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The etiopathologies behind autoimmune thyroid diseases (AITDs) unravel misbehavior of

immune components leading to the corruption of immune homeostasis where thyroid

autoantigens turn foe to the self. In AITDs lymphocytic infiltration in the thyroid shows up

a deranged immune system charging the follicular cells of the thyroid gland (thyrocytes)

leading to the condition of either hyperthyroidism or hypothyroidism. The inflammation in

AITDs consistently associate with ER function due to which disturbances in the ER protein

homeostasis leads to unfolded protein response (UPR) that promotes pathogenesis

of autoimmunity. The roles of ER stress in the instantaneous downregulation of MHC

class I molecules on thyrocytes and the relevance of IFN γ in the pathogenesis of

AITD has been well-documented. Thyroglobulin being the major target of autoantibodies

in most of the AITDs is because of its unusual processing in the ER. Autoimmune

disorders display a conglomeration of ER stress-induced UPR activated molecules.

Several epidemiological data highlight the preponderance of AITDs in women as well

as its concurrence with breast cancer. Both being an active glandular system displaying

endocrine activity, thyroid as well as breast tissue show various commonalities in the

expression pattern of heterogenous molecules that not only participate in the normal

functioning but at the same time share the blame during disease establishment. Studies

on the development and progression of breast carcinoma display a deranged and

uncontrolled immune response, which is meticulously exploited during tumor metastasis.

The molecular crosstalks between AITDs and breast tumor microenvironment rely on

active participation of immune cells. The induction of ER stress by Tunicamycin advocates

to provide a model for cancer therapy by intervening glycosylation. Therefore, this review

attempts to showcase the molecules that are involved in feeding up the relationship

between breast carcinoma and AITDs.
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INTRODUCTION

The eminent Nobel Laureate Paul Ehrlich predicted the concept
of autoimmunity, calling it “horror autotoxicus” involving a
perplexing situation wherein the immune system starts assaulting
self-cells leading to the development of autoimmune diseases.
Today autoimmune diseases pose notable clinical issues owing
to their chronic nature and higher rate of prevalence in
relatively younger populations who are at the peak of their
reproductive years (1). Immunological self-tolerance, a seminal
selection strategy wherein immune system prevents the reaction
of lymphocytes with self-antigens, involves a wide array of
genes and their cellular expression patterns, which upon
disruption by inherited mutations or environmental factors
result in autoimmune diseases. The characteristic feature of
autoimmunity is the development and propagation of auto
reactive T lymphocytes and autoantibodies against body’s
autoantigens. Such autoimmune diseases can be systemic like
systemic lupus erythromatosus (SLE) or organ-specific as in the
case of autoimmune thyroid diseases (AITDs) (2). In AITDs,
lymphocytic infiltration in the thyroid shows up a deranged
immune system charging the follicular cells of the thyroid gland
(thyrocytes) leading to the condition of either hyperthyroidism
or hypothyroidism. The organ-specific autoimmune attack on
thyroid witnesses inflammation of the thyroid tissue leading
to thyrotoxicosis [Reviewed in (3)]. Extensive study reports
on AITDs show two major clinical manifestations of thyroid
autoimmunity, Hashimoto’s thyroiditis (HT) (most common
cause of hypothyroidism) and Grave’s disease (GD) (most
common cause of hyperthyroidism). The epidemiological data on
the preponderance of AITDs in women is intriguing [Reviewed
in (4)]. It is noteworthy that the occurrence of hyperthyroidism,
caused by GD as well as hypothyroidism in HT, is 10 times more
in women as compared to men [Reviewed in (4)]. So, it becomes
important here to rekindle the higher prevalence rate of AITDs in
women. Congruent to this idea, there is an emerging repertoire
of evidences that show relationship between AITDs and breast
cancer in women (5).

Hence, the fulcrum of the present review is an attempt to
delineate the molecules, which are involved in crosstalks between
two major AITDs (GD and HT) and breast cancer pathology.

THE AUTOANTIGENS OF THYROID GLAND

Metabolic homeostasis is much under the control of a
properly functioning thyroid gland. The two major thyroid
hormones are L-thyroxine (tetraiodothyronine, T4) and L-
triiodothyronine (T3), release under the influence of thyroid
stimulating hormone (TSH). TSH acts on TSH receptors (TSH-
R) (expressed all over the basolateral membrane of thyrocytes)
and stimulates the expression of membrane protein called
sodium/iodide symporter (NIS), which mediate the inward
translocation of iodine into the thyrocytes. [Reviewed in (6,
7)] (Figure 1).

The spectrum of autoantigens reacting with the patient sera
in cases of AITDs mainly involves three thyroid autoantigens:
thyroglobulin (Tg), thyroid peroxidase (TPO), and TSH-R. These

complex glycosylated proteins are post-translationally modified
that affect their stimulatory role on the immune system.

Thyroglobulin (Tg)
The most abundant glycosylated iodoprotein in the thyrocyte
lumen is Tg (200–300 g/l), which is 670 kDa in size. Tg,
accumulated in the colloid, provides the matrix for the
sequestration of iodine and synthesis of thyroid hormones
[Reviewed in (8)]. Tg iodination makes it a prohormone of T4
and T3. Tg antibodies majorly recognize the immunodominant
epitopes on Tg molecule known as region II in GD or HT
patients (9). Anti-Tg polyclonal antibodies have been reported
in 30% of GD patients. The cell surface expression of Tg is
regulated by TSH. The Tg gene sequencing studies showed
that variations in the amino acid sequence is associated with
AITDs (10).

Thyroid Peroxidase (TPO)
TPO is germane to enzymatic action of iodination of Tg in the
presence of H2O2 and synthesis of thyroid hormones. Owing
to its intracellular localization, it is also known as “microsomal
antigen” [Reviewed in (11)]. Over 90% of patients with GD show
the presence of anti-TPO autoantibodies (12).

TSH Receptor (TSH-R)
TSH-R is a member of G-protein coupled receptor family
with seven transmembrane domains. Accumulating evidences
support the presence of anti TSH-R autoantibodies in GD
patients [Reviewed in (8)]. The receptor is a glycoprotein
of 764 amino acids, which shows the architectural pattern
of an extra-membranous region (A subunit) tethered
through seven transmembrane loops into the membrane
that ends into an intracellular domain (B subunit)
showing association with Gs subunit of adenyl cyclase
(13). TSH-R shows a remarkable feature of undergoing
post-translational cleavage wherein the holoreceptor
loses the C-peptide region of the polypeptide chain (A
subunit), which has been proven to potentiate autoimmune
response (14, 15).

Apart from the above-mentioned autoantigens, NIS has been
accepted to be the fourth important autoantigen in AITDs. It has
been documented that 1/3rd of sera from GD and 15% sera from
HT patients contain NIS inhibiting antibodies (16). Studies have
shown that iodide uptake is inhibited by anti-NIS antibodies that
affect the function of the thyroid gland (17).

The Synthesis of Thyroid Hormones
The iodide from blood capillary is taken up into the thyrocyte
by NIS, which is followed by its transport across the cell and
finally efflux into the follicular lumen (colloid). The expression
of Tg genes leads to the secretion of Tg into the colloid,
where Tg serves as a scaffold for the synthesis of thyroid
hormones. After iodide comes on the thyrocyte-colloid interface,
it gets oxidized and is incorporated into Tg enzymatically by
TPO. Following a sequence of reactions, described elsewhere,
TPO catalyzes the synthesis of T3 or T4 (18). The release of
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FIGURE 1 | Thyroid gland function and structure. The hypothalamus secretes thyrotropin releasing hormone (TRH) that stimulates the anterior pituitary to release

thyroid stimulating hormone (TSH). TSH acts on the TSH receptor (TSH-R) leading majorly to the activation of two crucial steps-expression of sodium/iodide

symporter (NIS) that functions in uptake of iodine into the thyrocyte from the blood stream and biosynthesis as well as release of thyroid hormones T3 and T4.

thyroid hormones into the bloodstream is through pinocytosis
(18) (Figure 1).

THE ROGUE LYMPHOCYTES IN
AUTOIMMUNE THYROID
DISEASES (AITDs)

The self-non-self discrimination ability of the immune system
has well-evolved not only to protect us against invading foreign
proteins (non-self-antigens) but also to tolerate the self-antigens.
However, it has been reported that in 20% of adult women,
antibodies to thyroid antigens are present and this situation is
clinically considered normal. In the pathophysiology of AITDs,
both humoral (antibody) as well as cell-mediated mechanisms
assault thyroid cells.

Immunogenicity of Thyroid Autoantigens
The professional antigen presenting cells (APC) endocytose
proteins, process and present them as peptides on their surface
major histocompatibility complex class II (MHC class II) protein
to T cell antigen receptor (TCR) of naïve CD4+T helper
(Th) lymphocytes. The thyrocytes or the thyroid follicular cells
(TFC), being polarized epithelial cells, show endocytic activity by
internalizing colloid rich in thyroglobulin to exocytose generated
thyroid hormones. TFC become non-professional APCs leading
to the presentation of thyroid autoantigens on MHC class II (19).
Tg protein, being large and abundant in the thyroid, is largely

presented on MHC class II protein (20) (Figure 2). Apart from
the size and availability of autoantigens, their glycosylation status
plays an important role in T-cell response (21).

The cells can further cause surge in thyroid infiltration or

help in the differentiation of cytotoxic T cells (CTL). There are
reports of a unique subset of Th cell called Th17 lymphocyte,
which characteristically produce IL-17 causing exacerbation of
autoimmune response (22, 23). The main role of Th17 has been

seen in causing inflammatory tissue damage during autoimmune
response (24). The differentiation of Th17 is dependent on
intracellular pathways like signal transducer and activators of

transcription-3 (STAT3) and other cytokines (24).
Another important subset of CD4+T lymphocyte worth

mentioning is T regulatory cells (Tregs), which have CD25
protein and IL-2 receptor on their cell surface (25). They express

forkhead box P3 (FoxP3) gene, a transcription factor and specific
marker for Tregs, which has been known to undergo mutation
leading to the development of AITD (26). They have been well-
addressed in AITDs (27) and are known to maintain tolerance
through suppression of self-reactive T cell activation (28). Worth
mentioning here is the transmembrane protein CTLA-4 (or
CD152), which is constitutively expressed in FoxP3+ Tregs, have
been known for suppressing T cell response thereby acting crucial
in the sustenance of tolerance to self-antigens [Reviewed in (29)].
Thus, Th17 and Tregs oppose each other in the pathophysiology
of AITDs, thereby proving the importance of measurement of
Th17/Treg in the development of such maladies (30).
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FIGURE 2 | Schematic representation of thyroid autoantigen presentation on the thyrocyte leading to the activation of T cell cascade. The thyrocytes can act as

non-professional antigen presenting cell, whereby they can present thyroid autoantigens to Th lymphocyte during autoimmune response. This event can elicit the

activation of various T cells like the Tregs, Th 17, and the Th subsets, Th1 and Th2, under the influence of cytokines released. Unlike the normal immune response, the

immune cells violate homeostasis during the emergence of thyroid autoimmunity imposed by the genetic and environmental factors.

Role of Natural Killer (NK) Cells
and Macrophages
NK cells release cytokines and kill abnormal/foreign cells by
varied mechanisms (31). The cytokines released by NK cells
serve to activate macrophages. In the process called antibody-
dependent-cell-cytotoxicity (ADCC), the macrophages and NK
cells kill non-self-cells/altered self-cells coated with immune
complexes (32). The state of exacerbated thyrotoxicity in both
GD and HT may be attributed to a hike in the NK cell
activity (33).

MOLECULES PARTICIPATING IN THE
DESTRUCTION OF THYROID

The role of apoptosis in the maintenance of cellular homeostasis
is very important in the proper functioning of the body. Coclet
et al. approximately calculated that during a lifetime the turnover
of thyroid gland is ∼5 years (34). Reports suggest that normally
the apoptosis of thyrocytes is maintained at low levels but goes up
in various cases of thyroiditis (35). The lymphocytic infiltration
of thyroid in AITDs initiate cell-mediated cell death. Under the
conditions of prevailing inflammation, the surface expression of
Fas ligand (FasL or CD95L) and production of Fas (hence the
upregulation of Fas signaling cascade) on/by both thyrocytes
as well as activated T cells have been finely documented in
AITD (36, 37). The cytotoxic effector cells, CTL and NK cells
show constitutive expression of FasL [Reviewed in (38)]. Reports
suggest that there is a constitutive expression of Fas mRNA in

normal thyrocyte but, expression of Fas protein is evidenced
only after lymphocytic infiltration in the inflammation foci of
the thyroid gland (37). The apoptosis mediated by Fas in the
thyrocytes requires their induction through IFN-γ and TNF-α
[Reviewed in (36)].

The TNF-related apoptosis-inducing ligand (TRAIL) shares
homology with FasL. The receptors for TRAIL, Death Receptor
4 (DR4), and Death Receptor 5 (DR5) have been shown to be
expressed in the thyrocytes under the stimulatory effects of IFN-γ
in blend with TNF-α or IL-1β (39). The infiltrating lymphocytes
also showed significant concentrations of TRAIL mRNA in the
thyrocytes (39).

Molecules Aiding in Lymphocytic
Infiltration of the Thyroid Gland
The role of adhesion molecules in the migration of lymphocytic
cells to the thyroid gland is indispensable. A series of adhesive
molecules participate in the extravasation of lymphocytes
through the endothelial cells. The expression of selectins and
integrins on the endothelium forms a critical stage in the
accumulation of lymphocytes in thyroid gland. There is a surge
in the expression of key molecules involved in lymphocytic
attachment to endothelium in AITDs, these molecules are: the
β1-integrins (mediating the cell attachment to the extracellular
matrix proteins), vascular cell adhesion molecule-1 (VCAM-
1) and intercellular adhesion molecule-1 (ICAM-1) (40). For
example, T cells show higher production of IFN-γ, IL-1
and TNF-α, which potentiates the expression of adhesion
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molecule receptors thereby augmenting autoimmune response
(41). Interestingly, AITD associated rise in the vasculature of
the intra-thyroid environment is in coherence with the high
concentrations of vascular endothelial growth factor (VEGF),
angiopoietins (Ang-1 and Ang-2) and tyrosine kinase receptor
Tie-2 family signaling molecules (important for angiogenesis and
vascularization) (42). There are reports of monocytes expressing
Tie-2 that are recruited to inflammation foci or neoplastic center
(43). All these events compound up in causing tissue damage
evident in AITD (42).

CAUSES OF AITDs

The genetic susceptibility to AITD encompasses genes coding
for molecules participating in thyroid function and immune
response. The reviews describing genes that are susceptible
to AITD are discussed elsewhere (44). We have reports from
epidemiological studies that give convincing evidence about the
genetic predisposition of AITDs in samples of familial clustering,
female candidates and twins (45). One study on whole-genome
screening of multiplex families, identified unique susceptibility
loci for AITDs (46). Genetic factors predisposing candidates to
HT have also been studied (47). Approximately 80% of AITDs
occur due to genetic factors, and the remaining contribution is
due to environmental triggers. Exposure to radiation has been
proven to trigger AITDs. Epidemiological studies define the
dietary intake of iodine as one of the environmental triggers for
HT. Stress has also been reported to cause GD onset. Infections
due to bacteria as well as virus and the condition of pregnancy are
other triggers of HT [Reviewed in (48)].

Similarly, serological studies presented evidences in favor of
bacterial as well as viral infections in GD predisposition (49). The
active contribution of epigenetics in the development of AITD
has been well-addressed (50).

THE CASE OF GD

The pathophysiology of GD comprises thyroid growth, incessant
thyroid hormone production and orbital inflammation leading to
ophthalmopathy (51).

Interplay of Immune Cells and Other
Molecules in GD
TSH-R is the main autoantigen in GD that breaks immune
tolerance. Inside the thyrocyte, TSH-R precursor is subjected to
post-translational intramolecular proteolysis at multiple sites to
remove an intervening polypeptide stretch, giving rise to a 2-
subunit receptor structure, the α or A subunit (TSHR A) and
the β or B subunit (TSHR B). The two subunits are linked
together with disulphide bonds, which upon reduction release
the α subunit (ectodomain) (this phenomenon is called “receptor
shedding”) from its membrane-anchored receptor subunit β

(52). Studies on AITDs have shown that thyrocytes display
the feature of processing thyroid autoantigens on MHC class
II complex, which is certainly considered an inappropriate act
of thyrocytes (because they are not inherently an APC) (53).

So, a study hypothesized that this inappropriate expression of
MHC class II complex on thyrocytes enhances their ability to
present thyroid autoantigens to Th cells thereby potentiating
autoimmune response (54). Collective data from various assays
on the insight into the involvement of Th subpopulation in GD
clearly proves the role of Th1 in the malady (29). With respect
to Tregs, variants of CTLA-4 genes have been reported in GD
patients (55). In a remarkable study on cells obtained via fine-
needle aspiration biopsy from GD patients, it was shown that
the T cells in thyroid infiltration tested positive for in vitro cell-
mediated immunity (CMI) (56). The in vitro analysis of the
expression of MHC class II complex and presentation of thyroid
autoantigen on thyrocytes to T cells, conclusively shows the
involvement of IFN-γ in this event (in GD patient sample) (57).

The anti-TSHR antibodies (TRAb) [belonging to
immunoglobulin (Ig) G class] directed against TSH-R has been
categorically described into three types: (i) thyroid stimulating
antibody (TSAb) or thyroid stimulating immunoglobulin (TSI):
binds to an epitope on TSH-R leading to the activation of the
receptor (the effect is same as that of TSH), (ii) thyrotropin
binding inhibitory immunoglobulins (TBII) or thyroid
stimulation blocking antibody (TSBAb): bind to same or
different epitope where they obstruct binding of radiolabelled
TSH (shown in assays), and (iii) neutral TRAb. The physio-
pathological development of GD observes unregulated and
incessantly functional thyroid cells that are stimulated by TSAb
(58). It has been proven in vitro analysis that the free α subunit
of TSH-R (the self-antigen) is preferentially neutralized by
autoantibody due to its free accessibility thereby cause ascension
in autoimmune response manifesting GD (59). The binding of
TSAb to the ectodomain of TSH-R activates cAMP signaling
that stimulates the unregulated production of thyroid hormones
leading to hyperthyroidism. This shows biochemical features
of GD with high levels of thyroid hormones and low to almost
undetectable concentrations of TSH (60). The high titer of
TSAb against TSH-R is the characteristic feature of GD, wherein
TSAb activates TSH-R in the absence of TSH (61). In 95% of
GD patient samples, TSAb was a notable candidate (62). In
a remarkable study by Pichurin et al. it was shown that the
presentation of endogenously expressed and processed TSH-R
on MHC class II protein of thyrocyte significantly induced T cell
response and TSAb, symptomizing the Graves’ hyperthyroidism
in mice (63). Furthermore, experiments in animal models,
endogenous processing and presentation of TSHR A showed
higher induction of TSAb as compared to non-cleaving TSH-R
resulting in GD (64). In most of the studies reported on GD
patients, TPO autoantibodies are frequently detected (65).

The persistence of GD is strongly exerted by the presence
of B cells in thyroid lymphocytic infiltration. This was proven
by showing beneficial effect of depleting B-cells by the antibody
rituximab in GD (66). Apart from the competence of antibody
production, B cell-mediated immunosuppressive roles have also
been elucidated. The sporadic occurrence of the population of
immunoregulatory B cells (Bregs) in GD has been suggested
(67). Bregs have been identified to secrete IL-10, which is
anti-inflammatory thereby aiding in the sustenance of immune
tolerance. Alterations in function and concentration of Bregs
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have been observed in autoimmune diseases where severity of
the disease shares inverse correlations with Breg status (68). IL-
10 has an inhibitory role in APCs, where it impedes the secretion
of TNF-α; mitigates surface expression of MHC class II complex
and adhesion molecules. Also, Bregs directly affect the CD4+T
cell differentiation (69).

GD patient serum shows elevated levels of ICAM-1, VCAM-1,
and E-selectins that are all important in aiding the lymphocytic
infiltration of the thyroid gland, which is a reflection of
the persistent autoimmune response (70). Additionally, Grave’s
patients with ophthalmology manifest have been studied to show
higher serum levels of soluble ICAM-1 (sICAM-1) (71).

There are high serum levels of soluble Tie-2 and Ang-2 in
GD patients, which supplement the progression of hyperplasia
(angiogenesis) and inflammation (42).

Effect of Autoimmunity Beyond Thyroid
in GD
Albeit GD patients show tremendous immunomodulatory
assault of the thyroid gland, the extrathyroidal embodiment
of the disease holds its enigmatic effect. There are reports of
orbital infiltration leading to inflammation and connective tissue
remodeling in the orbit that is the manifestation of thyroid-
associated ophthalmopathy (TAO) (51). The involvement of
autoimmunity to TSH-R has been proposed in the TAO foci
(72). In a study by Pritchard et al. it was observed that IgG
mediated activation and secretion of the two strong T cell chemo
attractants, RANTES (CCL5) and IL-16, from fibroblasts proved
the role of these chemoattractants in the T cell infiltration
of the thyrocytes (73). Besides, studies also report about the
reinforced production of collagen in human fibroblasts under
the effect of IgG against TSH-R (74). Reports implicate about
the participation of fibrocytes, the progenitor cells of monocyte,
in thyroid as well as orbit infiltration (75). Adding to the
continuum of molecules participating in the story of thyroid
autoimmunity of GD, the partaken by insulin-like growth factor-
1 receptor (IGF-1R), which is stimulated by IgG, need a special
mention here (76).

Showing broad expression pattern in various tissues, IGF-
1R, a tyrosine kinase with extracellular and membrane-spanning
subunits, gets activated by growth factor ligands, IGF-1 and
IGF-2 to start cellular proliferation and antagonize apoptosis
(77). Overexpressing IGF-R1 elicits malignant transformation
(78). Apart from the aforementioned ligands of IGF-1R, there
are other proteins that bind to the receptor under hormonal
control, which are collectively called insulin-like growth factor-1
binding protein (IGFBP). One such example is the regulation of
IGFBP (specifically IGFBP-3) synthesis by sex hormones in the
breast epithelium (79). In relation to our present discussion on
thyroid autoimmunity, a fascinating observation was made that
the TSH-R and IGF-1R acted in concert regulating metabolism
in thyroid [Reviewed in (80)]. The T and B lymphocytes have
been found to overexpress IGF-1R in GD (81). The development
of TAO has been speculated to be backed by the binding of IgG
on IGF-1R (82). Excessive deposition of hyaluronan (hyaluronic
acid, HA) in the extracellular matrix is one of the features of

TAO. The fibroblasts in the orbit co-express TSH-R and IGF-1R
that when activated by their agonists (TSH, IGF-1, respectively,
and IgG), cause secretion of HA from these cells (83). Data
on monoclonal antibody, M22 shows that it synergistically
potentiates HA secretion after activating TSH-R and IGF-1R
(84). The higher expression pattern of IGF-1R on T cells in
GD exerts an antiapoptotic effect on the infiltrating lymphocytes
causing their recruitment to the inflammation foci in the thyroid
tissue thereby playing an important role in GD pathogenesis
(85). The display of IGF-1R+ phenotype on B cells in patients
with GD, dispenses high expansion of B cells and anti TSH-R
antibody production (81). Pritchard et al. had enunciated the
active role of IGF-1R as a self-antigen in the development of GD
pathogenesis (86).

Abrogation of Apoptosis in GD
The Fas-mediated apoptosis is considerably inhibited by TSH
that results in hyperplasia of the thyrocytes in GD (87). The
goiter phenotype in GD is strongly promoted by the inhibition
of apoptosis mediated by Fas (88). Salmaso et al. showed that
the thyroid infiltrating lymphocytes has higher expression levels
of Fas/FasL that was synchronous with the significant apoptosis
of the former in GD (89). The higher concentrations of IgG
in GD have been known to mitigate the expression of Fas and
at the same time potentiate the upregulation of Bcl-2 family
of antiapoptotic molecules in the thyrocytes (90). However, the
infiltrating lymphocytes are not spared by the upregulation of
Fas expression and thereby undergo apoptosis augmented by the
co-expression of proapoptotic molecules (91).

THE CASE OF HT

HT represents the most common chronic AITD with
hypothyroidism responsible for significant morbidity among
women (92). The subclinical presentation of HT is characterized
by higher serum TSH levels. The disease manifests itself with
overt loss of thyrocytes and circulating autoantibodies against
Tg and TPO (93). HT has been studied to coexist with other
autoimmune diseases in the same patient [Reviewed in (48)].

Interplay of Immune Cells in HT
The thyroid gland cells show lymphocytic infiltration by T as well
as B cells. Autoreactive T lymphocytes secrete various cytokines
that exacerbate inflammation of intrathyroidal foci during
autoimmune response (94). Stimulated by the inappropriate
behavior of aberrant antigen presentation, uninterrupted
invigoration of Th cells potentiates B cell activation that produces
anti-TPO and anti-Tg autoantibodies. These autoantibodies
prove the pathogenic role of B cells in thyrocyte damage.
The B lymphocytes get activated upon recognizing a soluble
autoantigen through their receptors on membrane, which is
the membrane bound immunoglobulin (B cell receptor, BCR).
This process is followed by two events: synthesis and secretion
of specific autoantibodies by the activated B cells and B cells
acting as APC to present autoantigens to CD4+ T cells that
reciprocates this alliance through sustained B cell activation
[Reviewed in (95)]. We have ample reports that advocate the
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presence of high titers of anti TPO autoantibodies in 90% of HT
patients (96). Anti TPO autoantibodies assault thyroid cells via
molecules of cytotoxic effectors (monocytes) and/or compliment
activation (complement-mediated cytotoxicity, CDC) through
the process of ADCC in HT (97). Additionally, the report of
activated cytotoxic T cells resulting in thyrocyte destruction is
quite evident in HT studies [Reviewed in (94)]. Apart from this,
the ratio of Th1 to Th2 is elevated in cases of severe HT, where
congruently high secretions of IFN-γ exacerbates the disease
severity (98). The participation of Th17 in the pathogenesis of
HT has been well-established. Li et al. showed significantly higher
levels of intra-thyroid T17 cells and IL-17 serum in HT patients
(99). Wang et al. have shown that increased concentration of
Th17 cells in HT is associated with high CD4+ T cell-derived
leptin levels (100). Leptin is an adipocyte hormone that shows
high level structural similarities with IL-6, IL-11, IL-12 (101),
and is a mediator of inflammation (102). High plasma leptin
levels have been observed in women with postpartum thyroiditis
and in postmenopausal women with HT (103).

Also, lower levels of Tregs have been documented in patients
with HT (104). Its plausible to bring in the mention of
one important protein, glucocorticoid-induced tumor necrosis
receptor (GITR) in the case study of HT patients. GITR (a
type 1 transmembrane protein) being expressed constitutively on
Tregs, associates with its cognate ligand, GITR ligand (GITRL),
present on APCs (105). The association of GITRL with GITR on
Tregs causes cessation of immunosuppression by Treg thereby
fuelling autoimmunity through the potentiation of Th17 cells
(106). In a study on HT patient serum, augmented levels of
GITRL correlated positively with higher concentrations of Th17
cells (104). CTLA-4 polymorphism has also been reported in
HT (107). Thus, the infiltrating CD4+ T cells (self-reactive)
engage the CD8+ cytotoxic T cells that kill thyrocytes through the
secretions of perforin and granzyme (108). The activated B cells
secret antibodies that lead to complement activation resulting in
apoptosis of thyrocytes (11).

Approval of Apoptosis in HT
The chronic state of ever deteriorating thyroid gland in HT
majorly results from the Fas-mediated destruction of thyrocytes.
Although, the Fas/Fas ligand (FasL) association initiates the
destruction of thyrocytes, a remarkable study by Giorgio et al.
showed the active role of infiltrating T lymphocytes in Fas-
mediated cytotoxicity, where T cells actively expressed Fas
and CD69. They showed that the T cells only expressed
Fas but unlike thyrocytes, they did not show significant
concentrations of FasL (109). The upregulation of Fas is strongly
stimulated by the secretion of IL-1β by activated macrophages
for proceeding toward thyrocyte destruction in HT (110). The
destruction of thyrocytes in HT leads to the loss of thyrocytes
and gradual accumulation of infiltrating monocytes causing
diffused fibrosis (88). Bretz et al. advocates the expression of
DR4, DR5 and TRAIL in thyrocytes that mediate apoptosis
in HT (39).

The destruction of thyrocytes aided by all the above-
mentioned plethora of molecular participants in the thyroid
gland results in hypothyroidism.

ER STRESS IN THYROID AUTOIMMUNITY

Endoplasmic reticulum (ER), being the cellular repertoire of
calcium, forms the pivot on which various cellular metabolic
processes depend, aiming at themaintenance of homeostasis. The
immune system as well as target tissue of AITDs, the thyrocytes,
shares the characteristic of secretory cells with an extended ER.

ER Stress in Autoimmunity
Under the conditions of imposed stress instigating AITDs,
the function of ER in sustaining proteostasis gets disturbed
that leads to ER stress. This initiates a cascade of signaling
events called unfolded protein response (UPR) (Figure 3).
The mammalian UPR showcases its signaling through three
ER transmembrane resident proteins, PERK, IRE1, and ATF6,
which get activated upon losing association of their ER
luminal domain with the principal chaperone, BiP/GRP78
(111–115). PERK activation is demonstrated through its
dimerization and trans-autophosphorylation of its cytoplasmic
domain that further phosphorylates cytosolic translation
initiation factor, eIF2α, triggering attenuation of translational
machinery that is cap-dependent (116). This is followed by
the translation of cap-independent, ATF4 mRNA that targets
upregulation of UPR genes (117). The second sentinel of
UPR, IRE1, upon activation shows its endoribonucleolytic
activity by splicing XBP1 mRNA that gets translated into XBP1
transcription factor, which upregulates genes coordinating in
degradation of misfolded protein and chaperone regulation
(118). The translocation of XBP1 into the nucleus leads
to the expression of UPR elements (UPREs). These are
a group of genes that give assistance in protein folding
and their further secretion, like proteins for ER-associated
degradation (ERAD) (111, 112, 119). The activated ATF6
gets translocated to the Golgi apparatus, where it undergoes
proteolytic cleavage giving another transcription factor,
p50ATF6 that targets the genes for ER chaperones, XBP1 and
CHOP (120).

Autoimmune inflammation has been studied to be induced
by stress triggers and ER stress finds an important role in
the pathogenesis of such autoimmune disorders (121, 122).
The induction of ER stress paves the way to several pro-
inflammatory immune arsenals like cytokines, IL-6 and IFNγ,
which have been proven to be the key players in pathophysiology
of autoimmunity (123, 124). A deranged ER homeostasis shows
aberrant post-translational modifications (PTM) that have been
studied to induce autoimmune response (125, 126). Autoimmune
disorders register a conglomeration of ER stress-induced UPR
activated molecules. The IRE1 mediates an immunogenic
response to misfolded peptides, induces apoptosis resulting in
the generation of auto-antigens that provoke autoantibodies
and enhances the viability of cells showing autoreactivity (127).
Autoreactivity to GRP78 has been observed in models of
autoimmune disease (128). Approximately 80% of patients
with autoimmune disease, rheumatoid arthritis, anti-GRP78
autoantibodies have been reported (129). It has been studied
that BIP may function as an adjuvant that induces immune
response under the conditions of ER stress (130). The role
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FIGURE 3 | The potential molecules involved in the crosstalk between disease etiology of AITDs and breast cancer. The pathophysiology of AITDs and breast

carcinogenesis display ER stress that shows the activation of UPR transducers (PERK, IRE1, and ATF6). In the manifest of AITDs, the MHC class I is downregulated

that is the primary reason for the aberrant presentation of autoantigens while the same downregulation in breast cancer becomes reason for escape of tumor from the

deleterious effects of cytotoxic T cells. Both the maladies display commonalities like: expression of GITR on Tregs, polymorphism in CTLA-4, illustration of IGF-1R on

Th lymphocytes, higher concentrations of IL-6, RANTES, Tie-2, leptin, VCAM-1, ICAM-1, and E-selectin. In more than 80% of breast cancer tissues, the expression of

NIS is highly significant, which is the primary iodide transporter in thyrocytes.

of PERK has also been studied in experimental autoimmune
encephalomyelitis (EAE), where priming of UPR by IFN-
γ leads to the activation of PERK that resists induction of
disease (131).

UPR in Pathogenesis of AITD
The break-down of self-tolerance in autoimmunity is majorly
accounted for the accurate processing and presentation of
peptides on MHC class I molecules. UPR plays an inevitable
role in the processing of MHC class I peptide presentation
during ER stress impinged by conditions of autoimmunity. It
has been studied that induction of UPR impairs expression of
MHC class I (132). Ulianich et al. have remarkably shown that
the induction of ER stress in thyrocytes imparts diminishing
effects on expression of MHC class I, and this accompanied
the activation of NK cells with high levels of IFNγ (133).
In the above discussion, we have seen that NK cells are
actively involved in the pathogenesis of GD and HT (33).
Ulianich et al. explained about the role of ER stress in the
instantaneous downregulation of MHC class I molecules on
thyrocytes and the relevance of IFN γ in the pathogenesis
of AITD (133). Studies have reported about the aberrant
expression of MHC class II by thyrocytes induced by IFN γ in
the thyroid autoimmunity (57). Post-translational modification

(PTM) of self-antigens in perpetuation of autoimmune diseases
like rheumatoid arthritis (RA) and type 1 diabetes has been well-
reported (134). The events of PTM on Tg has been suggested
for the cryptic self in autoimmunity of thyroid (135). The innate
immunity owes its proper functioning to UPR that supplies the
demanding microenvironment with proinflammatory cytokines
and chemokines. Among them, a remark on IL-6 is appealing
here because the signal transducers of UPR have been observed
to elicit the expression of IL-6 (136). On the same note, IL-
6 has been studied to show effect in the development of
TAO (137).

The very specialized function of thyrocytes is essential in
the secretion of thyroid hormones Tg, T4, and T4, which relies
substantially on the proper functioning of the ER. Hence, stimuli
causing ER stress paves the way to UPR in thyrocytes (138).
Administration of iodine in GD patients has been shown to
impose stress thereby diminishing the expression of MHC class
I as well as class II molecules in thyrocytes, which ultimately
facilitate the presentation of faulty autoantigens (139). In most
of the AITDs, Tg is the major target of autoantibodies because
of its unusual processing in the ER (8). The influence of ER
stress in autoimmunity is well-described in various reviews (126).
However, the participation of UPR sentinels, PERK, IRE1 and
ATF6 have not been extensively studied in the cases of AITDs.
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WHY IS THE FEMALE SEX MORE PRONE
TO AUTOIMMUNITY: THE
GENE CONNECTION?

We have accumulating reports that attempt to explain the
disparity in the preponderance of AITD in females (140). The
autoimmune regulator (AIRE) gene finds its expression in
thymus, lymph nodes and fetal liver, which are the workshops
for T cell maturation [Reviewed in (141)]. AIRE codes for a
transcriptional regulator that is a significant mediator of the
central tolerance working in sync with Tregs for preventing
autoimmunity [Reviewed in (141)]. The etiology of autoimmune
polyglandular syndrome (APS) type 1 uncovers its manifestation
in an autosomal recessive mutation in the AIRE gene due
to which the patient suffers from Addison’s disease and
thyroid autoimmunity [Reviewed in (142)]. Under the effect
of AIRE mutation, the self-antigens do not undergo negative
selection/clonal deletion that fallouts as autoimmunity. Latest
studies have shown that sex hormones are involved in the thymic
AIRE regulation, for example, androgens heighten the negative
selection of thymocytes through AIRE upregulation thereby
conferring protection against autoimmunity, whereas estrogen
downregulates expression of AIRE leading to the flaring of
autoimmunity (143). Also, an increase in the testosterone levels
in females suffering from polycystic ovary syndrome heightens
their chance of getting AITDs (144). A multitude of female
patients with AIDT show higher B cell antibody production
(145). Moreover, there are reports of skewed X- chromosome
inactivation (XCI) (same X-chromosome inactivation in ≥ 80%
of cells) in women manifesting the AIDTs: skewing odd ratio of
XCI with GD was 2.54 and with HT it was 2.40 (11).

THE ALLIANCE BETWEEN AITD AND
BREAST CANCER

Accumulating reports unequivocally corroborate the association
between AITD and breast cancer (146). Nearly every type of
thyroid malaise has been witnessed to be cohesive with the breast
malignancy like, nodular hyperplasia and hyperthyroidism (147).
The elaboration of breast cancer in patients with GD as well
HT has been well-documented (148). Smyth et al. advocated
the presence of considerable concentrations of anti-TPO
autoantibodies among patients with breast cancer (149). Not only
this, the presence of anti-TPO autoantibodies give a significant
prognostic advantage for breast cancer (150). The anti-TPO and
anti-Tg autoantibodies have been given their roles as potential
protective agents against breast carcinoma in hypothyroidism
(11). On the other hand anti-TSH-R autoantibodies have been
reported to have associative relationship with the risk of breast
cancer (151). The presence of TSH-R in mammary epithelial cells
is well-acknowledged (152).

Breast Carcinoma and Its Prevalence in
Patients With AITDs
Breast cancer represents heterogeneity in its molecular as
well as histological manifest. Based upon the expression of
hormone receptors, the subtypes of breast carcinoma are as

follows: either estrogen (ER) or progesterone (PR) receptor
positive (ER/PR+/−), neither ER nor PR positive (ER/PR−/−),
HER2 positive (HER2+) (they show overexpression of oncogene
ERBB2) and devoid of any receptors called triple negative
(TNBC). Hormonal therapy works for ER+/−//PR+/− breast
cancers whereas anti-HER2 therapy is used effectively for HER2+

subtypes. TNBC being most aggressive of all is linked with higher
relapse rate (153).

We have accumulating reports on the association amid
autoimmune thyroid diseases and breast cancer (5). Various
research findings have augmented the data on the prevalence
of thyroid autoantibodies in breast cancer patients (154). We
have studies that show that HT patients are at higher risk for
breast cancer (155), however discrepant data also shows non-
approval of relationship between HT and breast cancer (156, 157)
In one study group of breast cancer patients, thyroid antibodies
were frequently reported with the manifest of HT. This study
advocates the prevalence of cytotoxic antibodies in breast cancer
patients (148).

The Enigmatic Role of NIS
The expression of NIS in the mammary gland epithelium
is prominently evidenced during lactation as well as breast
malignancy (158). Reports demonstrate that in more than 80% of
breast cancer tissues, the expression of NIS is highly significant
(159), nonetheless, this expression did not show any meaningful
iodide uptake (160). Experiments have proven that in vitro
stimulation of NIS expression in breast tissue can be attained by
lactogenic hormones and insulin (161). The expression of NIS in
the thyroid gland is stimulated by TSH whereas its expression is
only transiently dependent on the TSH activity during the period
of lactation in the mammary gland (162). Albeit, the expression
of NIS in some breast cancer cells have been significantly reported
to be induced by retinoic acid (163). The molecular journey
of the regulatory cascade culminating in the NIS expression is
quite appealing. The most effective TSH-responsive enhancer
element is present in the NIS promoter (chromosome 19), which
is known as the NIS upstream enhancer (NUE). The cofactor
responsible for suppressing NUE is PBF (a proto-oncogene),
which is pituitary tumor-transforming gene-1 (PTTG1)- binding
factor, has been documented to co-localize with cytoplasmic
NIS [Reviewed in (164)]. In some cases of differentiated thyroid
cancer, the transcriptional regulatory network for NIS expression
fails, due to which thyroid cancer tissues show mitigated levels
of NIS mRNA expression [Reviewed in (164)]. Contrary to
this, studies also report that these differentiated thyroid cancer
tissues showed copious cytoplasmic NIS expression rather than
cell surface expression. This observation is in coherence with
the retention of NIS in the cytoplasm rather than their surface
expression on the breast tumor. This has been a proposed
mechanism for the diminished radioiodide uptake by both
thyroid as well as breast cancers [Reviewed in (164)]. Most
thyroid and breast cancers have been shown to abundantly
express PBF, which is possibly responsible to retain NIS in the
cytoplasm [Reviewed in (164)]. This PBF mediated mitigation
in the functional expression of NIS in the thyrocytes, has
been linked to the enlargement of thyroid in transgenic mouse
model (165).
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The upregulation of NIS expression and at the same time,
their intracellular retention in various other cancers like stomach
and liver in addition to thyroid and breast carcinoma, suggests
about a common molecular link. In a remarkable study, the non-
solute transport role of NIS was delineated, where it was proved
that there is an interaction of NIS with the leukemia-associated
RhoA guanine exchange factor (LARG) leading to the activation
of RhoA [Involvement of RhoA in breast cancer is discussed
elsewhere (166)], which supports cell migration (167).

The discussion on NIS would be incomplete here without
mentioning about the anti-NIS autoantibodies. As reviewed,
reports have endorsed anti-NIS autoantibodies in AITDs but we
are in dearth of successful data that can prove the role of these
autoantibodies in the autoimmune thyroid pathogenesis (168).

The Molecules
Upregulated/Downregulated in AITD May
Foster Breast Cancer
The malignancy in breast is dependent on the hormonal activity
(169). Being women is one of the greatest risk factors for the
development of breast cancer (170). The various epidemiological
and molecular studies discussed herein do correlate the existing
alliance between high prevalence of AITD in women and
breast cancer. The molecules participating in the sustenance
of autoimmunity in AITD share functional relevance in the
development and progression of breast cancer. We present here
an analysis on the gamut of molecules that arise during the
pathophysiology of AITDs, which can be a potent prop for
breast neoplasia.

The Immunological Panorama
The breast carcinoma shows unusual quantities of stroma
with fibroblasts, vascular tissues and lymphocytic infiltration
that are implicated in the development of cancer (171). The
tumor microenvironment harbors several immune cells that
turn foe to the host whereby they provide a helping hand
for the establishment of tumor. Numerous tumor-infiltrating
lymphocytes sustain the growth of tumor by the suppression
of host immunity by using their arsenals like Tregs, myeloid-
derived suppressor cells (MDSCs) andmacrophages (172). Under
the conditions of perturbed homeostasis due to the stress
imposed by coexisting diseases like AITDs, the various cytokines,
chemokines, and extracellular matrix molecules secreted during
the pathogenesis of AITD might aid in the recruitment of
molecules that potentiate cancer. The statistical analysis shows
that the exhibition frequency of cancer is higher in tissues under
the assault of chronic inflammation (173).

The cellular immune responses triggered by MHC class
I molecule are very important for intracellularly processed
peptides and this owes its regulation to ER proteostasis. We have
ample studies that support the idea of dependence of MHC class
I molecule expression on the hormonal modulation in a specific
tissue (174). The characteristic feature of declined expression
of MHC class I molecules on CD4+ T cells in patients with
autoimmune diseases is in congruence with the similar pattern
observed in malignancy (175). A failure in proper regulation of

self-antigen presentation on MHC class I molecule in thyroid
paves the way to AITD (174). Analogously, it has been shown
in HER2-overexpressing breast cancer patients that the cancer
escapes from CTL through MHC class I downregulation (176).

Metastasis showcases its protection against NK cells and CTL
through the alteration of FoxP3+ Tregs under the influence of
Bregs, in breast cancer (177). In mice model of breast cancer,
the MDSC are known to be educated by Bregs that render the
former pro-metastatic. MDSCs represent a heterogenous group
of cells that have the power to restrain function of T cells
thereby disseminating pathogenesis of cancer (178). The activity
of MDSCs has been known to be activated by both IFNγ as well
as TGFβ, and in cancer models their build-up is potentiated by
IL-6 and IL-1β (179). Chen et al. showed that CTLA-4 not only
negotiated the downregulation of MHC class II expression but
also the activation of T cells, resulting in the perpetuation of
tumor proliferation (180). In a meta-analysis study, it has been
suggestively disclosed that polymorphism in CTLA-4 is related
with the susceptibility of breast cancer (181). A further addition
in the similarity event amid AITDs and breast cancer is the
presence of Tregs expressing GITR. Krausz et al. have proven
that the expression of GITR on Tregs is associated with rise in
metastatic potential of breast carcinoma (182).

The performance of IGF-1R is critical in the growth and
migration of cells, therefore it is not startling that the signaling
of IGF-1 strongly props cancer establishment. Reports show
that ∼50% of breast carcinoma manifest IGF-1R expression
(183). Astonishingly, the abundance in the availability of IGF-
1 and IGF-2 accentuate the tumor microenvironment, which
favors the unimpeded migration of breast cancer (184). Hence
reports of IGF-1R activity in GD strongly correlates with
the addition of these cancer potentiating molecules in the
cellular microenvironment.

Aforementioned role of IL-6 in the inflammatory events of
TAO finds its similar function in the pathophysiology of breast
cancer where IRE1 arm of UPR elicits inflammatory molecules
(NF-κB) through IL-6 (112, 185). The boosting concentrations
of IL-6 during the establishment of GD pathogenesis, might act
as host factors that can support breast carcinoma. GD registers
a comparative resistance to apoptosis owing to its distinct
cytokine expression profile, where RANTES has been witnessed
to support lymphocytic infiltration in the thyroid. Analogously,
breast cancer progression has been strongly propped by the
elevated expression of RANTES (186). Another important pro-
inflammatory molecule associated with autoimmunity is leptin
(187). Niu et al. showed through meta-analysis that leptin
influences the development and progression of breast cancer
(188). We have accumulating reports from studies in breast
cancer cell lines that show the active participation of leptin in
proliferation and anchorage-independent propagation of breast
tumor (170).

Adhesion Molecules Are the
Surrogate Players
The adhesion molecules have been studied to act as the potential
markers of the autoimmune manifest, which play crucial role in
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the immunomodulation of the patient (189). These molecules
are vital in the interaction of cell to cell as well as cell to its
basement that has been postulated to be pivotal in inflammation
and metastasis (190).

The expression pattern of adhesion molecules in the
vasculature depends on the cytokines of pro-inflammatory and
pro-angiogenic stimulus that we have seen from the above
discussed data on the thyroid autoimmunity. The activated
endothelial cells secrete adhesion molecules like VCAM-1 and
E-selectins (191). These adhesion molecules have been verified
to promote inflammation in the endothelium that facilitates
metastatic seeding in distant organs (192). Higher serum
concentrations of soluble VCAM-1 (sVCAM-1) and ICAM-1
have been reported in breast cancer (193). The higher expression
levels of E-selectins were also observed in the endothelium of
breast cancer (194). Byrne et al. showed that significant levels of
serum VCAM-1 closely associate with tumor angiogenesis (191).
Apart from the tumor cells, the host cells also recruit factors
that support angiogenesis (neovascularization), which include
molecules sourced from endothelial cells, extracellular matrices,
fibroblasts and platelets (195). The higher levels of E-selectin
in patients with GD, helps in the invasion of cells affecting the
dissemination of autoimmunity (196). The expression of Tie-
2 has also been well-reported in breast cancer that supports
angiogenesis (197). Thus, the microenvironment created by
a surplus of adhesion molecules due to the establishment of
thyroid autoimmunity might play a role in augmenting breast
cancer progression.

The pictorial representation of this molecular crosstalk has
been illustrated in Figure 3.

The Key Players of ER stress
Under the conditions of imposed ER stress, the cells and
their environing extracellular surroundings are under constant
pressure to discern life or death decision. Breast cancer is one
good example of this situation. We have learnt from various
studies that ER stress and hence the ensuing UPR plays major
role in the pathophysiology of breast carcinogenesis (112). Young
et al. have shown increasing levels of ER stress in thyroid tissue
causing autoimmune diseases (198). In congruence with the
aforesaid impairment of MHC class I expression due to UPR
induction in AITDs, it is well-established that diminishing levels
of MHC class I in breast tumor is an important parameter
for escape from the effects of CTL (199). In a study by Inoue
et al. it has been well-documented that HER2 signaling mitigates
the expression of MHC class I on breast cancer cells (176).
Apart from acting pro-survival to tumors, UPR shoots up the
concentration of inflammatory molecules that further bolster
the progression of tumor. The UPR sculpts cancer proliferation
through the cytokines like IL-6, released by the tumor infiltrating
lymphocytes (200, 201). A study on TNBC cells showed
that the IRE1 axis of UPR activated the production of IL-6,
which was pro-tumorigenic (201). Additionally the IRE-1/XBP1-
mediated upregulation of inflammatory molecule, NF-κB has
been documented in studies on breast cancer (112). Another
UPRmarker, PERK, show expression in activity hinting about the
crosstalk between AITDs and breast cancer. Human breast ductal

carcinoma shows phosphorylation of PERK thereby marking the
active involvement of UPR signal transducers (202). Chen et al.
have shown that XBP1 silencing effectively diminished growth
of mammosphere in TNBC cell lines (203, 204). Interestingly,
Bartkowiak et al. have reported the activation of UPR in the
disseminated tumor cells in the bone marrow of breast cancer
patients (205).

These are the key signatures which are common to
the pathophysiology of both AITDs and breast cancer.
Therefore, a radical approach to develop molecules against the
aforementioned UPR signatures can be a potential therapeutic
intervention to tackle both the diseases.

FUTURE PERSPECTIVE

The development of cancer is not only pronounced by the
intrinsic autonomous biochemistry operating in the tumor but
also the changes in the neighborhood of the primary tumor
niche, which involves alterations in the concentrations of various
molecules beyond their homeostatic levels. The pathophysiology
of AITDs strongly hints that there is a significant upsurge in
the concentration of various molecules that cross the boundary
of one endocrine organ (thyroid) to another (breast). We
have witnessed a distinctive collaboration among molecules
showing heterotypic association amid the AITD manifest and
the incipient breast tumor, which is remarkable. Despite the
developments in the treatment of autoimmune disorders using
immunomodulatory molecules, the results are not always
satisfactory. Hence the knowledge about key molecules involved
in the development of autoimmunity with special emphasis on
stress-induced signaling molecules like the UPR markers is a
mandate. Targeting the molecules involved in ER stress can
help alleviate the destruction caused by the possible crosstalks
between AITDs and breast cancer. For instance, in some models
of autoimmune disorders, the IRE1 inhibitor has come out as a
potential therapeutic candidate (206, 207), therefore this gives a
good idea to extrapolate the study in AITDs. In the same note of
finding clue to the crosstalk, some of the unventured areas worth
raising at this point are discussed herein.

The glycosylation status of autoantibodies, especially IgG
is important in the pathophysiology of autoimmune diseases
(208). ER being the primary cellular compartment orchestrating
the PTM of nascent peptides, becomes an important site for
glycosylation of autoantibodies. The cellular receptors for the
constant domain of IgG (Fcγ receptors, FcγR) act centrally
in the mediation of inflammation caused by autoantibodies
(209). Interference in the glycosylation pattern on Fc portion
can malign the situation resulting into autoimmunity response
by autoantibodies (208). Aberration in the functioning of
glycosyltransferases leading to remodeling of glycosylation status
on IgG, has been uncovered in patients with rheumatoid arthritis
(an autoimmune disease) (210). Analogous to this, the cancer
metastasis has been extensively studied with respect to aberration
in the glycosylation pattern of various immune as well as
adhesion molecules (211). The genetic dysregulation pertaining
to crucial enzymes of glycosylation like Mgat3 or Mgat5, play
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significant role in cancer progression. In one remarkable study,
the ER stress inducing agent, Tunicamycin, has been shown to
interfere protein glycosylation whereby it reduced angiogenesis
in breast tumor models (212). But we are in dearth of such
experiments pertaining to AITDs. Therefore, studies unraveling
any potential aberration in glycosylation in the cases of AITDs
is strongly demanded, which can help us join some of the
missing links in the crosstalks amid thyroid autoimmunity and
breast cancer.

The role of Galectin-9 (Gal-9), which is a glycan-binding
protein, in the innate as well as adaptive immune response is very
pertinent. Gal-9, being one of the prime regulatory molecules
acting against inflammation, works by downregulating the Th1
and Th17 response (213). Leskela et al. have shown that the
expression of Gal-9 was diminished in peripheral blood samples
of GD but not HT patients and through functional assay they
showed that exogenous Gal-9 imposed the downregulation of
Th1/Th17 response (214). In the same note, Irie et al. have shown
that the expression level of Gal-9 is low in breast cancer. They
further revealed through ectopic expression of Gal-9 in MCF-
7 cell lines that Gal-9 displayed anti-metastatic potential (215).
Hence, the role of Gal-9 in GD needs further exploration so that
the link to breast cancer can be deciphered.

The significance of concomitant occurrence of polymorphism
in the CTLA-4 gene, reported in both AITDs and breast
cancer, need further explorations on its functional front. Studies
have proven that the blockage of CTLA-4 not only recovers
the T cell activity but also mitigates breast cancer pursuit,
whereby therapeutic targeting of CTLA-4 would add up a step
in the therapy of breast cancer (180). Accordingly, venturing
more into the activity of CTLA-4 during the pathogenesis
of AITDs can help in further understanding of the potential
molecular targets for therapy. Furthermore, the available agonists
of GITR focusing on its translational modulation in cancer
have been reviewed elsewhere; hence a trial of the same in
AITDs would help in accentuating our attempts of catching
up with the knowledge lag in AITD pathophysiology (216).
Another striking molecule under consideration for therapeutic
arbitration is IGF-1R, which has been subjected to blockage
by several agents as discussed elsewhere (184). The abrogation
of Fas-mediated apoptosis is well-cited in the thyrocytes of
GD patients. Parallelly, breast tumor exhibits abolition of
Fas-mediated apoptosis, as shown by the study of Radin
et al. (217). The authors have extended their study to
show that the inhibition of antiapoptotic Fas antagonizing
protein, Lifeguard (LFG), whose expression level shoots up in
TNBC cell line can increase the chemotherapy efficacy (217).
Therefore, studies on LFG activity in AITDs might unearth
any potential role of this molecule in the pathophysiology of
the disease.

The past two decades has witnessed tremendous research
on the underlying mechanism of AITDs. Accumulating data

have exhibited insights into the dynamism of immune cells in
development and progression of cancer. Experiments involving
the pharmacological activation of ER stress in cancer cells
reported about the secretion of some soluble factors that led to the
induction of not only UPR markers but also pro-inflammatory

cytokines in the macrophages (218). This phenomenon of
“transmissible ER stress” affected APCs and induced expression
of immunosuppressant (219), thereby attesting one major
observation that cancer cells under ER stress cleverly modulate
immune cells through the secreted factors. Therefore, looking
into the intricacies of these soluble factors can help in
understanding if the same immunomodulation is happening in
the pathophysiological relationship of AITDs and breast cancer.
Both, AITDs as well as tumorigenesis largely depend upon an
orchestrated interplay displayed by the various molecules that
are categorically defined as being either cytokines or receptors
or adhesion molecules or autoantibodies. The three sensors of
UPR, PERK, IRE1 and ATF6, show a complex entwinement
of highly coordinated signaling pathway that regulates the
proper functioning of secretory cells (thyroid and breast).
An interference at the working of these molecules can be a
potential strategy that can aim at impeding the progression
of maladies associated with AITDs and breast cancer. At
this point of time, our science demands more reductionist
approach to the reconceptualization of molecular crosstalks
that ease the development and establishment of one disease
by another. Lots of epidemiological data exists that prove
the association of AITDs and breast cancer but at the same
time we lack the compendium that can elucidate the reason
behind such alliance. We need more AITD culture studies
focusing on target molecules of UPR that can be replicated in
animal models to give a comprehensive proof of the molecular
crosstalks that seem to build a network connecting two organ
pathologies. This will not only present a holistic lucidity
of the underlying mechanisms but also help in rationalizing
unrecognized prognostic markers, which might be common to
both AITDs and breast cancer.
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