, we
introduce a framework for modelling ‘distributed supervisory control’ in the guise of an electrical network
supervised by a distributed system of control devices. The system is characterised by degrees of freedom
salient to real-world systems— namely, the number of control devices, their inherent reliability, and the
topology of the control network. Surprisingly, the behavior of the system depends crucially on the reliability
of control devices. When devices are completely reliable, cascade sizes are percolation controlled; the
number of devices being the relevant parameter. For unreliable devices, the topology of the control network
is important and can dramatically reduce the resilience of the system.

T
he study of interdependent, networked, systems is an area that has recently received a lot of attention1–11,
where the majority of work has so far focussed on the interactions between different ‘critical infrastruc-
tures’12–16. We argue that critical infrastructures should themselves be viewed as a special class of inter-

dependent systems, due to the presence of in-built monitoring and control mechanisms12,17,18. The type of control
most prevalent in such systems is so-called ‘supervisory’ control— as distinguished from, say, controllability19 —
which typically involves monitoring an underlying process, with the option of a pre-defined intervention once a
critical state is reached. Here, in keeping with the picture of interdependent networks, both monitoring and
intervention are local processes, associated with specific points on the underlying network. Furthermore, we are
interested in the case when the control is ‘distributed’, that is the local interventions are somehow coordinated via
communications between sensors. At the most general level, we are interested in building a physics-like model of
such systems: that is, complicated enough to encompass any interesting behaviour, but sufficiently idealized that
the mechanisms at play can be easily identified and understood.

Our ideas are based on the supervisory control and data acquisition (SCADA) concept, ubiquitous in real-
world monitoring of industrial manufacturing, power generation, and distribution processes (e.g., electricity, gas,
and water)20. To this end, our model comprises an underlying system, here, an electrical network, where a simple
control device is placed on each transmission line with a probability p (see Fig. 1). The device monitors the load of
that line and, if it is overloaded, then the device can dissipate the excess load with a probability of success q, and
prevent the failure. In the opposite case, the line fails and the load is redistributed. The redistribution of loads may
then lead to the overloading and failure of further power lines, and so on, potentially resulting in large system-
wide outages21. If, at any stage during this process, more than one line becomes overloaded, then it is assumed that
the next line to fail will be the one with the largest excess load. In the case where these lines are supervised, it
therefore helps if the control devices respond in a coordinated way— always dissipating the excess load on the line
under the greatest threat of failure. We therefore stipulate that for a control device to be operational, it must be in
contact with a central processing unit (CPU). We envisage a communication network composed of ICT-like links
connecting the devices and the CPU where, in keeping with a distributed SCADA picture, each device can also act
as a signal relay— so called ‘daisy chaining’. Crucially, this means that when a control device fails, it can
disconnect many other devices from the CPU, rendering them useless— and dramatically increasing the fragility
of the system. The structure of the supervisory network is therefore very important, and we consider two
extremes. On one hand, a Euclidean minimum spanning tree (EMST) minimises the total length of the control
network— and hence the cost— but typically sacrifices direct connectivity to the CPU. On the other hand, a
mono-centric network maximises direct connectivity to the CPU, but can be very costly in terms of the total length
of network needed. We interpolate between these two configurations by using a simple rewiring process: for each
node in a EMST, replace with probability m, the edge connected to the neighbor closest to the CPU (along the
network), by an edge that connects directly to the CPU. The result is that the topology of the supervisory network
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relies on one continuous parameter m g [0, 1], such that m 5 0 and m
5 1 correspond to EMST and mono-centric networks respectively.

For modelling the electrical network we adopt a straightforward
approach which has been proposed and analysed elsewhere22. The
idea assumes a set of producers and consumers linked by power lines,
where the resulting load carried by each line, or edge, may be repre-
sented by a random variable drawn from a uniform distribution U.
Since U is properly normalized, the upper and lower bounds of the
distribution are related to the average load �l, such that

U �l
� �

~
1
�

2�l V l [ 0, 2�l
� �

if �lƒ1=2

1
�

2 1{�l
� �

V l [ 2�l{1, 1
� �

if �lw1=2

(
: ð1Þ

In keeping with the above, it is also assumed that the transmission
lines have an intrinsic carrying capacity (assumed here, without loss
of generality, to be one) which, if exceeded, causes the line to fail and
the load to be redistributed evenly amongst its nearest neighbours23.
The crucial departure from Ref. 22, is in our choice of network
topology. Since many critical infrastructures are, to a good approxi-
mation, planar subdivisions24, we use the well known Delaunay tri-
angulation25, which is a simple, reasonable model for planar
networks such as power grids.

Results
We test the vulnerability of our model against failure cascades by
using computer simulations (see Methods section for details). For
given values of the parameters p, q, m, and �l, we repeatedly generate
instances of the ensemble, each time initiating a cascade according to
a ‘fallen tree’ approach— that is, an unspecified external event
removes an edge and, if it is supervised, the associated control device.
Following each cascade, Nlcc, the size of the remaining largest con-
nected component of the underlying electricity network, is recorded.
We assume that administrators/designers of real systems are inter-
ested in ensuring that cascades are bounded by a certain size. To this
end, we consider

Pe~P 1{Nlcc=Nƒeð Þ, ð2Þ

the probability that, following a cascade, the number of nodes dis-
connected from the largest connected component— the effective
cascade ‘size’: 1 2 Nlcc/N— is less than a fraction e g (0, 1] of the
original nodes.

In general, as one would expect, the larger the average load carried
by the system, the smaller the probability that the cascade size is
bounded (see Fig. 2a). However, we also observe another feature of
this type of cascading model, first identified in Ref. 22: for each value
of p, there is a non-zero critical value

�le~sup �l[ 0, 1ð Þ : Pe
�l
� �

~1
� �

, ð3Þ

that corresponds to the maximum average load below which cascade
sizes are bounded with probability one (within a given accuracy, here
1 part in 5 3 103). Plotting the values of �l1=2 against p, a sharp
transition can be observed at some point p* (see Fig. 2b). Above this
value, the fraction of disconnected nodes is always bounded by e 5 1/
2, regardless of how much load the system is carrying. In the com-
pletely reliable case (q 5 1), p* just corresponds to the percolation
threshold pc (,0.33 for Delaunay triangulations26). The cascades are
then ‘percolation controlled’ due to the formation of a giant com-
ponent connected by supervised edges, coined here the giant super-
vised component (GSC). The upper bound on cascade size that is
enforced by the GSC can be lowered by employing more control
devices— i.e., increasing p (see Fig. 2c). For p $ 1 2 pc, most nodes
are connected by supervised edges and cascades cannot disconnect
nodes from the giant component.

Whilst q 5 1, the only impact of decreasing m is to increase the
number of devices disconnected by the initial external shock.
Disregarding the correlation induced by starting the cascade at the
point of disconnection, this effect corresponds to a small shift

d* sh i=N, ð4Þ

in the positive x-direction of Figs. 2b and 2c. Here, Æsæ is the average
sub-tree size associated with a randomly chosen node (see Fig. 2c
inset). Figure 2d shows the effects of this shift when p . p*, for both
large and small e. Here, it is natural to characterize changes in m by a
normalized cost

C~L mð Þ=L 1ð Þ, ð5Þ

where L(m) is the total length of the supervisory network. The mess-
age of Fig. 2d is that: increasing the number of direct CPU connec-
tions at the cost of increased network length, is only beneficial if the
suppression of small cascades is desired.

If, in contrast to above, the control devices have an inherent rate-
of-failure (q , 1), then a GSC may be either disconnected or reduced
in size as control devices fail. In the best case scenario, when the
supervising network is mono-centric and q is close to one, the picture
is one of ‘effective percolation’ with (see Methods)

p�~pcq{a, ð6Þ

where a is determined by the topology of the underlying network
(,2.4 for a Delaunay triangulation, see Methods section for details).
This simple form shows good agreement with direct estimates of the
value of p* (see Fig. 3b and Methods for details). For lower values of
q, percolation-like descriptions are no longer appropriate: regardless
of the number of control devices, it is not possible to bound cascade
sizes in a way that is independent of the average load carried by the
system. Indeed, if control devices are both unreliable (q , 1) and the

Figure 1 | Supervisory control. (a): The underlying power grid is represented by blue nodes and black edges. The load carried by power-lines (edges) is

supervised by control devices, shown by red squares. The control devices act as signal relays and form a supervisory network (red edges) with the CPU.

(b): For a given overloaded edge, there is a probability p that a control device is present. If this device is connected to the CPU, then it can be determined if

the edge is carrying the largest excess load in the system. If so, the device will attempt to dissipate the excess load, with a success rate q.
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control network is tree-like (m , 1), the system is very susceptible to
large failure cascades, with little impact made by increasing p (see
Fig. 4). In this case, we see that for both large and small cascades, the
topology of the control network is very relevant and can induce
extreme fragility in the control system (see Fig. 5).

Discussion
In conclusion, we have introduced a minimal model which incorpo-
rates the salient features of many real-world control systems. Firstly,
the control devices are simple: they only have so-called ‘supervisory’
functions of monitoring and intervention. Secondly, the system is

Figure 2 | The effects of reliable control devices (q 5 1). (a): The probability that, following a cascade, the remaining largest connected component of the

underlying grid contains more than half of the nodes P1/2, is dependent on the average load carried by the system �l, and the number of control devices

present p. For each value of p, the system is characterized by a critical average load�l1=2. Below this critical value, cascades never disconnect more than half

of the system (P1/2 5 1), whilst above it, there is always a finite chance that this will happen (P1/2 , 1). (b): As the bond-percolation threshold

p* 5 pc , 0.33 is approached, the critical value �l1=2 rises sharply to one due to the formation of a giant supervised component (GSC). Inset: Results are

unchanged by increases in system size. (c): The bound on cascade size can be lowered by increasing p . pc and therefore the size of the GSC. For p $ 1 2 pc

most nodes are connected by supervised edges and therefore cascades cannot disconnect any nodes completely. Inset: For values of the cost (estimated as the

total length of the supervisory network) above C , 1/2 the average sub-tree size Æsæ of the control network— and therefore the average number of devices

disconnected at cascade initiation— is less than 1 and negligible as a fraction of the system size. (d): Critical value�le for p . p*. In this case, increasing the

cost of the supervisory network only increases the critical load associated with bounding small cascades, and not those of the order of the system size.

Figure 3 | The effects of control device failure (q ? 1) when every device is connected directly to the CPU (m 5 1). (a): As the reliability of the control

devices decreases, more devices are needed to maintain the same critical load. (b): Agreement between the numerical value pmid obtained for the �l1=2

transition— and the theoretical form pcq
2a motivated by simple arguments (see main text and Methods Section).
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‘distributed’, that is, not only are the devices positioned in space but
they require coordination— in this case, by connection to a CPU.
Thirdly, we also incorporate the effects of devices having an inherent
rate-of-failure. With only these simple characteristics, the resulting
behaviour is very rich. The primary feature concerns the fragility of
such control systems: a small reduction of control device reliability
leads to a regime where the ability to suppress cascades is dramat-
ically affected by the topology of the control network. Our results
suggest that it is much more cost-effective to try to improve the
reliability of control devices rather than working on the stability of
the supervisory control network. We believe that these results make a
first step in understanding distributed supervisory control, whilst

also providing helpful guidelines to designers and administrators
of real systems. We welcome further work in the area.

Methods
Simulations. To simulate the system, N nodes are placed in the plane at random, the
Delaunay triangulation is then formed, and loads are allocated to the resulting edges
according to U �l

� �
. The supervisory network is incorporated by first adding a control

device to each edge with probability p, then forming the network according to the
rewiring procedure described in the main text (dependent on parameter m). Cascades
are initiated by assuming an external event that causes an edge to be removed at
random and its load is redistributed amongst its nearest neighbors. If the failing edge
was supervised, then the control device is also removed. During the ensuing cascade,
we stipulate that for a control device to work, it must be connected to the CPU, a
special node that cannot be removed. If a control device is unconnected, then it
cannot work and is of no use. However, if a control device is connected, and it is
supervising an edge that is about to fail— i.e., it is carrying the largest excess load in
the system— then there is a probability q that the excess load is dissipated and the load
of the edge is reset to�l. The quantity q can be thought of as the inherent reliability of a
device.

Simulations were written in C11 and implemented using the Boost Graph lib-
rary27 where possible. Delaunay triangulations were produced using an iterative
algorithm25.

Results are presented for systems of size N 5 500 (,3 3 103 edges) and statistics are
calculated over 5 3 103 instances of each ensemble (defined by parameters p, q, m, and
�l). Critical values�le and p* are accurate up to an error of approximately 60.02, since
they are identified by varying the underlying parameter by finite increments. In
Figs. 4c and 5, �le corresponds to Pe . 0.99 in order to accommodate the noise
associated with different control network structures.

Formation of an effective GSC. Labelling each supervised edge by i 5 1, 2, …, Es, the
probability that a supervised edge survives a cascade is qni, where ni is the number of
times a device is solicited— i.e., it tries to dissipate its excess load with probability q.
Here, for large enough systems the number of supervised edges is given by Es 5 pE.
(Since the average degree of a Delaunay triangulation is peaked around six, the total
number of edges E is well approximated by E , 3N.) Using a bar to denote system
average qn~1=Es

P
i qni , we know that if Var [n] is small, then qn*qn .

Approximating a large system average with an ensemble average Æ…æ over many
smaller systems, the results are given in Table 1. Here it is clear that the average Ænæ is
well approximated by the value 2.4, regardless of p and q, and that the variance is

Figure 4 | The effect of m (p 5 0.5, q 5 0.9). When the supervising network is almost mono-centric (m 5 0.9) very few control devices fail and therefore

the remaining largest connected component connects 85% of the nodes in the system. If the supervising network is almost a tree (m 5 0.1) then even

though the inherent failure rate is low, many devices become disconnected from the CPU and therefore only 10% of nodes are left connected following a

cascade.

Figure 5 | The effect of topology in control networks with unreliable
devices (q 5 0.9). For all cascade sizes (ie. regardless of e), the critical load

depends strongly the structure of the supervisory network, in contrast with

the completely reliable case. In particular, even when there are already

many direct-CPU links (C . 1/2), the critical load that the system can carry

is drastically reduced by introducing more dependency into the

supervisory network.
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SCIENTIFIC REPORTS | 3 : 2764 | DOI: 10.1038/srep02764 4



always very small compared to the average. We can then write the effective probability
that a generic edge resists failure as

pef f ~p:qa, ð7Þ

with a~ nh i^2:4. The system will then be resilient if peff 5 pc, which implies Eq. (6).
Equation (6) may be contrasted with a direct approximation of when an effective

GSC forms. From simulation results, we associate each transition with the value pmid,
defined as halfway between pc and the lowest value of p for which�le is maximal (i.e.,
the midpoint of the transition).
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Table 1 | For different values of p and q, Ænæ , 2.4, and Var
[n]=Ænæ

Ænæ Var [n]

q 5 0.95, p 5 0.4 2.36 0.0004
q 5 0.9, p 5 0.45 2.40 0.0007
q 5 0.85, p 5 0.5 2.40 0.001
q 5 0.8, p 5 0.6 2.44 0.001

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2764 | DOI: 10.1038/srep02764 5

http://creativecommons.org/licenses/by-nc-nd/3.0

	Title
	Figure 1 Supervisory control.
	Figure 3 The effects of control device failure (q &ne; 1) when every device is connected directly to the CPU (&mgr; = 1).
	Figure 4 The effect of &mgr; (p = 0.5, q = 0.9).
	References
	Table 1 For different values of p and q, &lang;n&rang; &sim; 2.4, and Var [n]&Lt;&lang;n&rang;

