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Abstract

Germline stem cell (GSC) self-renewal and differentiation into gametes is regulated by both

intrinsic factors in the germ line as well as extrinsic factors from the surrounding somatic

niche. dWnt4, in the escort cells of the adult somatic niche promotes GSC differentiation

using the canonical β-catenin-dependent transcriptional pathway to regulate escort cell sur-

vival, adhesion to the germ line and downregulation of self-renewal signaling. Here, we

show that in addition to the β-catenin-dependent canonical pathway, dWnt4 also uses down-

stream components of the Wnt non-canonical pathway to promote escort cell function earlier

in development. We find that the downstream non-canonical components, RhoA, Rac1 and

cdc42, are expressed at high levels and are active in escort cell precursors of the female lar-

val gonad compared to the adult somatic niche. Consistent with this expression pattern, we

find that the non-canonical pathway components function in the larval stages but not in

adults to regulate GSC differentiation. In the larval gonad, dWnt4, RhoA, Rac1 and cdc42

are required to promote intermingling of escort cell precursors, a function that then promotes

proper escort cell function in the adults. We find that dWnt4 acts by modulating the activity

of RhoA, Rac1 and cdc42, but not their protein levels. Together, our results indicate that at

different points of development, dWnt4 switches from using the non-canonical pathway

components to using a β-catenin-dependent canonical pathway in the escort cells to facili-

tate the proper differentiation of GSCs.

Author summary

Germ line association with the somatic cells is critical for various aspects of germ cell biol-

ogy, including migration, self-renewal and differentiation. In Drosophila females, soma–

germ line association begins during embryogenesis and continues until the mature egg is

formed. In the adult, the somatic escort cells promote differentiation of the germline stem

cell daughter using Wnt signaling. dWnt4, a Wnt ligand, acts in an autocrine manner in

these escort cells, using the canonical pathway to regulate survival, division and
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encapsulation of the stem cell daughter, a function critical for differentiation. Here, we

show at an earlier stage, in the larvae, the same ligand uses components of Wnt non-

canonical pathway, RhoA, Rac1 and cdc42, to regulate proper mingling of escort cell pre-

cursors between the germ cells. Thus, dWnt4 uses different modules of signaling at differ-

ent points in development to promote cell movement and control cytoplasmic

protrusions. As Wnts have been associated with cancers, understanding how Wnts modu-

late cell movement by switching on and off different modules may lead to insights into the

etiology and progression of cancers.

Introduction

Stem cell self-renewal and differentiation are critical for maintaining the organ systems of mul-

ticellular organisms. Loss of stem cell self-renewal leads to aging, due to an inability to replen-

ish these organs; while loss of differentiation leads to tumors, which can progress toward

diseases such as cancer [1–3]. Thus, identifying triggers of stem cell differentiation is pivotal

for understanding the etiology of degenerative diseases and cancer. Germline stem cells

(GSCs) self-renew and differentiate to produce gametes [4–7]. The balance between self-

renewal and differentiation is critical for a steady supply of gametes for increased reproductive

success. Dysregulation of GSC self-renewal and differentiation manifests itself as changes in

fecundity without markedly altering the organism’s growth or survival. Additionally, processes

regulating GSC differentiation are conserved in other stem cell systems [8–10]. Therefore,

GSCs make an excellent system to identify triggers of stem cell differentiation.

Drosophila GSCs are well characterized and genetically tractable [5]. GSC development

starts during the larval stages. The female larval gonad is made up of the somatic niche and pri-

mordial germ cells (PGCs) [11,12]. The late larval somatic niche is comprised of intermingled

cells (ICs), the terminal filament and the cap cells [11–14]. The PGCs that give rise to the GSCs

in the adults are interspersed with ICs, precursors of the adult escort cell [11,15,16] (Fig 1A).

Most of the PGCs remain undifferentiated during the larval stage [15,17,18]. As development

progresses, the larval gonad transforms first into a pupal gonad and then into an adult ovary.

During this transition, the PGCs closest to the cap cells acquire a stem cell fate and become

GSCs while the rest directly differentiate [15,18]. Each adult ovary consists of 16–18 individual

units called ovarioles. GSCs are located in the germarium, present at the anterior end of each

ovariole [19]. GSCs divide to give rise to a self-renewed GSC and a stem cell daughter, the

cystoblast (CB) (Fig 1B). The CB expresses a differentiating factor called Bag of marbles

(Bam), undergoes differentiation and four incomplete divisions to form a sixteen-cell cyst. Of

the sixteen cells, fifteen become nurse cells and one is specified as an oocyte [20–24] (Fig 1B).

Loss of GSC differentiation results in loss of or delayed progression towards becoming an

oocyte.

Soma-germ line interaction is critical for proper GSC self-renewal and differentiation

[8,25,26]. Both PGCs in the larval gonad and GSCs in the adults are surrounded by somatic

cells that constitute the somatic niche. Close contact and coordinated signaling between the

surrounding somatic niche and the germ line is pivotal for self-renewal and differentiation

[26,27]. In the larval stages, ICs regulate PGC proliferation [11]. Additionally, proper inter-

mingling of ICs in the larval gonad promotes proper escort cell function in the adults [28,29].

In the adults, the somatic niche can be broadly divided into two regions; the self-renewal niche

and the differentiation niche [26,30]. The terminal filament and cap cells comprise the self-

renewal niche that is required for regulating GSC self-renewal (Fig 1B) [24,26,31–36]. Loss of
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adherens junction proteins, such as DE-Cadherin and Armadillo/β-catenin, in either germline

or somatic cells within the self-renewal niche, leads to loss of contact and thus loss of GSC self-

renewal [37,38]. The differentiation niche, formed by the escort cells, makes extensive contact

with CBs by means of escort cell protrusions that encapsulate the CB and promote GSC

Fig 1. The downstream Wnt non-canonical components are required in the escort cells for proper germline stem cell differentiation. (A) Schematic of a female late

larval gonad. The primordial germ cells (PGCs) (blue) are interspersed with the intermingled cells (ICs) (red), precursors of escort cells. (B) A schematic of the

Drosophila female germarium present at the anterior end of the ovarioles. The germ line consists of germline stem cells (GSCs) (blue) that are attached to the self-

renewal somatic niche made by the terminal filament and cap cells (orange). The GSCs divide to give rise to the cystoblast (blue) that differentiates on expression of a

differentiating factor, Bam. The differentiating cystoblast (green) undergoes four incomplete mitotic divisions (green) to give rise to a sixteen-cell cyst (green), one of

which becomes an oocyte (grey). The differentiating somatic niche made by the escort cells (red) encapsulates the cystoblast and the differentiating progeny. C) An

illustration of the dWnt non-canonical pathway. dWnt binds to its receptor, Frizzled/Frizzled2 (Fz/Fz2) and activates DAAM1, RhoA, Rac1, and cdc42, downstream of

Dsh. RhoA activates ROCK. These pathways are required for actin remodeling, cell movement and cell polarity. (D-I) Germaria of c587-GAL4 (control) and dsh,

DAAM1, RhoA, Rac1 and cdc42 depleted escort cells stained with 1B1 (red) and Vasa (blue) showing an accumulation of>3 undifferentiated cells in dsh, DAAM1, RhoA,

Rac1 and cdc42 mutants (yellow line). (J) Percentage of the germaria with>3 spectrosomes in c587-GAL4, dsh, DAAM1, RhoA, Rac1 and cdc42 depleted escort cells

showing a significant difference in mutants (n = 50). (K-P) dWnt4 heterozygote; dWnt4/dsh1; dWnt4/DAAM; dWnt4,RhoA; dWnt4/Rac1 and dWnt4/cdc423 trans-

heterozygote stained with 1B1 (red) and Vasa (blue) showing an accumulation of>3 undifferentiated cells (yellow line) in the trans-heterozygotes. (Q) Percentage of the

differentiation defects in dWnt4 heterozygote, dWnt4/dsh1; dWnt4/DAAM; dWnt4,RhoA; dWnt4/Rac1 and dWnt4/cdc423 trans-heterozygote showing a significant

difference in trans-heterozygotes (n = 50). Scale bar for all images is 20μm.

https://doi.org/10.1371/journal.pgen.1007154.g001
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differentiation (Fig 1B) [39–41]. Thus, soma-germline contact throughout development is a

critical extrinsic cue that controls GSC differentiation.

Signaling from the somatic niche coordinates the balance of self-renewal and differentia-

tion. In the larval gonad, EGF/Spitz signaling from the PGCs is required for IC survival and

intermingling [11]. In the adult germaria, decapentaplegic (dpp) signaling in the self-renewal

niche regulates GSC self-renewal by phosphorylating the transcriptional regulator, mothers

against dpp (pMAD), to repress expression of the differentiation factor, Bam [20,24,31]. Ecdy-

sone and dWnt4, among others, have been shown to function in the differentiation niche to

promote the differentiation of the CB. Ecdysone signaling in the escort cells regulates the for-

mation of escort cell protrusions through an unknown mechanism [42,43]. dWnt4 autocrine

signaling in the escort cells is required for escort cell survival, repression of dpp expression and

for formation of escort cell protrusions to encapsulate the CB [44–46].

Canonical Wnt signaling plays a critical role in the adult differentiation niche. Wnts can

signal through either a canonical or a non-canonical pathway to affect downstream changes

[47]. In the escort cells, dWnt4 is known to regulate differentiation through the canonical

pathway [44–46]. dWnt4 binds to the receptor, Frizzled2 and co-receptor, Arrow (Arr), and

relays a signal to the multidomain protein, Dishevelled (Dsh), leading to stabilization of β-cate-

nin [47–50]. β-catenin, a cytoskeletal protein that is also a transcription factor, translocates

into the nucleus and initiates transcription of downstream targets including Frizzled3 (Fz3)

[51–57]. Depletion of any of the canonical pathway factors, such as β-catenin or co-receptor

arr, specifically in the escort cells leads to loss of CB differentiation by regulating escort cell

number [44–46]. Additionally, loss of dWnt4 leads to downregulation of a Wnt canonical

reporter, Fz3 promoter fused to RFP (Fz3RFP), and adhesion molecules, β-catenin, Innexin2

and DE-Cadherin [46]. These adhesion molecules promote escort cell encapsulation of the CB

that is required for its differentiation [46]. Thus, dWnt4 uses components of the canonical

pathway to control both the number and function of escort cells.

Wnt ligands, such as dWnt4, can modulate the Planar Cell Polarity (PCP) of cells [58].

Polarity within a plane of individual cells or of tissues is known as PCP. PCP can specify the

proximal and distal end of a cell, as in the Drosophila wing, or the dorsal-ventral and anterior-

posterior side of a cell, as in the Drosophila eye [58–64]. Two systems are known to indepen-

dently regulate PCP–the core components and the Daschous (Ds)/Fat (Ft) system [65,66]. The

core components consist of six proteins—Frizzled (Fz), Dishevelled (Dsh), Diego (Dgo), Van

Gogh (Vang)/Strabismus (Stbm), Prickle (Pk), and Flamingo (Fmi). These proteins form two

complexes that are asymmetrically arranged on the opposite ends of a cell–the Fz, Dsh and

Dgo, and the Vang/Stbm, Pk complex. Fmi is enriched on both sides of the cell and stabilizes

the complexes [59–61,67]. Small Rho GTPases such as Ras homolog gene family, member A

(RhoA), Ras-related C3 botulinum toxin substrate 1 (Rac1) and Cell division control protein

42 (cdc42) can function as the downstream effectors of the core complex [60,68–70]. The Ds/

Ft system consists of two atypical transmembrane cadherin proteins–Ds and Ft. Ds and Ft are

present on opposite ends of each cell and bind to each other at cell-cell junctions. A golgi asso-

ciated kinase, Four Jointed (Fj) phosphorylates the extracellular domains of Ds and Ft and

thereby promotes their binding [66,71]. The role of the core components and the Ds/Ft system

has been well established in specifying PCP in the wing and the eye.

Binding of Wnt to Frizzled2, can also activate pathways downstream of Dsh: Dishevelled

Associated Activator of Morphogenesis 1 (DAAM1), Ras homolog gene family member A

(RhoA), Rac1 and cdc42 pathway. This signaling cascade is also referred to as Wnt/Fz non-

canonical pathway. Activated RhoA activates Rho associated kinase (ROCK/dRok) [47,61,72–

75]. Together, these pathways regulate the cell division, cytoskeleton, cell movement and cell

polarity [76–81] (Fig 1C). It has been previously shown that, like dWnt4 mutants, flies carrying
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mutations in dsh1, a PCP specific allele, show disrupted oogenesis [82]. In contrast, loss of

other genes that regulate PCP such as fz, vang/stbm, fmi, dgo, and pk do not show such a defect,

suggesting that PCP might not be operating during oogenesis [82]. However, it is not known if

and how downstream components of the Wnt/Fz non-canonical pathway promote oogenesis.

Here, we find that RhoA, Rac genes and cdc42, the downstream Wnt non-canonical compo-

nents, but not members of the core components that define PCP, such as vang, ds, fz and ft,
regulate CB differentiation. We find that dWnt4 genetically interacts with the downstream

non-canonical components: dsh1, DAAM1, RhoA, Rac1 and cdc42. RhoA, Rac1 and cdc42 are

expressed at higher levels and are more active in the ICs of the late larval gonad than in the

adult escort cells. Conversely, the Wnt canonical reporter is not expressed in the late larval

stages but is expressed in the adults. Consistent with this observation, we find that these down-

stream non-canonical pathway components are required in the late larval stages for regulating

intermingling of ICs with the germ cells but their function is not essential in the adults to regu-

late differentiation. Additionally, we find that dWnt4 regulates the activity, but not the protein

levels, of RhoA, Rac1 and cdc42 in the larval gonad. Thus, dWnt4 regulates assembly of the

somatic differentiation niche of the GSCs by switching the mode of signaling during

development.

Results

dWnt4 acts through the downstream non-canonical pathway components

to regulate differentiation

To determine if the Wnt non-canonical pathway components regulate differentiation, we

depleted these components in the escort cells. We made use of RNA interference (RNAi) in

conjunction with c587-GAL4, which is expressed in the escort cells, to deplete dsh, DAAM1,

RhoA, Rac1 and cdc42 [43,83,84]. Both control and mutant germaria were stained with 1B1

and Vasa. 1B1 marks the endoplasmic reticulum rich organelle, the spectrosome, in undiffer-

entiated GSCs and CBs as well as in differentiating CBs; and it marks the branched structures,

the fusomes, in differentiated cysts [85]. 1B1 also marks somatic cell membranes [86]. Vasa, an

RNA helicase, marks the germ line [87]. We assayed for differentiation defects, defined as an

accumulation of greater than 3 undifferentiated cells marked by spectrosomes. Depletion of

dsh, DAAM1, RhoA, Rac1 and cdc42 resulted in germline differentiation defects compared to

control (Fig 1D–1J) (S1A Fig) (Table 1). We also depleted the mediators that define the PCP

of a cell utilizing previously validated RNAi lines in conjunction with c587-GAL4. We found

that for vang, ds, ft and fz, we did not observe any significant differentiation defect [42,88–90]

(S1B–S1I Fig) (Table 1). These results are consistent with Cohen et al’s observation that muta-

tions in genes that regulate PCP of a cell, such as fz, stbm, fmi, dgo and pk, do not lead to defects

in oogenesis [82]. Thus, we can conclude that downstream components of the Wnt non-

canonical pathway such as dsh, DAAM1, RhoA, Rac1 and cdc42 are required in the escort cells

for promoting GSC differentiation. Additionally, these results also suggest that the core com-

ponents that mediate PCP such as vang/stbm, ds, fz and ft do not play a significant role in the

escort cells to regulate GSC differentiation.

DAAM1, RhoA, Rac1 and cdc42 are critical proteins required for various basic cellular pro-

cesses, such as progression of the cell cycle and cell movement [76–80,91]. It is not surprising

that they are required in the escort cells for proper function. We asked if these proteins act

downstream of dWnt4 to promote differentiation. To answer this, we generated trans-hetero-

zygous flies that contained one genetically reduced copy of dWnt4 and one reduced copy of

dsh, DAAM, RhoA, Rac1 or cdc42 [92–96]. Dsh is a multi-domain protein that uses distinct

domains to interact with either the Wnt canonical or the Wnt non-canonical proteins [97].

dWnt4 switches signaling modes
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We used dsh1, a PCP specific allele, to test if dWnt4 uses the downstream components of the

PCP system [68,98]. If the downstream PCP components act through the same pathway, then

these trans-heterozygotes could exhibit GSC differentiation defects, but if they act parallel or

independent of dWnt4, then these trans-heterozygotes should not exhibit differentiation

defects. We stained these trans-heterozygote ovaries for 1B1 and Vasa to assay for differentia-

tion defects. Compared to 17.5% (n = 50) of heterozygous dWnt4 germaria, 98% (n = 50) of

dsh1;dWnt4 trans-heterozygote, 85% (n = 50) of DAAM;dWnt4 trans-heterozygote, 80%

(n = 50) of RhoA,dWnt4 trans-heterozygote, 78% (n = 50) of Rac1;dWnt4 trans-heterozygote,

and 68% (n = 50) of cdc423;dWnt4 trans-heterozygote germaria showed accumulation of spec-

trosomes (Fig 1K–1Q) (S2A–S2E Fig) (Table 1). As Dsh acts downstream of Wnt signaling,

we also stained dsh1, RhoA and Rac1 heterozygous, and trans-heterozygous flies with one

mutant copy of dsh1 and one mutant copy of RhoA or Rac1 for 1B1 and Vasa. Compared to

heterozygous dsh1, RhoA and Rac1 germaria, we found significantly higher number of spectro-

somes in dsh1 mutants, dsh1;RhoA trans-heterozygotes, and dsh1;Rac1 trans-heterozygotes

Table 1. Quantitation of undifferentiated cells in mutants compared to control germaria.

Genotype Spectrosomes n P-value /

%Differentiation defect

c587-GAL4 2.9 ± 0.7 50

c587-GAL4>dishevelled RNAi 7.0 ± 1.4 50 2.69663E-29

c587-GAL4>dDAAM1RNAi 7.8 ± 1.5 50 4.7793E-38

c587-GAL4>RhoA RNAi 7.2 ± 2.5 50 4.6713E-24

c587-GAL4>Rac1 RNAi 4.0 ± 1.5 50 4.38037E-11

c587-GAL4>cdc42 RNAi 7.2 ± 4.5 50 6.05032E-12

c587-GAL4>van gogh RNAi 2.6 ± 1 50 0.194156

c587-GAL4>daschous RNAi 3.0 ± 1.3 50 0.333138

c587-GAL4>frizzled RNAi 2.5 ± 1 50 0.0907

c587-GAL4>fat RNAi 2.9 ± 0.8 50 0.353701

dWnt4/CyO 2.7 ± 1.1 50 17.5% Differentiation Defect

dsh1/+ 2.8± 1.3 50

DAAM/Fm7 2.4 ± 1 50 16% Differentiation Defect

RhoA/CyO 2.9 ± 1.2 50 24% Differentiation Defect

Rac1/TM6 2.7 ± 1.1 50 22% Differentiation Defect

Cdc423/Fm6 3.9 ± 1.7 50 28% Differentiation Defect

DAAM/+;dWnt4/+ 50 Z-score = 7.1376, P-value = 0 (compared to dWnt4/CyO)

Z-score = 8.0064, P-value = 0 (compared to DAAM/Fm7)

dsh1/+;dWnt4/+ 50 Z-score = 7.1376, P-value = 0 (compared to dWnt4/CyO)

1.47184E-13(compared to dsh1/+)
RhoA/+,dWnt4/+ 50 Z-score = 4.0718, P-value = 0 (compared to dWnt4/CyO)

Z-score = 3.4338, P-value = 0.0006 (compared to RhoA/CyO)

Rac1/+;dWnt4/+ 50 Z-score = 4.4236, P-value = 0 (compared to dWnt4/CyO)

Z-score = 4.2418, P-value = 0 (compared to Rac1/TM6)

dsh1 4.1 ± 1.5 50 2.30222E-05 (compared to dsh1/+)

dsh1/+; RhoA/+ 4.1 ± 1.3 50 5.9375E-06(compared to dsh1/+)

2.7340E-06 (compared to RhoA/CyO)

dsh1/+; Rac1/+ 4.1 ± 1.5 50 7.4036E-05 (compared to dsh1/+)

1.83104E-05 (compared to Rac1/TM6)

Cdc423/+;dWnt4/+ 50 Z-score = 4.7801, P-value = 0 (compared to dWnt4/CyO)

Z-score = 3.0298, P-value = 0.00032 (compared to Cdc423/Fm6)

https://doi.org/10.1371/journal.pgen.1007154.t001
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(S2D–S2H Fig) (Table 1). Taken together, these results suggest that dWnt4 can function via

dsh and the downstream Wnt non-canonical components to regulate GSC differentiation.

Downstream Wnt non-canonical components regulate CB encapsulation to

promote differentiation

If dWnt4 acts through the downstream Wnt non-canonical components to regulate GSC differ-

entiation, then dWnt4 mutants and RhoA, Rac1 and cdc42 depleted escort cell mutants should

phenocopy each other. Loss of dWnt4 leads to an accumulation of pre-CBs that do not express

Bam due to loss of escort cell encapsulation and a reduction of escort cell number [44–46]. To

test if depletion of the downstream non-canonical components in the escort cells also results in

an accumulation of pre-CBs, we stained control and mutants for pMAD, which marks the

GSCs, and used GFP under the control of bam promoter to analyze bam transcription and

hence mark the differentiating progeny [99]. In addition, we also stained control and mutants

for pMAD and BamC that marks proper translation of bam in the differentiating progeny. Simi-

lar to dWnt4 mutants, RhoA, Rac1 and cdc42 depleted escort cell mutants showed an accumula-

tion of pMAD negative, and BamGFP and BamC negative cells, suggesting that these mutants

accumulate pre-CBs (S3A–S3E Fig) (S4A–S4D2 Fig). Interestingly, in addition to early pre-

CBs, cdc42 mutants also showed an accumulation of BamGFP and BamC positive CBs, suggest-

ing that cdc42 may have an additional role in promoting CB differentiation.

Pre-CBs that accumulate in dWnt4 mutants are capable of differentiation upon ectopic

expression of bam. To test if the undifferentiated germ cells that accumulate due to depletion

of downstream components of PCP in the escort cells are also capable of differentiating, we

ectopically expressed bam by using a transgene that expresses bam under the control of heat-

shock promoter (hs-bam) [21]. We found, post heat-shock, these mutants showed loss of

undifferentiated cells and an accumulation of cysts, as marked by the presence of fusomes

comparable to the control (90% for c587-GAL4; 86% for c587-GAL4>RhoARNAi, P-value =

0.5353; 76% for c587-GAL4>Rac1RNAi, P-value = 0.0629 and 92% for c587-GAL4>cdc42
RNAi, P-value = 0.7263 {for all n = 50}) (S5A–S5E Fig). We also analyzed the expression of

Bruno in RhoA, Rac1 and cdc42 depleted escort cell mutants that carry the hs-bam transgene,

without heat-shock and post heat-shock. Bruno, a translational repressor, is expressed at very

low levels in the undifferentiated cells but is expressed at high levels post-differentiation from

16-cell cysts onwards [100,101]. We found, post heat-shock, cysts in Rac1 and cdc42 mutants

that carry the hs-bam transgene expressed Bruno, while cysts in RhoA mutants carrying the hs-
bam transgene only weakly expressed Bruno (S5F–S5M1 Fig). Altogether, these results suggest

that the downstream Wnt non-canonical pathway components are required extrinsically in

escort cells, to promote differentiation in the germ line.

Loss of escort cell number and their encapsulation results in loss of pre-CB differentiation

[39–41,102]. To determine if loss of the downstream Wnt non-canonical pathway components

leads to loss of encapsulation, we visualized the cytoplasmic protrusions using FaxGFP, a

somatic cell membrane marker [39]. It has been previously demonstrated that overexpression

in the escort cells of dominant-negative Rho (RhoDN), that disrupts Rho function, leads to loss

of escort cell encapsulation [40]. We found that, similar to dWnt4 mutants and germaria

where RhoDN was overexpressed in the escort cells, depletion of RhoA, Rac1 and cdc42 in the

escort cells also resulted in loss of encapsulation (Fig 2A–2D1). To determine if this was due

to decreased number of escort cells, we counted the number of Tj positive escort cells in these

mutants. We found that these mutants exhibited significantly lower number of escort cells

(16.5 ± 2.1 for c587-GAL4; 9.9 ± 3.7 for c587-GAL4>RhoARNAi, P-value = 0.00013; 11 ± 1.5

for c587-GAL4>Rac1RNAi, P-value = 4.1403E-06 and 9.3 ± 2.2 for c587-GAL4>cdc42RNAi,
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P-value = 9.5478E-07 {for all n = 10}). However, the escort cells that were present in the ger-

maria failed to extend cytoplasmic protrusions. These results demonstrate that like dWnt4,

downstream Wnt non-canonical pathway components in the escort cells regulate both encap-

sulation and their numbers, and thus CB differentiation [44–46]. These results taken together

suggest that dWn4 acts through Dsh and the downstream Wnt non-canonical pathway com-

ponents to regulate differentiation.

Components of Wnt non-canonical pathway are expressed at high levels

and are active in the larval gonad

Wnt proteins are known to regulate signaling through either the canonical or the non-canoni-

cal pathway [47]. Surprisingly, our data suggests that dWnt4 also acts through the non-canoni-

cal pathway components in the escort cells. There is little precedent for canonical and non-

canonical Wnt pathways acting in the same cell at the same time. We therefore hypothesized

that either dWnt4 signals via the canonical or non-canonical arm in distinct subsets of escort

cells or at different stages of escort cell development. If there are subsets of cells that respond

Fig 2. The downstream Wnt non-canonical pathway components are required in the escort cells for cystoblast

encapsulation. (A-D1) Germaria of c587-GAL4, RhoA, Rac1 and cdc42 depleted escort cells stained with Tj (red), GFP

(green) and Vasa (blue) showing loss of encapsulation in RhoA, Rac1 and cdc42 depleted escort cells. Fax-GFP marks

somatic cell membranes. GFP channel is shown in A1, B1, C1 and D1. Scale bar for all images is 20μm.

https://doi.org/10.1371/journal.pgen.1007154.g002
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to canonical signaling but not to non-canonical signaling, then we could observe the canonical

reporter to be present only in some escort cells. If the regulation is temporal, we hypothesized

that we could see differences in either levels or activity of canonical and non-canonical report-

ers as a function of development.

To test these hypotheses, we analyzed the expression patterns of downstream Wnt non-

canonical pathway components and a Wnt canonical reporter during late larval stages, late

pupal gonads and in the adult ovaries. Transgenic lines with GFP tagged RhoA, Rac1 or cdc42
that report endogenous expression were used for the Wnt non-canonical components [103].

These reporters were stained for their respective fluorescent proteins and Tj, which marks ICs

in the larval gonad and all somatic cells, except for the terminal filament, in the adult gonad

[29]. Vasa was used to mark the germ line. We found that RhoA, Rac1 and cdc42 showed high

expression in the larval gonad (Fig 3A–3B1 and 3D) (S6A–S6D1 Fig). In contrast, we found

that RhoA, Rac1 and cdc42 were expressed at low levels in the escort cells of the pupal and

adult germaria (Fig 3C and 3D) (S6E–S6I1 Fig). This different expression pattern suggests

that the Wnt non-canonical pathway members are regulated in a temporal manner in the

escort cells and their precursors during oogenesis.

RhoA, Rac1 and cdc42 are members of the Rho family of small GTPases. These proteins are

inactive when bound to GDP and active when bound to GTP [104,105]. The active forms of

these proteins regulate various downstream signaling cascades [76,77,106,107]. We observed

that downstream components of the Wnt non-canonical pathway, RhoA, Rac1 and cdc42 are

expressed at high levels in the larval gonad. We asked if these proteins are present in their acti-

vated form in the larval gonad. To test this, we performed live-imaging of larval gonads of trans-

genic lines that report the active form of RhoA/Rac and cdc42 [108]. In these biosensors, GFP is

fused to the Rho family GTPase Binding Domain (RBD) of downstream effector proteins.

Expression of GFP suggests the presence of active forms of these proteins. For RhoA/Rac activ-

ity, the downstream effector protein, Protein Kinase N (Pkn) was fused to GFP and placed

under squash (sqh) promoter [108]. For cdc42 activity, the cdc42 binding domain of Wiskott-

Aldrich Syndrome protein (WASp) was fused with GFP and this was placed under the control

of sqh promoter [108]. In order to observe the germ cells in these biosensors, we used kusabira-

orange (KO) fused germline marker, Vasa-KO [109,110]. Similar to the expression pattern of

the GFP tagged RhoA, Rac1 and cdc42 we observed the presence of active form of RhoA, Rac1

and cdc42 in the ICs of the larval gonad (Fig 3E–3F2). We also asked if these proteins are pres-

ent in their active forms in the escort cells of the adult germaria. We found that RhoA/Rac activ-

ity was attenuated and cdc42 was present in its activated state in the escort cells, albeit at lower

levels compared to the larval gonad (S7A–S7C Fig). Together, these results demonstrate that

the Wnt non-canonical components are not only present, but also active in the ICs. To deter-

mine the activity of the canonical pathway in the larval gonad, we used Fz3RFP [57]. We found

that while Fz3RFP showed no expression or was expressed at background levels in the ICs of

the larval gonad, it was expressed at higher levels in the escort cells of pupal and adult stages

[46,111,112] (Fig 3G–3I) (S7D–S7D1 Fig). Additionally, all the escort cells in the adult germar-

ium expressed the canonical reporter (n = 10, 99.5% Tj positive cells expressed Fz3RFP). Thus,

we concluded that Wnt canonical and Wnt non-canonical pathway components, and their

activity, are temporally regulated in escort cells and their precursors during oogenesis.

Components of the Wnt non-canonical pathway play a critical role in the

larval gonad

To determine if the different expression patterns of the downstream Wnt non-canonical path-

way components mirrored their role in the two developmental stages, we used the UAS-GAL4
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system to deplete genes using RNAi in the escort cells at specific developmental time points.

The UAS-GAL4 system is temperature dependent and therefore, different temperatures can be

used to attenuate genes at various developmental time points. Maximal RNAi activity is

attained at 29 oC whereas minimal RNAi activity is attained at 18 oC [113]. c587 is expressed

in the larval gonad, including the ICs, but is only expressed in the escort cells of the adult inner

germarium (S8A–S8C1 Fig). To elucidate if the downstream Wnt non-canonical pathway

components are required in the adults to regulate CB differentiation, the flies were kept at 18
oC until they eclosed. Once eclosed, the flies were shifted to 29 oC and kept at this temperature

for 7 days [114] (Fig 4A). The germaria were then stained for 1B1 and Vasa. This strategy has

been previously used to show that the dWnt4 canonical pathway is required in the adults to

Fig 3. The downstream Wnt non-canonical pathway components are temporally regulated. (A-B1) Larval gonad of transgenic fly with GFP tagged to RhoA stained

for Tj (red), Vasa (blue) and GFP (green) showing high expression of RhoA in the ICs. 63x of larval gonad is shown in B and B1. GFP channel is shown in A1 and B1.

(C-C1) Adult germarium of transgenic fly with GFP tagged to RhoA stained for Tj (red), Vasa (blue) and GFP (green) showing low expression of RhoA in the adult

escort cells. GFP channel is shown in C1. (D) Quantification (n = 7) of GFP in the ICs, pupal escort cells and adult escort cells showing that the downstream Wnt non-

canonical components are highly expressed in the ICs in comparison to the adult escort cells. (E-F2) Larval gonads of transgenic flies that report active form of RhoA/

Rac (E-E2) and cdc42 (F-F2). While RhoA/Rac is active in the ICs, cdc42 is highly active in the ICs and terminal filament and comparatively less active in the Primordial

Germ Cells (PGCs). Germline is marked by Vasa-KO. GFP channels and KO channels are shown in E1, E2, F1 and F2. (G-G1) Larval gonad stained for 1B1 (green),

Vasa (blue) and RFP (red) showing low expression of the Wnt canonical reporter, Frizzled3 in the ICs. RFP channel is shown in G1. (H-H1) Adult germarium stained

for Tj (green), Vasa (blue) and RFP (red) showing high expression of Frizzled3 in the adult escort cells. RFP channel is shown in H1. (I) Quantification (n = 7) of RFP in

the ICs, pupal escort cells and adult escort cells showing that the canonical reporter is expressed at higher levels in the adult escort cells in comparison to the ICs. Scale

bar for B and B1 is 10μm. Scale bar for all other images is 20μm.

https://doi.org/10.1371/journal.pgen.1007154.g003
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regulate CB differentiation [45]. We depleted dWnt4, RhoA, Rac1, cdc42 and also expressed

cdc42DN in the escort cells to assay for differentiation defects. We found that compared to con-

trol, 18 oC-29 oC temperature shift dWnt4 mutants exhibited a differentiation defect (Fig 4B

and 4C and Fig 4G). In contrast, compared to control, 18 oC-29 oC temperature shift RhoA,

Rac1, cdc42 and cdc42DN mutants did not exhibit a significant accumulation of undifferentiated

cells, suggesting that the downstream Wnt non-canonical pathway components do not play a

critical role in the adult to regulate CB differentiation (3 ± 1 for c587-GAL4; 4 ± 1 for c587-
GAL4>dWnt4 RNAi, P-value = 0.002958; 3 ± 2 for c587-GAL4>RhoARNAi, P-value =

0.431434; 3 ± 1 for c587-GAL4>Rac1RNAi, P-value = 0.91346, 3 ± 1 for c587-GAL4>cdc42
RNAi, P-value = 0.54991 and 3 ± 1 for c587-GAL4>cdc42DN, P-value = 0.242545 {for all

n = 50}) (Fig 4B and Fig 4D–4G) (S9A and S9B Fig, S9E–S9G Fig). To elucidate if the down-

stream Wnt non-canonical pathway components are required in the larval gonad to regulate

Fig 4. The Wnt downstream non-canonical pathway components are required in the larval gonads for proper germline stem cell differentiation. (A) Illustration of

18 oC to 29 oC temperature shift experimental strategy. (B-F) Germaria of c587-GAL4 (control), dWnt4, RhoA, Rac1 and cdc42 depleted escort cells stained with 1B1

(red) and Vasa (blue) showing an accumulation of>3 undifferentiated cells in dWnt4 mutants (yellow line) and no accumulation in RhoA, Rac1 and cdc42 mutants. (G)

Percentage of the germaria with>3 spectrosomes in 18 oC to 29 oC temperature shift flies in c587-GAL4, dWnt4, RhoA, Rac1 and cdc42 depleted escort cells showing a

significant difference between c587-GAL4 and dWnt4 RNAi mutants, but not between c587-GAL4 and RhoA, Rac1 and cdc42 mutants (n = 50). (H) Illustration of 29 oC

to 18 oC temperature shift experimental strategy. (I-M) Germaria of c587-GAL4 (control), dWnt4, RhoA, Rac1 and cdc42 depleted escort cells stained with 1B1 (red) and

Vasa (blue) showing an accumulation of>3 undifferentiated cells in dWnt4, RhoA, Rac1 and cdc42 depleted escort cells (yellow line). (N) Percentage of the germaria

with>3 spectrosomes in 29 oC to 18 oC temperature shift flies, in c587-GAL4,dWnt4, RhoA, Rac1 and cdc42 depleted escort cells showing a significant difference

between c587-GAL4 and dWnt4, RhoA, Rac1 and cdc42 depleted escort cells (n = 50). Scale bar for all images is 20μm.

https://doi.org/10.1371/journal.pgen.1007154.g004
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CB differentiation, the flies were kept at 29 oC until they eclosed. Once eclosed, the flies were

shifted to 18 oC and kept at this temperature for 7 days [114] (Fig 4H). Compared to control,

29 oC-18 oC temperature shift dWnt4, RhoA, Rac1, cdc42 and cdc42DN mutants resulted in an

accumulation of undifferentiated cells (2.5 ± 1 for c587-GAL4; 5.6 ± 2 for c587-GAL4>dWnt4
RNAi, P-value = 1.04811E-17; 5 ± 1.5 for c587-GAL4>RhoARNAi, P-value = 1.43965E-15;

5 ± 1.5 for c587-GAL4>Rac1RNAi, P-value = 1.53586E-18; 5 ± 2.5 for c587-GAL4>cdc42
RNAi, P-value = 2.34120E-18 and 5 ± 1 for c587-GAL4>cdc42DN, P-value = 1.49752E-17{for

all n = 50}) (Fig 4I–4N) (S9C–S9F and S9H Fig). Taken together, these results demonstrate

that the Wnt non-canonical pathway components act primarily prior to the adult stage to reg-

ulate CB differentiation.

As RhoA, Rac1 and cdc42 are highly expressed and active in the larval gonad and were not

required in the adult germaria for CB differentiation, we asked if these proteins are required

earlier in development. To test this we used an IC driver traffic jam-GAL4 (tj-GAL4). Tj is

expressed only in ICs in the late larval gonad, therefore tj-GAL4 is a more restricted driver for

ICs [11,29]. We depleted dsh, DAAM1, RhoA, Rac1, cdc42 and expressed RhoADN and cdc42DN

versions in the ICs, in the late larval stages using tj-GAL4. Because we posited that RhoA, Rac1

and cdc42 act downstream of dWnt4, we also monitored the late larval gonads of dWnt4
mutants for defects, by staining for Vasa, Tj and 1B1. We found that compared to dWnt4 het-

erozygotes, dWnt4 mutants and dsh, DAAM1, RhoA, RhoADN, Rac1, cdc42 and cdc42DN

mutants showed loss of intermingling of ICs with PGCs (n = 25) (Fig 5A–5H) (S10A–S10C

Fig). Although loss of Rac1 in ICs led to loss of intermingling, the phenotype was weaker than

dWnt4 mutants, RhoA and cdc42 depleted ICs. Additionally, depletion of Rac1 in the ICs

resulted in a decrease in the size of the larval gonad. It has been shown Rac1, Ras-related C3
botulinum toxin substrate 2 (Rac2) and Mig-2-like (Mtl) act redundantly to regulate PCP [115].

For this reason, we also depleted Mtl and Rac2 specifically in the ICs and found that Mtl
depleted ICs resulted in a strong loss of ICs intermingling but Rac2 depleted ICs did not

exhibit any intermingling defect (Fig 5I and 5J). Although we find that depletion of Rac2 does

not lead to a differentiation defect, we do not know if this is due to a feeble RNAi mediated

depletion, or in fact Rac2 does not play a role. These results suggest that dsh, DAAM1, RhoA,

Rac1, Mtl and cdc42 regulate intermingling of ICs in the larval gonad.

In order to further validate our results obtained by RNAi and expression of dominant nega-

tive forms of RhoA and cdc42, we also analyzed larval gonads of dsh1 mutants, cdc425, a hypo-

morphic allele that has been previously shown to exhibit mild PCP defects, cdc42 (cdc422/
cdc425) hypomorphic mutant and heterozygous larval gonads of flies having one genetically

reduced copy of all three Rac genes [115]. We found that these mutants and the heterozygous

larval gonad for flies that remove all three Rac genes also exhibited loss of ICs intermingling

(69% dsh1 mutants, n = 20; 55% cdc425 mutants, n = 20; 80% cdc42 (cdc422/cdc425) mutants,

n = 20 and 60% heterozygous Rac1, Rac2 and Mtl larval gonads, n = 10) (S10D–S10H Fig).

Together, these results suggest that RhoA, Rac genes (Rac1 and Mtl) and cdc42 regulate inter-

mingling of ICs.

Components of the Wnt non-canonical pathway regulate IC number

As RhoA, Rac1 and cdc42 are known to play a role in cell division, we wondered if there were

additional defects apart from loss of intermingling in these mutants. We found that compared

to dWnt4 heterozygotes and tj-GAL4, dWnt4 mutants and RhoA, Rac1, Mtl and cdc42mutant lar-

val gonads had significantly fewer ICs (151 ± 18 for dWnt4/CyO; 84 ± 8 for dWnt4 mutants,

P-value = 6.74402E-05; 213 ± 36 for tj-GAL4; 36 ± 13 for tj-GAL4>RhoA RNAi, P-value =

5.16854E-06; 67 ± 14 for tj-GAL4>Rac1RNAi, P-value = 9.83637E-05; 111 ± 10 for tj-GAL4>Mtl
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RNAi, P-value = 0.000231 and 61 ± 17 for tj-GAL4>cdc42RNAi, P-value = 2.07541E-05 {for all

n = 5}). It is possible that the decrease in the number of ICs is either due to decrease in their divi-

sion rate or due to death of ICs. To test if loss of dWnt4, RhoA, Rac1, Mtl and cdc42 affects the

division rate of the ICs, we stained these mutants with a mitotic marker, Phospho-Histone 3

(PH3), Tj and 1B1. We observed that RhoA, Rac1, Mtl and cdc42 depleted IC mutants show a

decrease in the number of ICs expressing PH3, suggesting that RhoA, Rac1, Mtl and cdc42 also

regulate division of the ICs. However, dWnt4 mutants did not exhibit this defect compared to

heterozygous, but displayed a defect compared to wild type (WT) control (12.5 ± 2 for WT con-

trol; 4.5 ± 2 for dWnt4/CyO, P-value = 1.72943E-08; 3 ± 2 for dWnt4 mutants, P-value (WT) =

7.42348E-09, P-value (dWnt4/CyO) = 0.104558; 9 ± 3 for tj-GAL4, n = 10; 4 ± 2 for tj-GAL4>
RhoA RNAi, n = 10, P-value = 0.00010; 3 ± 2 for tj-GAL4>Rac1RNAi, n = 10, P-value =

2.56584E-05; 7 ± 2 for tj-GAL4>Mtl RNAi, n = 10, P-value = 0.035212, and 5 ± 3 for tj-GAL4>
cdc42 RNAi, n = 10, P-value = 0.003773) (S11A–S11H Fig). To determine if the ICs in these

mutants show increased cell death, we stained them for a death marker, cleaved Caspase3, along

with Tj and 1B1. We observed that only ICs of RhoA mutants showed Caspase3 staining.

Fig 5. dWnt4 and downstream Wnt non-canonical components act in the larval gonad to regulate the intermingling of ICs. (A-J)

Larval gonads of control, dWnt4 mutant, tj-GAL4 (control), dsh, DAAM1, RhoA, Rac1, cdc42, Mtl, and Rac2 depleted ICs stained with Tj

(red), 1B1 (blue) and Vasa (green) showing loss of intermingling of ICs in dWnt4 mutant, dsh, DAAM1,RhoA, Rac1 cdc42 and Mtl
mutants (n = 25). Rac1 depletion results in small gonads. No intermingling defect was observed in Rac2 mutants (n = 25). Scale bar for all

images is 20μm.

https://doi.org/10.1371/journal.pgen.1007154.g005
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Compared to 0% of Tj positive cells in control, 3% of Tj positive cells in RhoA depleted IC

mutants exhibited Caspase3 staining indicating that in addition to its role in cell division, RhoA
also regulates IC survival (n = 5) (S11I–S11O Fig). Together, these results show that dWnt4 and

the downstream components of the Wnt non-canonical pathway, RhoA, Rac1, Mtl and cdc42
play a critical role to regulate intermingling and cell division of ICs in the larval gonad. Addition-

ally, as RhoA depletion exhibited a stronger defect than dWnt4 mutants it is likely that it has roles

independent of dWnt4 signaling.

dWnt4 mutants and RhoA, Rac1 and cdc42 depleted escort cell germaria exhibit reduced

number of escort cells and loss of CB encapsulation [46]. Additionally, depletion of RhoA,

Rac1 and cdc42 in the ICs resulted in reduced number of ICs. We asked if reduction in the

escort cell number and loss of encapsulation of CB in the adults is a consequence of reduced

number of ICs in the larval gonad. To answer this question, we counted the number of Tj posi-

tive escort cells in the adult flies, of 29 oC-18 oC temperature shift escort cell depleted RhoA,

Rac1 and cdc42 mutants. We found that these mutants exhibited significantly lower number of

escort cells (15.4 ± 2.6 for c587-GAL4; 10.4 ± 2.6 for c587-GAL4>RhoARNAi, P-value =

0.00048; 10.6 ± 2 for c587-GAL4>Rac1RNAi, P-value = 0.00068 and 6.9 ± 1.6 for c587-GAL4>
cdc42 RNAi, P-value = 8.1045E-08 {for all n = 10}). These results suggest that RhoA, Rac1 and

cdc42 act in the ICs to regulate the escort cell number and therefore, proper GSC differentia-

tion in the adults.

Wnt canonical pathway and PCP regulators do not regulate the

intermingling of ICs in the larval gonad

To determine if PCP core components regulate intermingling in the larval gonad we depleted

vang/stbm, ds, fz and ft in ICs and found that depletion of these genes did not exhibit any inter-

mingling defects (S12A–S12E Fig). To ascertain that the canonical pathway is not required in

the larval gonad, we depleted the canonical specific co-receptor, arr in ICs and found that

these mutants also did not exhibit any intermingling defect (S12A and S12F Fig). We used arr
as β-catenin has roles outside of Wnt signaling and loss of arr in the adult escort cells results in

CB differentiation defects [45,116]. These results suggest that the Wnt canonical pathway and

vang/stbm, ds, fz and ft, the core components and Ds/Ft systems that define PCP, do not play a

critical role in the ICs.

dWnt4 regulates RhoA, Rac and cdc42 activity in the larval gonad

Similar to dWnt4 mutants, RhoA, Rac1 and cdc42 depletion in the ICs showed a defect in inter-

mingling of ICs. To determine if RhoA, Rac1 and cdc42 act downstream of dWnt4, we analyzed

the expression and activity of RhoA, Rac1 and cdc42 with the help of the GFP tagged lines, in

larval gonads of both control and dWnt4 mutants. We found that compared to the control,

expression of RhoA, Rac1 and cdc42 was not altered in the ICs of dWnt4 mutants, suggesting

that dWnt4 does not regulate the protein levels of RhoA, Rac1 and cdc42 (P-value = 0.64182

for RhoAGFP, P-value = 0.79908 for Rac1GFP, and P-value = 0.63675 for cdc42GFP in dWnt4
mutants {for all n = 3}) (S13A–S13G Fig). The activity level of RhoA/Rac and cdc42 was deter-

mined using biosensors in dWnt4 mutants. To ensure that there is no background, we also

imaged larval gonads, without the biosensors (S13H–S13I1 Fig). We found that RhoA/Rac

and cdc42 activity was significantly downregulated in ICs (P-value = 0.02067, n = 25 for

RhoA/Rac activity and P-value = 0.01369, n = 25 for cdc42 activity) (Fig 6A–6F). We also

observed cdc42 activity in the terminal filaments and found that it was not altered in dWnt4
mutants (P-value = 0.35901, n = 3) (S13J Fig). These results suggest that dWnt4 regulates the

activity of RhoA, Rac and cdc42 in the ICs to regulate intermingling of ICs with PGCs.
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Discussion

Here, we find that dWnt4 regulates CB differentiation through the downstream non-canonical

pathway components. We show that RhoA, Rac1 and cdc42 are expressed at high levels in the

ICs of the larval gonad and are active while the expression of Fz3RFP, a β-catenin-dependent

transcriptional reporter, is not detectable. Conversely, we find low levels of RhoA, Rac1 and

cdc42 in the adults but the β-catenin-dependent canonical reporter is expressed at high levels.

Consistent with this, we find a role for RhoA, Rac1 and cdc42 but not the β-catenin-dependent

canonical pathway in the larval gonad for promoting intermingling of ICs (Fig 7). Our results,

in conjunction with Mottier-Pavie et al. and Wang et al., that show the canonical pathway is

required in the adult, point towards a switch from utilizing Wnt non-canonical components to

utilizing a canonical pathway to regulate the formation of the differentiation niche [44,45].

Fig 6. dWnt4 modulates the activity of downstream Wnt non-canonical pathway components in the larval gonad. (A-D1) Larval gonad of

control and dWnt4 mutants showing downregulation of activated RhoA/Rac and cdc42 in the ICs of dWnt4 mutants (white arrows). GFP channel

is shown in A1, B1, C1 and D1. A single PGC (control) and loss of intermingling (dWnt4 mutants) are highlighted by dashed yellow line. (E-F)

Quantification of GFP in the ICs showing downregulation of activity of RhoA/Rac and cdc42 reporters in dWnt4 mutants. Scale bar for all images

is 20μm.

https://doi.org/10.1371/journal.pgen.1007154.g006
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Our findings that the depletion of vang/stbm, ds, fz and ft in either ICs or escort cells does

not lead to differentiation defects, suggests that PCP does not play a critical role in regulating

CB differentiation. These results are consistent with previous literature, where Cohen et al.
showed that mutations in, fz, fmi, dgo, vang/stbm and pk, genes required for PCP of a cell, do

not lead to significant disruption of ovarian morphology [82]. We show that the other PCP

system components, ds and ft, are also not required to regulate differentiation. Together,

Cohen et al. and our results suggest that it is not the PCP system, but the downstream Wnt

non-canonical components that play a critical role in the differentiation niche to regulate dif-

ferentiation. We propose that dWnt4 uses the downstream Wnt/Fz non-canonical pathway to

regulate formation of the differentiation niche.

We find that RhoA, Rac1 and cdc42 regulate intermingling of ICs in the larval gonad. In

addition, we find that loss of RhoA leads to death of ICs and loss of Rac1 leads to decrease in

the larval gonad size. dWnt4 mutants do not show either of these outcomes. Together, these

results suggest that RhoA and Rac1 have roles in the larval gonad independent of Wnt signal-

ing. It has been extensively shown that Rac1, Rac2 and Mtl have redundant roles in axon

growth, guidance and PCP in the eye and the wing [93,95,115]. Indeed, we found that Rac1
depleted ICs resulted in loss of intermingling but this phenotype was not as strong as dWnt4,

RhoA and cdc42 depleted ICs. Rac2 depleted ICs resulted in no intermingling defect. However,

depletion of Mtl in the ICs resulted in a strong loss of intermingling phenotype. This suggests

that small GTPases play a critical role in ICs function, both independently and in coordination

with Wnt signaling.

Fig 7. dWnt4 switches from a β-catenin independent pathway to a β-catenin dependent pathway during Drosophila oogenesis to regulate the formation of

GSC differentiation niche. A schematic showing that dWnt4 uses both β-catenin independent and β-catenin dependent pathways to regulate GSC differentiation.

In the larval gonad, dWnt4 uses RhoA, Rac1, Mtl and cdc42 to regulate intermingling, division and number of the ICs while in the adult, dWnt4 uses the β-catenin

dependent pathway to regulate the cytoplasmic protrusions.

https://doi.org/10.1371/journal.pgen.1007154.g007
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In the adult, escort cells extend dynamic cytoplasmic protrusions to encapsulate the GSCs,

the differentiating daughter and differentiating cysts, a function necessary for proper differen-

tiation [28,39–41,102,117]. It was recently shown that in adult female germaria, stat regulates

the formation of these protrusions through cdc42. Loss of stat or woc, a component of the stat

pathway, leads to formation of smaller protrusions instead of longer stable protrusions. Loss of

woc also leads to an accumulation of undifferentiated cells. Overexpression of cdc42 in woc
mutants rescued the small protrusion defect and partially rescued the phenotype. However,

Banisch et al report that expression of dominant active or dominant negative cdc42 in the

escort cells only mildly affects protrusions and does not lead to an accumulation of undifferen-

tiated cells. Our temperature shift experiments also suggest that expression of dominant nega-

tive cdc42 exclusively in the adults does not result in an accumulation of undifferentiated cells,

while its expression prior to eclosion does (S9C and S9D and S9E and S9F Fig). Moreover,

Banisch et al. also show that active cdc42 is expressed in the escort cells and active RhoA could

not be detected in most of the escort cells using Dia-RBD:GFP but could be detected mainly in

the escort cell body and weakly in the escort cell protrusion using Capu-RBD:GFP [117]. We

think that cdc42 may have a role in the adults by controlling protrusive activity of escort cells,

but it does not affect CB differentiation in a biologically meaningful way. This suggests that

cdc42 and Rho activity in the adult is attenuated and their activity is independent of dWnt4.

Cell movement requires dynamic actin-myosin polymerization at the leading edge, driven

by Rac1 and cdc42, and actin-myosin contraction at the lagging end, driven by RhoA

[118,119]. In our study, we find that both RhoA/Rac and cdc42 are present and active in the

ICs. Loss of RhoA, Rac1 and cdc42 leads to loss of intermingling of ICs, suggesting that these

proteins drive ICs cell movement and intermingling in the larval gonad. In contrast, only

cdc42, but not RhoA, is active in the adult escort cells, consistent with the fact that these cells

are stationary [41,117]. Thus the switch in the module used by Wnt signaling to regulate the

activity of RhoA/Rac and cdc42 parallels the developmental demands of these cells to first

move between germ cells in the larval gonad, then to stop and create long, stable protrusions

that promote differentiation in the pupal and adult gonad.

Cancer metastasis requires cell migration. The invasion of metastatic cancer cells requires

cells to lose epithelial properties and gain mesenchymal properties. During this process,

known as Epithelial-mesenchymal transition (EMT), the epithelial cells, which are otherwise

polarized, non-motile and have strong cell-cell interaction, subsequently lose polarity, cell-cell

adhesion and become motile [120,121]. RhoA, Rac1 and cdc42 are conserved from lower

eukaryotes to mammals and are key players that affect cell division, cytoskeletal rearrange-

ment, cell polarity, and cell motility [76,77,79,80,91,106,118]. It has been previously discovered

that during cancer, these proteins are upregulated and therefore help initiate metastasis [122].

We have discovered that RhoA, Rac1 and cdc42 are turned on in the ICs of the larval gonad

and switched off in the adult escort cells. This is fascinating because the ICs and the escort cells

are essentially the same cells at different developmental time points. A better understanding of

how this switch is mediated may give us an insight into cancer and aid in developing mecha-

nisms to block metastasis.

Materials and methods

Fly stocks

The following fly stocks were used in the study: c587-Gal4, trafficJam (tj)-Gal4, dWnt4C1/CyO

(6651), bamGFP, arrow RNAi (31313), Rho1 RNAi (Bloomington 32383), UASRhoDN (Bloom-

ington 7327), Rac1 RNAi (Bloomington 28985 and 34910), Mtl RNAi (Bloomington 51932),

Rac2 RNAi (v28926), cdc42 RNAi (Bloomington 35756 and 37477), UAScdc42DN (Bloomington

dWnt4 switches signaling modes

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007154 January 25, 2018 17 / 29

https://doi.org/10.1371/journal.pgen.1007154


6288), dDAAM1RNAi (Bloomington 39058, V24885), dsh RNAi (v101525), frizzled RNAi

(Bloomington 34321), van gogh RNAi (Bloomington v7376), daschous RNAi (Bloomington

28008), fat RNAi (Bloomington 29566), y1 w
�

; Rho172F/CyO (Bloomington 7326), y1 w67c23; P
{EPgy2}Rac1EY05848/TM6B, Tb1 (Bloomington 15461), y[1] w[�]; Rac1[J10] Rac2[Delta] P{w
[+mW.hs] = FRT(w[hs])}2AMtl[Delta]/TM6B, Tb[1] (Bloomington 6679), y1 w

�

Cdc423/FM6

(Bloomington 7337), y1 w
�

Cdc422 P{neoFRT}19A (Bloomington 9105), y1 w
�

Cdc425 P{neoFRT}
19A (Bloomington 52237), y1 Mi{MIC}DAAMMI04569 w1118/FM7h (Bloomington 38567), w1

dsh1 (Bloomington 5298), RhoAGFP (V318439), Rac1GFP (Bloomington 52285), cdc42GFP

(V218151), w�;P{sqh-Pkn.RBD.G58A-eGFP}312a P{sqh-Pkn.RBD.G58A-eGFP}312b (Bloom-

ington 52298), w�;P{sqh-WASp.RBD-GFP}378a P{sqh-WASp.RBD-GFP}378b (Bloomington

56746), UASmCD8GFP (Bloomington 32184), faxGFP, Sco/CyO;MKRS/TM6 (Lehmann Lab),

Sco/CyO;Nos-Gal4::VP16,Vasa-KO/TM6 (Lehmann Lab); Sco/Cyo;Fz3RFP (Bach Lab).

Collection and Fixation of tissues

3–4 day old fly ovaries were dissected in PBS, fixed for 30 min in PBS plus 5% formaldehyde,

incubated for 1 h in PBST (0.2% Tween 20 (Sigma) in PBS) supplemented with 1% Triton X-

100 (Sigma), followed by incubation for 2 h in BBT (PBST supplemented with 1% (w/v) bovine

serum albumin (BSA; Sigma)). Primary antibodies were added in BBT and incubation was car-

ried out overnight at 4 oC. The following day, ovaries were washed four times for 10 min,

20 min, 30 min in BBT and for 30 min in BBT supplemented with 2% (w/v) donkey serum

(Sigma). Secondary antibodies were added in BBT supplemented with 4% (w/v) donkey serum

(Sigma) and incubated for 2 h followed by five washes, 10 min each in PBST. VECTASHIELD

(Vector Laboratories) with DAPI was added prior to mounting. Fixation and staining of larval

gonads was carried out as previously described [123].

Temperature shift experiment

In order to express a specific gene only in the adults, the flies were kept at 18 oC until they

eclosed. Once eclosed, the young flies were shifted to 29 oC and kept at this temperature for 7

days. Staining was followed to determine any differentiation defects.

In order to express a specific transgene only in the larval stage, the flies were kept at 29 oC

until they eclosed. Once eclosed, the young flies were shifted to 18 oC and kept at this tempera-

ture for 7 days. These flies were then dissected and stained for observation.

Unless specified, all experiments that utilized the UAS-GAL4 system were performed con-

stitutively at 29 oC.

Antibodies

Immunostaining of the ovaries and larval gonad was carried out with the following Primary

antibodies: Mo 1B1 (1:20, DSHB), Rb Vasa (1:5000, Rangan Lab), Ch Vasa (1:500, Rangan

Lab), GP Traffic Jam (1:5000, Godt Lab), Rb GFP (1:2000, ab6556), Rb pMAD (1:200, abcam

AB52903), Mo BamC (1:200, DSHB), Rb Bruno (1:500, Lehmann Lab), Rb PH3 (1:200, Cell

Signaling 97015), and Rb Caspase 3 (1:300, Cell Signaling 96615).

Alexa 488 (Molecular Probes), Cy3 and Cy5 (Jackson Labs) conjugated secondary antibod-

ies were used at a concentration of 1:500.

Fluorescence imaging

The tissues were visualized under 10X, 20X, 40X and 63x objective lenses. The images were

acquired using a Zeiss LSM-710 confocal microscope under 20x, 40X and 63x objective.
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Live imaging

The tissues were dissected in Schneider’s media and mounted. These were then visualized

under 20X objective lens. The images were acquired using a Zeiss LSM-710 confocal micro-

scope under 20x objective.

Quantification analysis

A.U of protein levels. In order to calculate intensities for Fz3RFP and GFP in ICs or

escort cells, images for both, control and mutant larval gonad and adult germaria were taken

using the same confocal settings. Z stack planes were obtained for all images. Specific planes

showing Tj positive ICs or escort cells were chosen, the area of Tj positive cell was outlined

and analyzed using the ‘analyze’ tool in ImageJ. The mean and area of the specified region was

obtained. An average of all the ratios (Mean/Area), for Fz3RFP, GFP and Tj, per image was cal-

culated for both, control and mutants. The average ratio for Fz3RFP and GFP was normalized

with average ratio for Tj. These are the arbitrary units (A.U) for Tj, GFP and RFP for this

region. A minimum of 7 germaria and 7 larval gonads (minimum 5 Tj positive cells per image)

were considered for the each quantification.

A.U of activity reporters. In order to calculate intensities of activity reporters, images

with Z stacks were obtained for both, control and mutant larval gonads using the same confo-

cal settings. For ICs, an area right besides a PGC was outlined and for terminal filament an

area in the terminal filament was outlined. All these areas were analyzed using the ‘analyze’

tool in ImageJ. The mean and area of the specified region was obtained (25 cells were analyzed

per image). An average of all the ratios (Mean/Area), per image was calculated for control and

mutants. The average ratio for activity was subtracted with average ratio for background. The

results are the arbitrary units (A.U) for activity reporters for this region. 25 cells of 2 larval

gonads each were quantitated for RhoA/Rac and cdc42.

In order to calculate intensities of activity reporters between larval gonads and adult ger-

maria, A.U of GFP was normalized to Vasa-KO. 5 cells of 3 larval gonads and adult germaria

each were quantitated for RhoA/Rac and cdc42.

The number of Tj and Fz3RFP positive cells were calculated manually in all stacks for 10

germaria in ImageJ.

Statistical analysis

P-values were determined by two-tailed equal variance t test in mutants vs. wild type strains.

Z-score was determined by a two-tailed test for data represented in percentage.

Materials and reagents

Fly food was created using the procedures from the Ruth Lehmann lab at NYU (summer/win-

ter mix), and used to fill narrow vials to approximately 12mL.

Supporting information

S1 Fig. Planar cell polarity (PCP) regulators do not play a critical role in the formation of

the differentiation niche. (A) Quantification of spectrosomes in c587-GAL4, dsh, DAAM1,

RhoA, Rac1 and cdc42 depleted escort cells showing a significant difference in mutants

(n = 50). (B) A schematic showing proteins that regulate the PCP of a cell. (C-G) Germaria of

c587-GAL4 (control), vang, ds, fz and ft depleted escort cells stained with 1B1 (red) and Vasa

(blue) showing no accumulation of undifferentiated cells in vang, ds, fz and ft depleted escort

cells (yellow line). (H) Percentage of the germaria with>3 spectrosomes in c587-GAL4, vang,

dWnt4 switches signaling modes

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007154 January 25, 2018 19 / 29

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007154.s001
https://doi.org/10.1371/journal.pgen.1007154


ds, fz and ft depleted escort cells showing no difference in vang, ds, fz and ft depleted escort

cells (n = 50). (I) Quantification of spectrosomes in c587-GAL4, vang, ds, fz and ft depleted

escort cells showing no significant difference (n = 50). Scale bar for all images is 20μm.

(TIF)

S2 Fig. The Wnt downstream non-canonical pathway components are required in the

escort cells for proper germline stem cell differentiation. (A-C) dsh1/+, RhoA/CyO, and

Rac1/TM6 stained with 1B1 (red) and Vasa (blue) showing no accumulation of undifferenti-

ated cells (yellow line). (D) Percentage of the germaria with >3 spectrosomes in dsh1/+, RhoA/
CyO, Rac1/TM6, dsh1 mutants, dsh1/RhoA trans-heterozygote and dsh1/Rac1 trans-heterozy-

gote showing a significant difference in differentiation defects in the trans-heterozygotes

(n = 50). (E) Quantification of the number of spectrosomes in dsh1/+, RhoA/CyO, Rac1/TM6,

dsh1 mutants, dsh1/RhoA trans-heterozygote and dsh1/Rac1 trans-heterozygote showing a sig-

nificant difference in the number of spectrosomes in the trans-heterozygotes (n = 50). (F-H)

dsh1 mutants, dsh1/RhoA trans-heterozygote and dsh1/Rac1 trans-heterozygote stained with

1B1 (red) and Vasa (blue) showing an accumulation of>3 undifferentiated cells in the trans-

heterozygotes (yellow line). Scale bar for all images is 20μm.

(TIF)

S3 Fig. The Wnt downstream non-canonical pathway components are required in the

escort cells for proper cystoblast differentiation. (A-D2) Germaria of c587-GAL4 (control),

RhoA, Rac1 and cdc42 depleted escort cells stained with pMAD (red), GFP (green) and Vasa

(blue) showing an accumulation of>3 pMAD and Bam negative cells in RhoA, Rac1 and cdc42
mutants (yellow line). pMAD channel is shown in A1, B1, C1 and D1; GFP channel is shown

in A2, B2, C2 and D2. (E) Quantification of number of pMAD and Bam negative cells in

c587-GAL4,RhoA, Rac1 and cdc42 depleted escort cells showing a significant increase in

pMAD and Bam negative cells in RhoA, Rac1 and cdc42 mutants (n = 20). Scale bar for all

images is 20μm.

(TIF)

S4 Fig. The Wnt downstream non-canonical pathway components are required in the

escort cells for proper BamC expression. (A-D2) Germaria of c587-GAL4 (control), RhoA,

Rac1 and cdc42 depleted escort cells stained with pMAD (red), BamC (green) and Vasa (blue)

showing an accumulation of>3 pMAD and BamC negative cells in RhoA, Rac1 and cdc42
mutants (yellow line). pMAD channel is shown in A1, B1, C1 and D1; BamC channel is shown

in A2, B2, C2 and D2. Scale bar for all images is 20μm.

(TIF)

S5 Fig. RhoA, Rac1 and cdc42 act upstream of Bam in the escort cells to regulate cystoblast

differentiation. (A) c587-GAL4 (control) carrying a hs-bam transgene stained with 1B1 (red)

and Vasa (blue) without heat-shock. (B-E) c587-GAL4 (control), RhoA, Rac1 and cdc42
depleted escort cell mutants carrying a hs-bam transgene stained with 1B1 (red) and Vasa

(blue) showing differentiating cysts marked by fusomes (red) (white arrow) and a lack of

undifferentiated cells post heat-shock. (F-I1) c587-GAL4 (control), RhoA, Rac1 and cdc42
depleted escort cell mutants carrying a hs-bam transgene, without heat-shock stained with 1B1

(red), Bruno (green) and Vasa (blue) showing accumulation of undifferentiated cells (yellow

line) marked by the presence of spectrosomes (red) and low Bruno expression in the undiffer-

entiated cells and early cysts, while high Bruno expression in 16-cell cyst and onwards. Bruno

channel is shown in F1, G1, H1 and I1. (J-M1) c587-GAL4 (control), RhoA, Rac1 and cdc42
depleted escort cell mutants carrying a hs-bam transgene stained with 1B1 (red), Bruno

(green) and Vasa (blue), post heat-shock showing Bruno expression in the differentiating cysts
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(white arrow) marked by fusomes (red) and a lack of undifferentiated cells post heat-shock.

Cysts in post heat-shock Rho mutants showed weak Bruno staining. Bruno channel is shown

in J1, K1, L1, and M1. Scale bar for all images is 20μm.

(TIF)

S6 Fig. The downstream Wnt non-canonical pathway components, RhoA, Rac1, cdc42 are

temporally regulated in the ICs and adult escort cells. (A-D1) Late larval gonad of transgenic

flies with GFP tagged to Rac1 and cdc42, respectively stained for Tj (red), Vasa (blue) and GFP

(green) showing high expression of Rac1 and cdc42 in the ICs (white arrow). 63x is shown in

C-C1 and D-D1. GFP channel is shown in A1, B1, C1 and D1. (E-G1) Late pupal germaria of

transgenic flies with GFP tagged to RhoA, Rac1 and cdc42, respectively stained for Tj (red),

GFP (green) and Vasa (blue) showing low expression of RhoA, Rac1, and cdc42 in pupal escort

cells (white arrow). GFP channel is shown in E1, F1 and G1. (H-I1) Adult germaria of trans-

genic flies with GFP tagged to Rac1 and cdc42, respectively stained for Tj (red), GFP (green)

and Vasa (blue) showing low expression of Rac1 and cdc42 in the adult escort cells (white

arrow). GFP channel is shown in H1 and I1. Scale bar for C1 and D1 is 10μm. Scale bar for all

other images is 20μm.

(TIF)

S7 Fig. Escort cells express activated forms of cdc42 but not of RhoA/Rac. (A-B1) Adult ger-

maria of transgenic flies that report active form of RhoA/Rac and cdc42. While RhoA/Rac is

not expressed in the escort cells, it was expressed in the follicle cells (white arrow). cdc42 is

active in the adult escort cells. Germline is marked by Vasa-KO. GFP channels are shown in

A1 and B1. (C) Quantification (n = 3) of GFP in the ICs and adult escort cells showing that

while active RhoA/Rac is not expressed in the adult escort cells, active form of cdc42 is highly

expressed in the ICs in comparison to the adult escort cells. (D-D1) Late pupal germarium of

fly carrying the Wnt canonical reporter, Frizzled3 (Fz3) stained for RFP (red), Tj (green) and

1B1 (blue) showing high expression of Fz3 in the pupal escort cells (white arrow). RFP channel

is shown in D1. Scale bar for all images is 20μm.

(TIF)

S8 Fig. c587 is expressed in ICs of the larval gonad and escort cells of the adult germaria.

(A-B1) Late larval gonad of flies with mCD8GFP under the control of c587 stained for Tj (red),

GFP (green) and Vasa (blue) showing GFP expression in the ICs (white arrows). 63x is shown

in B-B1. GFP channel is shown in A1 and B1. (C-C1) Adult germaria of flies with mCD8GFP
under the control of c587 stained for Tj (red), GFP (green) and Vasa (blue) showing GFP

expression in the escort cells (white arrow). GFP channel is shown in C1. Scale bar for B and

B1 is 10μm. Scale bar for all other images is 20μm.

(TIF)

S9 Fig. cdc42 is required prior to eclosion to regulate germline stem cell differentiation.

(A-B) Germaria of c587-GAL4 (control) and 18 oC to 29 oC temperature shift cdc42 depleted

escort cells using cdc42DN stained with 1B1 (red) and Vasa (blue) showing no differentiation

defects in cdc42 mutants (yellow line). (C-D) Germaria of c587-GAL4 (control) and 29 oC to 18
oC temperature shift cdc42 depleted escort cells using cdc42DN stained with 1B1 (red) and Vasa

(blue) showing an accumulation of>3 undifferentiated cells in cdc42 mutants (yellow line).

(E) Percentage of the germaria with >3 spectrosomes in 18 oC to 29 oC and 29 oC to 18 oC

temperature shift flies, in c587-GAL4 and cdc42DN mutants showing a significant difference

between c587-GAL4 and cdc42DN expressed escort cells in 29 oC to 18 oC but not in 18 oC to 29
oC (n = 50). (F) Quantification of the number of spectrosomes in 18 oC to 29 oC and 29 oC to

18 oC temperature shift flies in c587-GAL4, cdc42DN expressed escort cells showing a significant
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difference between c587-GAL4 and cdc42 mutants in 29 oC to 18 oC but not in 18 oC to 29 oC

(n = 50). (G) Quantification of the number of spectrosomes in 18 oC to 29 oC temperature

shift flies in c587-GAL4, dWnt4, RhoA, Rac1 and cdc42 depleted escort cells showing a signifi-

cant difference between c587-GAL4 and dWnt4 RNAi mutants, but not between c587-GAL4
and RhoA, Rac1 and cdc42 mutants (n = 50). (H) Quantification of the number of spectro-

somes in 29 oC to 18 oC temperature shift flies, in c587-GAL4, dWnt4, RhoA, Rac1 and cdc42
depleted escort cells showing a significant difference between c587-GAL4 and dWnt4, RhoA,

Rac1 and cdc42 depleted escort cells (n = 50). Scale bar for all images is 20μm.

(TIF)

S10 Fig. Downstream Wnt non-canonical components regulate intermingling of ICs.

(A-C) Larval gonads of tj-GAL4 (control) and mutants expressing dominant negative Rho and

cdc42 in the ICs stained with Tj (red), 1B1 (blue) and Vasa (green) showing loss of intermin-

gling of ICs in the mutants. (D-H) Larval gonads of control, dsh1, cdc425, cdc42 (cdc422/cdc425)
mutants and Rac1, Rac2, Mtl heterozygotes stained with Tj (red), 1B1 (blue) and Vasa (green)

showing loss of intermingling of ICs in the mutants and Rac heterozygotes. Scale bar for all

images is 20μm.

(TIF)

S11 Fig. Downstream Wnt non-canonical components, RhoA, Rac1, Mtl and cdc42 regulate

IC cell division and RhoA regulates cell survival. (A-H) Larval gonads of control, dWnt4 het-

erozygous, dWnt4 mutant, tj-GAL4 (control), RhoA, Rac1, Mtl and cdc42 depleted ICs stained

with Tj (red), PH3 (green) and 1B1 (blue) showing a significant difference in the division rate

of the ICs between control and dWnt4 mutants and, tj-GAL4 and RhoA, Rac1, Mtl and cdc42
mutants (n = 10). (I-O) Larval gonads of dWnt4 heterozygous, dWnt4 mutants, tj-GAL4 (con-

trol), RhoA, Rac1, Mtl and cdc42 depleted ICs stained with Tj (red), Caspase3 (green) and 1B1

(blue) showing Caspase3 positive staining in gonads with RhoA depleted ICs (white arrows)

(n = 5). Scale bar for all images is 20μm.

(TIF)

S12 Fig. PCP regulators and Wnt canonical pathway component do not regulate the inter-

mingling of ICs. (A-F) Larval gonads of tj-GAL4 (control), vang, ds, fz, ft and arr depleted ICs

stained with Tj (red), 1B1 (blue) and Vasa (green) showing no intermingling defects in vang,

ds, fz, ft and arr depleted ICs (n = 25). Scale bar for all images is 20μm.

(TIF)

S13 Fig. dWnt4 does not regulate the protein levels of RhoA, Rac1 and cdc42 in the ICs.

(A-F1) Larval gonad of dWnt4 heterozygous and dWnt4 mutants that carry GFP tagged to

RhoA, Rac1 or cdc42 stained for Tj (red), GFP (green) and Vasa (blue) showing similar expres-

sion of RhoA, Rac1 or cdc42 in the ICs of heterozygotes and mutants. GFP channel is shown

in A1, B1, C1, D1, E1 and F1. (G) Quantification (n = 3) of GFP in the ICs showing that the

protein levels of RhoA, Rac1 and cdc42 are not altered between dWnt4 heterozygotes and

dWnt4 mutants. (H-H1) Larval gonad of dWnt4 heterozygous lacking RhoA/Rac GTPase

reporter, imaged under the same confocal settings (Fig 6A–6B1) showing no GFP. GFP chan-

nel is shown in H1. (I-I1) Larval gonad of dWnt4 heterozygous lacking cdc42 GTPase reporter,

imaged under the same confocal settings (Fig 6C–6D1) showing no GFP. GFP channel is

shown in I1 (J) Quantification (n = 3) of GFP in the terminal filament showing that cdc42

activity is not altered in dWnt4 mutants. Scale bar for all images is 20μm.

(TIF)
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