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Abstract

Background: Kinship inference is the task of identifying genealogically related individuals. Kinship information is
important for determining mating structures, notably in endangered populations. Although many solutions exist for
reconstructing full sibling relationships, few exist for half-siblings.

Results: We consider the problem of determining whether a proposed half-sibling population reconstruction is valid
under Mendelian inheritance assumptions. We show that this problem is NP-complete and provide a 0/1 integer
program that identifies the minimum number of individuals that must be removed from a population in order for the
reconstruction to become valid. We also present SibJoin, a heuristic-based clustering approach based on Mendelian
genetics, which is strikingly fast. The software is available at git://github.com/ddexter/SibJoin.git+.

Conclusions: Our SibJoin algorithm is reasonably accurate and thousands of times faster than existing algorithms.
The heuristic is used to infer a half-sibling structure for a population which was, until recently, too large to evaluate.
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Background
Conservation biologists and molecular ecologists use
pedigree analysis to gain insight into the mating habits
of populations. For example, knowing the reproduction
mechanics of a population helps biologists make impor-
tant ecological decisions about a region [1,2]. The infor-
mation may also be used to assist in reproduction and
conservation of endangered or threatened species [3,4].
A sub-field of pedigree analysis focus on relationships
among same-generation individuals. Identifying related
full sibling individuals, or individuals who share both a
common mother and common father, is well studied and
many algorithms exist for inferring relationships in such
populations [5]. A similar, but much more difficult, task
involves discovering individuals who are related by a sin-
gle parent, also known as half-siblings. The ability to infer
half-sibling relationships extends to being able to under-
stand full-sibling relationships, but the converse of this is
not true. Correct half-sibling reconstruction also allows
biologists to develop a more complete understanding of
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how species mate than is possible with full-sibling recon-
struction alone.
Knowing half-sibling relationships has important real-

world applications and answers questions that full sibling
reconstruction cannot. For example, knowing which indi-
viduals share a single common parent allows biologists to
measure the degree of polygamy within a population [6].
Half-sibling reconstruction gives insight about pollination
patterns, as mothers are pollinated by potentially distant
fathers. The diversity of pollinators can be used to mea-
sure the degree of isolation, due to deforestation, which
threatens many forests [1].
For diploid species, children inherit one maternal and

one paternal chromosome at each locus from their par-
ents. Mendelian genetic properties can identify unrelated
individuals, but they also allow us to make predictions
about related individuals. Unfortunately, we show that,
unlike for full-siblings, determining whether a proposed
half-sibling relationship structure obeys Mendelian inher-
itance rules is NP-complete.
The NP-hardness result indicates that any algorithm

that attempts to provide valid Mendelian family relation-
ships to polygamous populations will likely require a run-
ning time that is exponential in the size of the population,
unless the objective being optimized is trivial. However,
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we provide an extremely fast heuristic, called SibJoin,
which creates reasonably accurate population reconstruc-
tions in polynomial time. We also describe a 0/1 integer
program that identifies the minimum number of individ-
uals that must be removed in order to make a proposed
population reconstruction valid under Mendelian inheri-
tance rules. SibJoin uses the principle that if the genotypes
of two individuals are very similar, we can be more confi-
dent that they are related than we can of two individuals
withmuch different genotypes. The accuracy and speed of
our algorithm allows us to infer half-sibling relationships
for previously inaccessible population sizes. We recon-
struct half-sibship partitionings for a real population of
672 kelp rockfish that previous half-sibling reconstruction
algorithms fail to solve [7]. SibJoin is written in Python
2.7 and may be checked out from the master branch of
its git repository at git://github.com/ddexter/
SibJoin.git+.

Relatedwork
Many groups have produced algorithms for construct-
ing full-sibling partitions. Current sibling reconstruc-
tion techniques fall into three categories: likelihood
estimation, combinatorial objective optimization, and
heuristics. While full sibling reconstruction is a well
studied problem with many very accurate algorithms,
half-sibling reconstructions algorithms are relatively
few.

Likelihood estimation
Likelihood methods estimate the probability of the data
under different partitionings of a population. An opti-
mal solution maximizes this probability. For popula-
tion reconstruction these strategies are often very slow,
even with local search heuristics, which makes them
ill suited for sibling reconstruction on large data sets.
On the other hand, because this class of algorithm
establishes a probabilistic model, it is often possible to
directly incorporate error handling and prior assump-
tions about the population to increase accuracy. For a
more detailed discussion of likelihood methods, see
Jones and Wang [5].
COLONY [8] and COLONY 2.0 [9] are likelihood

methods which construct half-sibling families. COLONY
reconstructs full sibling families with high accuracy,
but allows for polygamy in only one sex. COLONY
2.0 performs half sibship reconstruction when both
sexes are polygamous. Both of these programs use a
likelihood function and simulated annealing to find
an optimal sibling structure for a population. How-
ever, results by Sheikh et al. [7], as well as our
own results, show that COLONY and COLONY 2.0
become prohibitively slow for even medium-sized pop-
ulations. Additionally, as demonstrated in Almudevar

and Anderson [10], COLONY 2.0 often splits true sib-
groups into smaller groups, leading to an incomplete
reconstruction.

Combinatorial optimization
Combinatorial optimization solutions seek to provide a
sibship partitioning which minimizes or maximizes some
objective function, such as number of families, matings,
or parents. As with likelihood methods, finding global
optima for large populations can be computationally
demanding. However, many optimization techniques are
easily parallelizable.
KINALYZER [11] seeks a minimum set cover, by using

an integer programming (IP) formulation where each set
is subject to the restrictions of Mendelian compatibility
for full siblings. KINALYZER yields decent results [12];
however, like the COLONY programs, does not scale
well with population size. The minimum set cover objec-
tive used by KINALYZER is NP-hard [12]. Recent work
has included half-sibling IP strategies that are similar to
the full sibling strategies in KINALYZER, but they are
unsuccessful for large populations [7]. The most viable
of these is the half-sibling minimum set cover (HS-MSC)
IP. Both COLONY and the HS-MSC cannot estimate
half-sibling groups for large populations due to slow run-
times. Additionally, there is no evidence that minimizing
the number of sibgroups is the right thing to do in all
instances [10].

Fast heuristics
By making simplifying observations, heuristics can pro-
duce reasonably accurate results thousands of times faster
than pure likelihood or combinatorial methods. Brown
and Berger-Wolf propose a clustering algorithm which
joins two individuals based on the number of geneti-
cally compatible third parties [13]. The assumption is, if
two individuals form a large number of compatible full
sibling triplets, then they are likely to be full siblings,
alongside the recognition that any incompatible proposed
family includes an incompatible triplet, which Brown and
Berger-Wolf also prove. For a population of n individuals
with m loci, this algorithm has an O(n3m) runtime and
gives accurate results for modest numbers of alleles and
loci.
Another heuristic, employed in PRT 2 [10], enumer-

ates a list of maximal sibgroups: sibgroups for which
no additional population may be added. PRT makes the
assumption that it is unlikely to find unrelated individ-
uals in a large sibgroup of this form. A set cover of the
maximal sibgroups is then selected using a likelihood
function. Although the authors claim that PRT supports
half-siblings, half-sibling groups are never directly com-
puted. Instead, full sibling groups are presented with a
list of which pairs of groups can form valid half-siblings.
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This is problematic in instances where both sexes are
highly polygamous because there will be many pairs of full
sibling families that are also half-sibling compatible, and
PRT does not indicate which of these are true half-sibling
groups nor divide the half-sibling groups into thematernal
and paternal groups. In fact, determining valid half-sibling
families is NP-complete, as we show below, though for
small problem instances or special cases, this may not be
a major concern.

Notation
Information about individuals’ genotypes are collected
and expressed through the measurement of microsatel-
lites, sequences of repeating DNA base pairs, such as
ATATATAT, on a chromosome. The number of repeats
gives an integer value denoting the allele for an individ-
ual. Microsatellites are collected from both chromosomes,
though it is impossible to distinguish the two chromo-
somes with inexpensive technology. Each measurement
site is called a microsatellite locus. In practice, scientists
identify and report alleles at multiple loci in a population,
typically to a maximum of one locus on each autosomal
chromosome, to avoid linkage effects and recombination.
SibJoin requires that each individual be diploid, mean-

ing that population members possess two of each type of
chromosome. Exactly one chromosome is inherited from
each of the individual’s parents; therefore, each locus will
have a maternal and paternal allele. Let m be the num-
ber of measured loci for a population. Each locus will
have a variable number of alleles, k, which we represent as
Al = {a0, a1, . . . , ak−1}.
When the inherited maternal and paternal alleles are

combined, they give an individual’s genotype, which is
unordered: (ai, aj) is equivalent to (aj , ai). Unfortunately,
it is not always possible to reconstruct an individual’s
alleles for a given locus. Allelic dropout is a term that
refers to a common error in genotyping where infor-
mation about a locus cannot be confidently determined
and is omitted. We express sites with allelic dropouts as
(∗, ∗). When the same allele is inherited from both par-
ents, the genotype is homozygous; when they differ, it is
heterozygous.
The half-sibling problem is, given a population of n

offspring, to reconstruct a maternal and paternal parti-
tioning M and P of the population that are consistent
with Mendelian laws. for each maternal half-sibgroup
M ∈ M and for each paternal half-sibgroup P ∈ P ,
there must be a genotype for that sibgroup such that the
individuals in F := M ∩ P must be valid offspring of
those two genotypes. Further, the genotype chosen for a
group M or P must be the same in all families that derive
from that common parent. To avoid triviality, we typically
seek to optimize some objective function when choosing
the two partitions, as otherwise, one could simply assign

each individual to a unique pair of parents. Our heuristic
SibJoin relies onmeasurements of similarity between indi-
viduals. We denote the similarity between individuals x
and y as sxy and the similarity between clusters Ci and Cj
as sim(Ci,Cj).

Mendelian compatibility
Berger-Wolf et al. [14] give two Mendelian properties of
diploid full siblings. Refer to their article for the concrete
mathematical expression; here, we give a short exegesis. In
any full sibgroup, at all alleles, at most four alleles appear
since there are two parents each with at most two alleles.
Berger-Wolf et al. refer to this rule as the 4-allele property.
The 2-allele property enforces the rule that for each full
sibling group, there is a partitioning of the alleles at each
locus into a maternal and paternal group, such that each
individual obtains exactly one allele from the maternal set
and one from the paternal set, at each locus. Sheikh et
al. [7] extend these rules to half-siblings. The half-sibship
property states that for each locus in a half-sibling fam-
ily, there exists two alleles {ai, aj}, which are the alleles of
the shared parent, such that each individual possesses at
least one copy of either ai or aj at each respective locus;
this describes the requirement that the half-sibling group
inherits from the common parent.

Forced allele incompatibilities
When populations are completely monogamous, deter-
mining whether each family in a population structure has
valid parent genotypes is trivial, as decisions made in
reconstructing the parents of one sibgroup are indepen-
dent of all other families. However, when reconstructing
half-sibling populations, determining whether there is a
set of parents and matings that can explain a collec-
tion of identified sibgroups under Mendelian inheritance
assumptions is much more difficult. For any individ-
ual, choosing its father’s genotype uniquely determines
which allele must have been inherited from, and hence
present in, the mother, unless the offspring genotype
exactly matches the paternal one. Thus, the decision
affects the maternal genotype. In polygamous popula-
tions, this influence on the choice of maternal genotype
by paternal genotype also indirectly affects the choice of
genotype for each other father that the common mother
has mated with. For example, if both maternal alleles at
a locus are fixed by one sibgroup’s reconstruction, then
any other alleles found in offspring from a different mat-
ing of the samemother must have been inherited from the
father.
For highly polygamous populations with many indi-

rect inheritance relationships of this sort, it can be diffi-
cult to determine whether a proposed population struc-
ture is valid. We show that deciding whether there is
a valid parental genotype for each half-sibling partition
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in a candidate half-sibling population reconstruction is
NP-Complete. Thus, we cannot expect polynomial time
algorithms to produce valid parental genotypes, even
when they exist. We instead propose an integer program,
which identifies the minimum number of individuals that
must be removed from a candidate population recon-
struction so that the resulting population is valid under
Mendelian inheritance, and give experimental results of
using it.

Complexity of the valid half-sibling partitioning decision
problem
Given maternal and paternal half-sibling partitionings,
with each individual belonging to exactly one maternal
and one paternal partition, is it possible to assign geno-
types to the parents of each half-sibling family in a way
that respects the property that every individual must
inherit one of exactly two alleles from each parent at each
locus? We will call this problem VALID HALF-SIBLING
PARTITIONING.

Theorem 1. VALID HALF-SIBLING PARTITIONING
is NP-complete.

Proof. We first show that VALID HALF-SIBLING PAR-
TITIONING ∈ NP. Given an instance of the problem and
an assignment of genotypes to the parents of each half-
sibling family, we can verify in polynomial time whether
or not the population structure is valid. The algorithm is
straight-forward: for each heterozygotic child, check that
the allele inherited from the mother is not the same as
the allele inherited from the father. When the parent and
child genotypes differ, we say that the child is forced to
inherit a specific allele, e.g. child (a, b) is forced to inherit
allele a from mother (a, c). If the parent does not force an
allele because the parent genotype is identical to the child’s
genotype, then that child cannot cause an incompatibility:
the inherited allele from the identical parent is whichever
allele was not inherited from the child’s other parent.
Next, we give a polynomial-time reduction from

the NP-complete MONOTONE ONE-IN-THREE SAT
problem to VALID HALF-SIBLING PARTITIONING.
The MONOTONE ONE-IN-THREE SAT problem is:
given a set of boolean clauses, each containing three
non-negated literals, determine whether a configura-
tion of literals exists such that exactly one literal in
each clause is set true. This problem is also called
EXACT-COVER-BY-3-SETS (X3C), which was used in
the first proof of the NP-hardness of parsimony phy-
logeny [15]. The reduction requires three gadgets that
translate literals and clauses in a MONOTONE ONE-
IN-THREE-SAT instance into alleles and families in
a VALID HALF-SIBLING PARTITIONING instance,
respectively.

The first gadget translates picking a literal in a clause to
picking a parent for a family. The second gadget defines
paternal families that introduce additional necessary off-
spring. From the MONOTONE ONE-IN-THREE SAT
perspective, the third gadget enforces the rule that if a
literal is chosen to be set true in one clause, it must be
chosen to be true in all of the clauses it belongs to.
We begin by defining a one-to-one function f : x → y

which assigns each SAT literal to a unique integer allele
value. Assume also that there arem clauses.

1. The selection gadget creates a maternal family with
three possible mothers and six offspring for each
clause in the SAT instance by mapping literals in a
clause to alleles in a family. For the clause
(xi ∨ xj ∨ xk), the corresponding yi, yj, and yk will be
the alleles present in the created family. Six children
are created by making two copies of each pairwise
grouping of the y alleles: for this clause, we would
create the maternal groups in Table 1.
In this half-sibgroup, there are three choices for the
maternal genotype: ( yi, yj), ( yi, yk), and ( yj, yk).
Choosing, for example, maternal genotype ( yj, yk)
corresponds to setting literal xi to true in the
MONOTONE ONE-IN-THREE SAT instance: the
rule is that the allele not present in the maternal
genotype is the true literal. There are total of m of
these maternal families, each with six members.

2. The mapping gadget creates two paternal families for
each potential mother, for a total of six paternal
families per maternal selection gadget family. The
gadget highlights which literal is set to true in the
clause corresponding to the selection gadget.
The 6mmapping families introduce new alleles
s0 . . . sm−1, one for each clause, and another distinct
allele z common to all of the mapping families. The si
alleles are used in the third gadget to enforce that,
once a literal is set to true in one clause, it is true in
every clause.
We now show how to construct the paternal families
using the ( yi, yj) children from the selection gadget.
Let ki be the number of clauses that contain variable

Table 1 Selection gadget for clause (xi ∨ xj ∨ xk)

Genotype of
Literals Family possible shared parent

xi ( yj , yk)0 ( yj , yk)

( yj , yk)1

xj ( yi , yk)0 ( yi , yk)

( yi , yk)1

xk ( yi , yj)0 ( yi , yj)

( yi , yj)1
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Table 2 Paternal families for clause (xi ∨ xj ∨ xk)

yi fam. yi fam. yj fam. yj fam. yk fam. yk fam.

( yi , yj)0 ( yi , yk)0 ( yi , yj)1 ( yj , yk)0 ( yi , yk)1 ( yj , yk)1

(sp , yi)0 (sp , yi)1 (sp , yj)0 (sp , yj)1 (sp , yk)0 (sp , yk)1

(sp , z)0 (sp , z)1 (sp , z)2 (sp , z)3 (sp , z)4 (sp , z)5

( yj , z)0 ( yk , z)0 ( yi , z)0 ( yk , z)1 ( yi , z)1 ( yj , z)1

xi. Each paternal family p containing the yi allele
must have

(ki
2
)
copies of the offspring (sp, yi)0 and

(sp, yi)0. For the clause (xi ∨ xj ∨ xk), we create the
six families in Table 2 (though here we only show
one copy of (sp, yi)0 and (sp, yi)1.
Consider the set of six mapping gadget families with
alleles {yi, yj, yk}, corresponding to the clause
cp = (xi ∨ xj ∨ xk). If, for example, the yi allele for all
copies of offspring (sp, yi)0 and of (sp, yi)1 is inherited
from its father, then the corresponding maternal
selection parent must be ( yj, yk), indicating that
variable xi is set to true. Again without loss of
generality, if the sp allele is inherited from the father,
then the maternal parent from the selection gadget
cannot possibly be ( yj, yk).

3. Lastly, we construct a gadget that maintains
consistency in each use of the variables, from the
SAT instance perspective. That is, it forces each true
literal to be true and each false literal to be false in
every clause in which that literal appears. The
enforcement gadget constructs a constraining
maternal family for each pair of clauses in which a
common literal occurs. For instance, if literal xi
appears in clauses cp and cq, then a cp/cq enforcment
family will be constructed so that either yi is forced
to be maternal or sp and sq are forced to be maternal.
The gadget makes use of the (sp, yi)∗ and (sq, yi)∗
individuals created by the mapping gadget. The
families created for a literal xi that appears in clauses
cp, cq, and cr are found in Table 3.
Each enforcement gadget family for yi has two copies
of (sp, yi) which are the two children from the
mapping gadgets containing ( yi, yj) and ( yi, yk). If sp

Table 3 Enforcement gadget for variable xi , appearing in
cp, cq and cr

cp/cq cp/cr cq/cr
(sp , yi)0 (sp , yi)0 (sq , yi)0

(sp , yi)1 (sp , yi)1 (sq , yi)1

(sq , yi)0 (sr , yi)0 (sr , yi)0

(sq , yi)1 (sr , yi)1 (sr , yi)1

(sp , z)0 (sp , z)1 (sq , z)1

(sq , z)0 (sr , z)0 (sr , z)1

is forced, then sq must also be forced to avoid an
incompatibility. As a result, yi is forced in both
paternal mapping gadget families, indicating that xi is
kept true in both cases. As stated in the mapping
gadget, this forces which maternal parent must be
chosen in the selection gadget. However, if yi is
forced in the enforcement gadget, then sp and sq are
forced to be true in the paternal mapping gadget
families, which excludes the parents corresponding
to xi in the SAT instance from being chosen in the
respective selection gadget families.

Finally, for all individuals with only a single assigned
parent, which is true for all individuals with the allele z,
we assign them to a single-element family correspond-
ing to their unassigned parent, thus enforcing no further
restrictions on parental genotypes.
In the MONOTONE ONE-IN-THREE SAT problem, a

literal from each clause must be set to true. The selection
gadget translates the task of choosing an allele to pick-
ing the parents of maternal families. Each selection gadget
family contains three distinct alleles {yi, yj, yk}. Choosing
maternal parent ( yi, yj) is equivalent to setting xk true and
the xi and xj literals to false.
Finally, let n be the number of literals andm be the num-

ber of clauses. Constructing the VALID HALF-SIBLING
PARTITIONING instance requires O(m) children for the
first gadget, O(m2 · n) additional children for the sec-
ond gadget, and O(m2) additional children for the third
gadget. Since m ≤ n, the resulting transformation is
polynomial in the number of literals.

As an example of this reduction, consider the MONO-
TONE ONE-IN-THREE SAT instance (x1 ∨ x2 ∨ x3) ∧
(x1∨x4∨x5). Its maternal selection and enforcement gad-
get families are in Table 4 and its paternal mapping gadget
families are in Table 5.
There are several feasible solutions to the M-1-3-SAT

instance, but the example illustrates the case where lit-
erals x2 and x4 are set true in the M-1-3-SAT instance.

Table 4 Maternal selection and enforcement gadgets for
example SAT instance

M0 M1 M2

(1, 2)0 (1, 4)0 (s0, 1)0

(1, 2)1 (1, 4)1 (s0, 1)1

(1, 3)0 (1, 5)0 (s0, 1)1

(1, 3)1 (1, 5)1 (s1, 1)1

(2, 3)0 (4, 5)0 (s0, z)6

(2, 3)1 (4, 5)1 (s1, z)6
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The inherited allele for each individual in each family
is bolded to represent the corresponding VHSP solution
where mothers (1, 3) and (1, 5) are chosen in the selection
gadget.

Identifying allele incompatibilities
Unfortunately, the NP-completeness of the VHSP prob-
lem makes it very unlikely that a polynomial time algo-

rithm exists for verifying that given maternal and paternal
partitions have valid parental genotype assignments.
Therefore, we present a 0/1 integer program that identi-
fies individuals to remove to obey Mendelian inheritance.
We use parsimony and select the fewest individuals to
remove.
We now present a 0/1 integer program to solve this

problem.

minimize
∑
i
xi

subject to ∑
k∈K

ylj,k ≤ 2, 0 ≤ j < |C|, 0 ≤ l < m

xl0,i +
1
2
(ylπ0(i),λ0(i) + ylπ1(i),λ1(i)) ≥ 1, 0 ≤ i < n, 0 ≤ l < m

xl1,i +
1
2
(ylπ0(i),λ1(i) + ylπ1(i),λ0(i)) ≥ 1, 0 ≤ i < n, 0 ≤ l < m

xl0,i + xl1,i − xli ≤ 1, 0 ≤ i < n, 0 ≤ l < m

xi − xli ≥ 0, 0 ≤ i < n, 0 ≤ l < m

For a population with n individuals, genotyped at m
loci, let xi = 1 denote the decision to remove individ-
ual i from the population. The variable ylj,k represents the
binary choice of having the kth allele in the common par-
ent of the family j at locus l. Denote the multi-set which
contains the maternal and paternal families as C, and let
π0 and π1 be functions thatmap an individual to its mater-
nal and paternal index in C respectively. Finally, let λ0 and
λ1 map the first and second allele of an individual to an
index in K, the set of all alleles.
The first constraint enforces that no parent can have

more than two alleles. The second and third constraints
enforce Mendelian mating requirements on individuals:
an individual is invalid, and hence must be removed
if it does not receive one allele from its mother and

Table 5 Paternalmapping gadget families for example
SAT instance

P0 P1 P2 P3 P4 P5

(1, 2)0 (1, 3)0 (2, 3)0 (1, 2)1 (1, 3)1 (2, 3)1

(s0 , 1)0 (s0 , 1)1 (s0, 2)0 (s0, 2)1 (s0 , 3)0 (s0 , 3)1

(s0 , z)0 (s0 , z)1 (s0, z)2 (s0, z)3 (s0 , z)4 (s0 , z)5

(2, z)0 (3, z)0 (3, z)1 (1, z)0 (1, z)1 (2, z)1

P6 P7 P8 P9 P10 P11

(1, 4)0 (1, 5)0 (4, 5)0 (1, 4)1 (1, 5)1 (4, 5)1

(s1 , 1)0 (s1 , 1)1 (s1, 4)0 (s1, 4)1 (s1 , 5)1 (s1 , 5)1

(s1 , z)0 (s1 , z)1 (s1, z)2 (s1, z)3 (s1 , z)4 (s1 , z)5

(4, z)0 (5, z)0 (5, z)1 (1, z)2 (1, z)3 (4, z)1

its other allele from its father. There are two pos-
sible ways to satisfy this constraint. Either the child
received its first listed allele from its mother and the
second allele from its father or vice versa. The two
constraints are the logical or of these two possibilities,
and the fourth constraint identifies incompatible loci as
those that are unsatisfied by either of these possibil-
ities. Finally, the last constraint enforces the require-
ment that xi must be 1, corresponding to individual
i being selected for removal, if the individual has any
incompatible loci.
We note that the minimization objective forces xi and xli

to be 0 as often as possible. Since there can never be more
families than individuals, the integer program has a total
of O(m · n) constraints.

Clustering half-sibling families

Sibship reconstruction finds a population clustering
which obeys Mendelian genetics. In the full sibling clus-
tering F , each individual appears only once. For half-
siblings, an algorithm must construct M and P when
both sexes are polygamous or only one of the two par-
titions when one sex is monogamous. Here, we describe
the approach of SibJoin, our program for identifying half-
sibling populations.

Measuring similarity
For a given half-sibling input, SibJoin relies on an n × n
similarity matrix which expresses the similarity between
each pair of individuals in the offspring population set.
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Brown and Berger-Wolf [13] used a similarity measure
which, for each pair of individuals, is the count of
third individuals in the population that form a com-
patible full sibling triplet with the pair. They proved
that any incompatible candidate full sibling group must
contain an incompatible triplet and give a probabilis-
tic argument that pairs of individuals with large num-
bers of compatible triplets are likely siblings. Unfortu-
nately, the half-sibling property is much weaker because
it only operates on one parent. Ruling out a potential
half-sibling group can take as many as six individu-
als, compared to the three that is required for full sib-
lings.

Theorem 2. There exist incompatible half-sibling
groups for which their smallest incompatible subgroup has
six members

Proof. Consider the sextet of individuals with one
locus and four alleles {[(1, 2)] , [(1, 3)] , [(1, 4)] , [(2, 3)] ,
[(2, 4)] , [(3, 4)] }. Any five of the individuals form a
valid half-sibship under the half-sibling property, but the
incompatibility appears when all six individuals are exam-
ined together: the common half-sibling parent would need
three alleles at the locus.

The lower bound suggests that examining triplets for
half-siblings could yield a falsely high count when indi-
viduals are not actually related. Additionally, the prob-
ability that three random individuals form a valid half-
sibship is much higher than that of three individuals
forming a valid full sibship. By enumerating all pos-
sible triplets with a pool of five alleles, we see that
96.62% of all triplets are compatible under the half-
sibling property, but only 56.61% of all triplets are
compatible under the full sibling properties: that is,
incompatibilities are not nearly so much of a warn-
ing of unrelatedness for half-sibling reconstruction as
for full-sibling reconstruction. If the number of alle-
les is set to ten, then 75.46% of half-sibling triplets
are compatible (most often, these result when any
two individuals in the triple share an allele), while
the number of full sibling compatible triplets is just
20.94%.
In the place of a triplet-based similarity function, Sib-

Join uses a pairwise measure. Given two individuals,
each with m loci, we count shared alleles at each locus
independently, between the two individuals. For exam-
ple, the pair of individuals x = [(1, 2), (2, 2), (1, 3)]
and y =[(1, 1), (2, 2), (2, 3)] has similarity sxy = 4.
The pairwise similarity matrix for this simple measure
may be computed in O(n2m) time, as opposed to the
O(n3m) time that is required by the brute-force triplet
method.

Let X be the random variable that represents the num-
ber of shared alleles between two individuals at a single
locus. If we assume an even allele distribution, then the
expected number of shared alleles at a single locus is given
in Eq. 1, 2, and 3.

E[X|full siblings] =
(
k − 1
k

)2
· 4k

2 + 3k − 2
4k2

+ 3k − 1
k2

(1)

E[X|half siblings] = k − 1
k

· k
2 + 3k − 1

2k2
+ 1

k

(
1 + 1

k

)

(2)

E[X|unrelated] = 4k2 − 4k + 2
k3

(3)

Assuming the parents of two full siblings are each het-
erozygotic, two siblings have a 50% chance of inherit-
ing the same allele from each parent: if either parent is
homozygotic, then the offspring are guaranteed to inherit
the same allele from that parent. Similarly, half-siblings
have a 50% chance of inheriting the same allele from their
heterozygotic common parent. For unrelated individuals,
the expected number of shared alleles approaches 0 as the
number of distinct alleles at a locus grows.When there are
many possible alleles, it is unlikely that two unrelated indi-
viduals will inherit the same alleles. So, as k grows without
bound E[X|full siblings]→ 1, E[X|half siblings]→ 1

2 , and
E[Xunrelated]→ 0.
Additionally, we may apply Hoeffding’s inequality to

show that the probability that a pairwise allele similarity
deviates far from its mean decreases exponentially as the
number of loci increases. Let X be a random variable as
described above. For independent loci, the allele similarity
Xi is the allele similarity of the i’th locus with 0 ≤ Xi ≤ 2
for 1 ≤ i ≤ m. By application of Hoeffding’s inequality to

the mean allele similarity X =
m∑
i=0

Xi
/
m,

Pr(|X − E[X] | ≥ t) ≤ 2 · exp
(

− t2m
2

)
(4)

Therefore, the pairwise similarity measure will perform
well when either the number of alleles or loci is suffi-
ciently large: it easily separates unrelated individuals from
half siblings and full siblings. Our results also indicate
that pairwise similarity method performs well, even with
modest numbers of alleles and loci.

Joining individuals
SibJoin’s half-sibling clustering uses the observation that
individuals with high allele similarity are very likely half or
full siblings. SibJoin begins with 2n clusters, each of which
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Figure 1 Demonstration of a successful iteration of SibJoin. Nodes represent individuals, edges represent a half or full sibling relationship
constructed by the algorithm, and nodes which share a box represent true full siblings.

contains a single individual. Every individual appears in
exactly two clusters, representing its maternal and pater-
nal half-sib groups. SibJoin uses a variant of single linkage
clustering to join clusters. Single linkage clustering is a
form of agglomerative clustering that determines the simi-
larity of two clustersCi andCj by computing sim(Ci,Cj) =
maxx∈Ci ,y∈Cj sxy, and then joins the two compatible groups
with highest similarity. A sample join is demonstrated
in Figure 1. Ties in similarity are broken by joining the
groups with the highest combined number of members
first since large compatible half-sibling groups are more
likely to be related than small groups. SibJoin’s success
comes from two observations. First, in order for bad joins
to occur between any pair of individuals i and j, the sim-
ilarity between i and j would need to be larger than the
similarity between i and each of i’s real half-siblings, and
likewise for j. Secondly, as clusters grow, the odds that two
unrelated clusters form a compatible half-sibship rapidly
diminishes.
Joining must only occur if two clusters form a valid

half-sibship. At the initialization of the algorithm, each
individual is assigned a feasible parent set with size at
most O(k) per locus. Each join results in a parent set
which is the intersection of the parent sets from the
two clusters. If the intersection produces the null set,
then there is no parent which can explain the new clus-
ter and the join is rejected. Therefore, testing whether
or not a join is valid takes O(km) time. When a site
experiences allelic dropout, SibJoin makes no assump-
tions about its parental restrictions; however, sites with
(∗, ∗) are never counted toward allele similarity between
individuals.
Unlike crisp clustering methods which mandate that

each individual appear in exactly one cluster, the half-
sibling problem contains both a maternal and paternal

group for each individual. We enforce the restriction
that any set of individuals sharing both a maternal
and paternal cluster must be compatible full siblings
under the 4-allele and 2-allele properties by maintain-
ing a clustering of full siblings. Because incompatible
full sibling groups are less likely than incompatible
half-sibling groups of the same size, at each similar-
ity step SibJoin joins clusters which form valid full
sibships first.
Microsatellites give no information about which alle-

les are maternal and which are paternal. Since SibJoin
constructs families in an iterative manner, part of a
maternal family could be reconstructed in the mater-
nal partitioning, while the other part of the family is
constructed in the paternal partitioning. If we are strict
about which sets we call maternal and paternal, then
the two halves will never be joined and the half on the
paternal side will likely force incorrect future joins. Our
solution is to implement a bipartite graph G = (V , E)

where each cluster is a vertex and edges exist between
clusters which share an individual. Let a join between
clusters Ci and Cj be an event which combines Cj into
Ci and let E(v) be the set of edges that touch v. In
our graph, join(Ci ,Cj) results in E(vi) := E(vi)

⋃
E(vj)

followed by the removal of vj and all edges in E(vj).
Enforcing bipartiteness as a post-condition of the join
operation allows flexibility while ensuring that the solu-
tion results in each individual having one parent of each
sex.

Results and discussion
We evaluated SibJoin’s performance with simulated and
real population data. The experimental results from real
populations are contrasted with the the HS-MSC and
COLONY half-sibling approaches.
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Accuracy measure
Partition distance is a metric whichmeasures the distance
between two partitions as the minimum number of indi-
viduals that must be removed from a population until the
two clusterings are identical. This metric is widely used in
sibship reconstruction literature and in bioinformatics in
general [16,17]. When true partitionings are known, par-
tition distance may be used to compute the true accuracy
of an algorithm; however, it may also be used to assess
changes between candidate sibships for which ground
truth is not known [18].
Despite its prominence in the kinship analysis literature,

partition distance offers only a coarse estimate of correct-
ness because it disregards how the excluded individuals
are constructed within the partitioning. For example, fail-
ing to join two related partial families is less destructive
than incorrectly joining one of the partial families to an
unrelated family. However, in both instances, the parti-
tion distance is identical. A concrete example is given in
Meilă [19].
Instead, we use an information-theoretic metric called

variation of information (VI) [19]. The VI measures how
much the information given by two clusters differ and is
preferable because it quantifies the amount of uncertainty
introduced by misplaced individuals.
The VI between two partitionings is 0 if and only if the

two partitionings are identical. Smaller VI corresponds to
more similar partitionings. Like entropy, the VI is always
non-negative. It also has a tight upper bound of log n
[19]; therefore, we normalize VI to a value in [ 0, 1] before
reporting the score for each of our trials.
For half-siblings, calculating the VI is not straight-

forward because we have two partitionings, maternal and
paternal, instead of the single partitioning that is common
in most clustering problems. Since there are two clus-
terings, we compute the average variation of information
between the two maternal clusters, M and M′, and the
two paternal clusters P and P ′, where M and P are the
true partitionings. Since it is usually impossible to deter-
mine the sex of the common parent, we calculate two
different VI values and choose the sex assignment that
minimize the VI.

HSVI =
min

(
VI(M,M′)+VI(P ,P ′)

2 , VI(M,P ′)+VI(P ,M′)
2

)
log n

(5)

Simulated data set results
We constructed simulation sets to test various param-
eters. Our model generates individuals from an equal
number of mothers and fathers. Parents are chosen ran-
domly, and children are generated from mother-father
pairs according to an even allele distribution. Simulated

data had default parameter values of 6 alleles, 6 loci,
half-sibling family sizes of 5 individuals, and a popula-
tion size of 40 individuals. The results are an average of
ten trials per parameter value. Trials which failed to com-
plete in 1 day are reported as ’-’. The population size was
increased to 80 individuals for family size trials so that
the partitionings did not become trivial. The loci count
was increased to 10 and family size to 20 when testing
population sizes above 200 individuals. A summary of our
parameter tests and their results may be found in Table 6.
Testing occurred on a 2.66 GHzmachine, containing 8 GB
of RAM, and running Python 2.7.
In most cases, the reported VI score approximates the

ratio of partition distance to population size. Overall,
COLONY 2.0 was more accurate, but took thousands of
times longer, often with only small gains in accuracy. Sib-
Join does much worse than COLONY 2.0 on the 10 allele
test set, but the discrepancy is due to a single trial for
which SibJoin receives a VI of 0.084 while COLONY 2.0
produces a perfect reconstruction. For the 10 loci test set,
SibJoin’s VI is again higher, but in practice the false posi-
tive difference between it and COLONY 2.0 is about one
individual per trial.
SibJoin does worst when the population size is large and

the family size is small. For instance, when tested with
a 100 individual population and families of 5 individu-
als, SibJoin rendered a VI of 0.201 compared to COLONY
2.0’s VI of 0.086. When family sizes are small and pop-
ulation sizes are large, it is much more likely for two
unrelated individuals to be mistakenly labeled as half-
siblings due to the explanations given in section 4.3.
However, SibJoin’s accuracy rapidly improves withmodest
increases in family size. In fact, SibJoin is more accurate
than COLONY 2.0 in trials with families containing 20
individuals. Unsurprisingly, both methods poorly recon-
struct populations where only two alleles are present.
With only two alleles, all individuals can be full or
half-siblings.
We may also use SibJoin to explore populations with

extreme numbers of individuals. SibJoin was able to
reconstruct populations of 500, 1000, and 2000 individu-
als in under 10 minutes, yet problems of this magnitude
are intractable for the HS-MSC and both of the COLONY
programs.

Biological data set results
SibJoin was tested on two biological data sets. The first
data set is a population of 112 field crickets with 7
mothers and 6 sampled loci [20]. The second data set
is a population of 672 kelp rockfish with 7 mothers and
7 sampled loci [21]. Results are shown in Table 7. Nei-
ther COLONY 2.0 nor the HS-MSC produced a solution
for the 672 rockfish population, so samples from three
of the parents were taken to reduce the population size
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Table 6 Simulated test results for SibJoin and COLONY 2.0 averaged over 10 trials

Fixed Parameter SibJoin COLONY 2.0

parameter settings Runtime VI (normalized) Runtime VI (normalized)

k: number of alleles

2 2.8 ms 0.396 48.9 min 0.553

5 13.2 ms 0.222 19.7 min 0.110

10 6.7 ms 0.014 12.8 min 0.004

15 5.1 ms 0.014 10.2 min 0.006

20 5.7 ms 0.003 10.0 min 0.000

m: number of loci

2 8.7 ms 0.469 10.7 min 0.524

5 10.1 ms 0.156 17.2 min 0.130

10 11.1 ms 0.035 14.2 min 0.001

15 12.7 ms 0.002 20.4 min 0.000

20 12.1 ms 0.000 21.3 min 0.000

n: population size

10 0.4 ms 0.042 2.29min 0.343

50 16.8 ms 0.104 17.1 min 0.078

100 82.5 ms 0.201 73.5 min 0.086

200 3.31 sec 0.230 - -

500 34.68 sec 0.013 - -

1000 2.84 min 0.015 - -

2000 12.43min 0.018 - -

f : family size

1 51.9 ms 0.546 - -

5 51.1 ms 0.183 29.6 min 0.051

10 46.2 ms 0.040 19.6 min 0.017

20 58.4 ms 0.009 21.7 min 0.042

Trials which did not complete in 24 hours are marked ‘-’.

to 288 individuals. In both populations, only maternal
parentage was available. For all trials, SibJoin was run
in a configuration that only attempts to reconstruct the
maternal sex.
Our results are compared to the HS-MSC results in [7]

and to our own benchmarks on COLONY 2.0. Because

the HS-MSC is not publicly available, we could not
assess runtime information for the program. However, the
authors do note that the HS-MSC IP finished in under
one day. The difference between the two runtimes is not
explained merely by CPU speed increases across a small
number of years. Additionally, neither COLONY 2.0 nor

Table 7 Tests for biological data

Data set Algorithm Runtime VI (normalized) False positives

112 crickets

COLONY 2.0 35.7 min 0.000 0

HS-MSC - n/a (see caption) 2

SibJoin 19.3 ms 0.014 1

288 kelp rockfish

COLONY 2.0 624.5 min 0.000 0

HS-MSC - n/a (see caption) 0

SibJoin 87.5 ms 0.000 0

672 kelp rockfish

COLONY 2.0 - - -

HS-MSC - - -

SibJoin 5.02 sec 0.108 78

A ‘-’ indicates that an algorithm did not complete after 24 hours. SibJoin was the only algorithm able to construct a solution for a 672 individual population of rockfish.
The variation of information is not computed for the HS-MSC since it allows instances of the same individual, which causes ill-defined VI scores.
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the HS-MSC’s half-sibling minimum set cover approach
constructed a feasible answer for the 672 rockfish data
set: COLONY 2.0 was stopped after running for three
days. SibJoin constructs an accurate solution in under
10 seconds.
The HS-MSC ILP does not enforce that individuals

must have one parent of each sex and both partition dis-
tance and variation of information are ill-defined when
the result is not a true partitioning. In the population of
112 crickets, the HS-MSC had two false positives and was
otherwise correct. In the test set containing 288 rockfish,
HS-MSC had 4 false positives and was otherwise cor-
rect. COLONY 2.0 was correct in all instances. SibJoin
correctly reconstructed the half-sibship for the 288 rock-
fish and only misplaced one individual in the cricket test.
SibJoin was the only algorithm to complete for the popu-
lation of 672 rockfish. Overall, SibJoin is as accurate as the
HS-MSC and nearly as accurate as COLONY 2.0, but is
much faster than either: SibJoin solves the small rockfish
instance over 42,000 times faster than COLONY 2.0.

Minimumpopulation removal IP results
Using the integer program outlined previously, we can
identify the minimum-size set of individuals which must
be removed in order to make a SibJoin solution feasible.
We assume that this set is small, so finding the minimum
individuals to remove should capturemany incorrect indi-
viduals.

Although the IP generally solves quickly, it struggles
to find a global optimum for populations of hundreds of
individuals. In these cases the IP gets very close, often
with integrality gaps below 3%, but never reaches an
optimal integer solution since it runs out of memory.
In our experiments, we enforce a 5 minute time limit
on the IP. We report the percent of trials that failed
to reach integrality in Table 8. An approximate solution
is acceptable as long as there is a reliable way to cor-
rectly re-add identified individuals into the population;
also, of course, there is no reason to assume that the
smallest set to remove consists of those that are causing
trouble.
Table 8 reports the recall and precision of the IP: the

percentage of all incorrect individuals that are identified
by the IP and the percentage of individuals that are actu-
ally incorrect among the individuals identified by the IP.
We find that the integer program can have a poor recall,
finding only 30% of the false positives in some situations;
however, the precision is relatively high. For individuals
in the minimum removal set, the number of incorrectly
placed individuals is consistently above 50%. The preci-
sion is significant since SibJoin’s total error rate is often
far below 50%. If we found a way to correctly reintroduce
the set of individuals identified by the IP, then the overall
SibJoin error rate would decrease significantly.
The IP does worst when there are only two alleles

or two loci. This is unsurprising since there will be no

Table 8 SibJoin trials with forbidden allele detection

Fixed parameter Parameter Norm. VI FP Recall Precision Timeout rate

k: number of alleles

2 0.396 25.9 0.000 0.000 0.0

5 0.225 12.3 0.300 0.694 0.0

10 0.013 0.2 0.000 0.000 0.0

15 0.014 0.0 - - 0.0

20 0.003 0.0 - - 0.0

m: number of loci

2 0.491 23.7 0.109 0.563 0.0

5 0.150 6.6 0.355 0.537 0.0

10 0.032 1.2 0.62 0.650 0.0

15 0.002 0.0 - - 0.0

20 0.000 0.0 - - 0.0

n: population size

10 0.042 0.5 0.2 1 0.0

50 0.098 10.2 0.340 0.679 0.0

100 0.201 41.0 0.400 0.765 0.1

200 0.220 88.9 0.408 0.780 1.0

f : family size

1 0.527 58.5 0.317 0.778 0.7

5 0.181 22.8 0.439 0.756 0.0

10 0.038 3.6 0.313 0.477 0.0

20 0.009 1.4 0.000 0.000 0.0

A ‘-’ occurs when there are no false positives.
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incompatibilities when each locus contains less than three
alleles and data with few loci have smaller risk of for-
bidden allele structures with bad joins. However, both
recall and precision tend to increase with population size
as demonstrated by the 100 and 200 population size test
cases. For populations with 200 individuals, the IP did not
reach integrality within 5 minutes, but still produced solu-
tions with high recall and precision relative to the other
tests, indicating that the IP is still useful at identifying
mis-placed individuals in large populations.

Conclusions
It is important to be able to determine whether or
not a proposed population structure is valid under
Mendelian inheritance assumptions. For half-siblings, we
have proved that even determining if such a structure
obeysMendelian laws isNP-complete, which is surprising
since the same determination in monogomous popula-
tions is trivial. This result has important implications
for half-sibling algorithms in general since most exist-
ing algorithms do not specifically enforce which allele is
inherited from which parent and those that do very likely
have running times which are exponential in the size of
the population. We have also provided an integer pro-
gram that solves an optimization variant of the problem:
what is the minimum number of individuals that must be
removed from a population in order for the population
structure to be valid. The IP was run against SibJoin’s pop-
ulation reconstructions. Although the IP only had a recall
of 30 to 40 percent when run against SibJoin’s population
reconstructions, the precision was high: 55 to 78 per-
cent of the individuals identified for removal were actually
incorrect.
We have also demonstrated an application of allele

similarity with our fast SibJoin heuristic. SibJoin is
a bottom-up algorithm based on single linkage clus-
tering. Our experiments show that despite being a
heuristic, the algorithm competes in accuracy with exist-
ing likelihood-based algorithms, but is thousands of
times faster in practice. The speed of our algorithm
is important since existing algorithms fail to recon-
struct half-sibling families when the population size is
above a few hundred individuals. SibJoin can recon-
struct these populations in seconds. SibJoin is able to
reconstruct real biological populations that existing algo-
rithms fail to reconstruct, and it does so with high accu-
racy.
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