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Abstract
The aim of this study was to predict the genomic breeding value (DGV) of production, selected conformation and reproductive
traits, and somatic cell score of dairy cattle in Poland using high-frequency marker haplotypes. The dataset consisted of pheno-
typic, genotypic, and pedigree data of 1216 Polish Holstein-Friesian bulls. The genotypic data consisted of 54,000 single-
nucleotide polymorphisms (SNPs). The data were divided into two subsets: a test dataset (n = 1064) and a validation dataset
(n = 152). Genotypic data were selected using three criteria: the percentage of missing genotypes, minor allele frequency, and
linkage disequilibrium. The purpose of the data selection was to identify blocks of SNPs that were then used for the construction of
haplotypes. Only haplotypes with a frequency higher than 25% were selected. DGV was predicted using four variants of a linear
model with random haplotype effects and deregressed breeding values as the response variables. The accuracy of genomic
prediction was checked by comparing DGVs with estimated breeding values (EBVs) using two methods: Pearson’s correlations
and the regression of EBVonDGV. The use of high-frequency haplotypes showed a tendency to underestimate DGVs. None of the
models tested was clearly superior with regard to the traits studied. DGVs of production and conformation traits as well as somatic
cell score (medium or high heritability traits) were more accurate than those estimated for fertility traits (low heritability traits).
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Introduction

The genomic selection introduced by Meuwissen et al. (2001)
has received much attention in animal breeding, because it
provides predictions of the breeding values at a young age
of animals with higher accuracy than breeding values based
on parent average (Hess et al. 2017; Van Raden 2008). The
potential benefits of using genomic selection were outlined by
Schaeffer (2006). He showed that the genetic progress of a
selected population of Canadian Holstein cattle would be dou-
bled compared to the selection based on offspring phenotypes.
He also stated that the use of genomic selection would reduce

financial costs by 92% compared to traditional selection.
Other benefits of genomic selection are decreased generation
interval and the possibility of identifying recessive lethals
(Wiggans et al. 2017). Furthermore, due to the lower produc-
tion cost, a much larger number of bulls can be selected, which
leads to a better management of genetic resources and limita-
tion of inbreeding trends (Boichard et al. 2016).

The genomic breeding values (GBVs) in dairy cattle are
usually predicted using single SNPs. However, a haplotype
approach to the prediction of genomic breeding values using
high density data is an alternative to single-marker methods
(Calus et al. 2008; Cuyabano et al. 2014; Jónás et al. 2016;
Hess et al. 2017). Building haplotypes based on linkage dis-
equilibrium reduces the number of variables without the loss
of information (Cuyabano et al. 2014).

An important benefit of haplotypes over SNPmarkers is their
superior ability to identify mutations (Cuyabano et al. 2014). In
addition, the use of haplotypes in genomic selection is advanta-
geous because this approach treats the haplotype as a functional
unit that contains the combined effects of tightly linked cis-
acting causal variants (Da 2015; Garnier et al. 2013). On the
other hand, the main disadvantage of models with marker
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haplotypes is that the number of effects to be estimated is sig-
nificantly larger than that for SNP models (Calus et al. 2008).
There are over a million haplotype alleles for a block of 20
biallelic SNPs, many of which occur at a low frequency (Hess
et al. 2017). However, the number of haplotype effects to be
estimated can be reduced by includingmore SNPs per haplotype
or by using only haplotypes with a high frequency in the popu-
lation. Discarding rare haplotype alleles also reduces computa-
tion time with little expected decrease in prediction accuracy
(Gianola 2013). Other effective methods that reduce the number
of explanatory variables in the linear model are, for example, the
use of linkage disequilibrium (LD) to determine where a haplo-
type starts and ends in the genome (Gabriel et al. 2002), or the
definition of haplotypes by settingwindowswith a fixed number
of SNPs to form a haplotype (Villumsen et al. 2008).

The main purpose of this study was to predict the genomic
breeding values of the production, selected conformation and
reproductive traits, as well as somatic cell scores of Polish
Holstein-Friesian cattle using high-frequency marker haplo-
types. The study was divided into three stages: (1) selection
of SNPs and blocks of linked markers, (2) construction of hap-
lotypes and estimation of their frequency in the population un-
der scrutiny, and (3) prediction of genomic breeding values
using high-frequency haplotypes and comparison of the linear
models applied.

Material and methods

Data

The dataset included the phenotype, genotype, and pedigree
data of 1216 bulls of the Polish Holstein-Friesian breed. All
the animals were born between 1987 and 2003. The most

numerous group were born between 1997 and 2003 (n =
1061). The distribution of the number of bulls analyzed with
respect to the year of their birth is shown in Fig. 1.

To compare prediction models most often so-called a K-
fold cross-validation (K-fold CV) is used (Gianola and Schön
2016). However, in the present study, the CV layout was
based on a generational partition of the dataset into two sub-
sets (Perez-Cabal et al. 2012). One was the test dataset
consisting of 1064 of the oldest individuals (87.5% of all the
bulls) to train the model; the other contained the remaining
152 youngest individuals—this was the validation dataset. It
has been shown (Daetwyler et al. 2008; Erbe et al. 2010) that
larger predictive correlations in genomic selection are propor-
tional to training sample size, thus, to increase predictive abil-
ity of the model, the test dataset was seven times larger than
the validation dataset.

The study involved the following traits: milk yield (MY),
fat yield (FY), protein yield (PY), stature (STA), overall feet
and leg score (OFL), udder support (USU), non-return rate of
cows (NRK), rest before pregnancy (PRP), time between
pregnancies (OMC), and somatic cell score (SCS). MY, FY,
and PY were measured in kilograms, while STA, OFL, and
USU were included in the linear assessment expressed as
points awarded (from 50 to 100 points for ST A and OFL,
from 1 to 9 points for USU). NRKwas 1 if a cow did not show
symptoms of oestrus within 56 days of the first insemination,
and 0 otherwise. PRP and OMC were expressed in days. SCS
was calculated by converting the somatic cell count (SCC)
using the following formula:

SCS ¼ log2
SCC

100000

� �
þ 3:

Estimated breeding values (EBVs) were obtained using a
test day model with random regressions (Strabel et al. 2005).
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Fig. 1 The distribution of the
number of bulls analyzed with
respect to the year of their birth
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Heritabilities and variance components of the traits analyzed
were estimated within the framework of the national genetic
evaluation system of Polish Holstein-Friesian cattle (Interbull
2012). Their values are listed in Table 1.

Genotypic data were obta ined using Il lumina
BovineSNP50 BeadChip (Matukumalli et al. 2009). The use
of microarrays enabled the analysis of 54,001 SNPs for each
individual. Out of 54,001 SNPs, 46,267 SNPs were selected
for the DGVestimation based on their minor allele frequency
(≥ 1%) and call rate (≥ 90%). This set of SNPs was subjected
to further selection (the SNP selection criteria are described in
the next subsection).

Statistical analysis

The statistical analysis was divided into three main steps:
(1) selection of SNPs and blocks of linked markers, (2)
construction of haplotypes and estimation of their frequen-
cy in the population analyzed, and (3) prediction of geno-
mic breeding values using haplotypes and comparison of
the linear models applied.

The first step in the SNP selection was to remove from the
dataset those markers for which the missing data (genotypes)
represented more than 10% of the total (GENO < 0.1). Then,
the minor allele frequency (MAF) was used. Two limiting
values were considered: 1 and 5%. As a result of this selection,
two subsets of data were created: one with MAF > 0.01 and
the other with MAF > 0.05. Based on the data subsets created
in the previous step, blocks of linked SNPs were selected. LD
of SNPs was measured using r2. Two limiting values were
used: r2 ≥ 0.8 and r2 ≥ 0.9. Within each chromosome, r2 was
calculated for each pair of SNPs. Linked markers were com-
bined into blocks. As a result, four subsets of data were pre-
pared: (1) MAF > 0.01 and r2 ≥ 0.8, (2) MAF > 0.01 and r2 ≥
0.9, (3) MAF > 0.05 and r2 ≥ 0.8, and (4) MAF > 0.05 and
r2 ≥ 0.9. SNP selection was carried out using the PLINK pro-
gram (Purcell et al. 2007; Purcell 2010). Owing to the largest
variety of block sizes, the first of the abovementioned subsets
(MAF > 0.01 and r2 ≥ 0.8) was selected for further analysis.
The blocks of SNPs were then used for the construction of
haplotypes. This stage of the study, together with the estima-
tion of haplotype frequency in the population, was done using
the PHASE program (Stephens et al. 2001). In order to sub-
stantially reduce the number of explanatory variables in the

linear models, only haplotypes with a frequency higher than
25% were selected for further analysis.

The genomic breeding values were predicted using four
variants of the following linear model for each trait analyzed:

y ¼ μþ Zhþ ε;

where y is the vector of deregressed breeding values, μ is the
overall mean, Z is the design matrix for the random haplotype
effects, h is the vector of the random haplotype effects, and ε is
the vector of random errors, where ε ~N (0, σ2

e ) and σ
2
e is the

error variance. The EBVs were deregressed using the method
of Jairath et al. (1998).

Two variants of the above linear model (model 1 and model
2) used genetic variance equally divided into all haplotypes

(regardless of their length), where h∼N 0;
σ2g

number of haplotypes

� �
,

and σ2
g is the genetic variance of the trait. Furthermore, two

types of the Z matrix were employed: model 1 used the Z
matrix containing the probabilities of a given haplotype being
passed on by a particular bull, while model 2 used the Zmatrix
consisting of only ones, if a given bull had a specific haplo-
type, and of zeros if it did not. Two other variants of the linear
model (model 3 with the Z matrix defined as in model 1, and
model 4 with the Zmatrix defined as in model 2) used genetic
variance unequally divided into all haplotypes (the larger the
haplotype, the greater the part of the genetic variance assigned

to it), where h∼N 0;σ2
g∙

haplotype size
number of allelesÞ

�
.

The genomic breeding value of the ith individual was esti-
mated as follows: DGVi =∑jZijhj.

The accuracy of the prediction of DGV was checked using
two methods: Pearson’s correlations between EBV and DGV
and the regression of EBVon DGV (Meuwissen et al. 2001).

All statistical analyses (unless otherwise stated) were per-
formed using the R project (R Core Team 2011).

Results

Constructing haplotypes and estimating their
frequency in the population

Haplotypes were constructed on the basis of the blocks
selected—those selected from SNPs fulfilling the criteria of

Table 1 Heritabilities (h2) and genetic variances (σ2g) of the analyzed traits

Trait

MY FY PY STA OFL USU NRK PRP OMC SCS

h2 0.33 0.29 0.29 0.54 0.11 0.20 0.02 0.05 0.08 0.32

σ2
g 213,490 330.10 181.30 5.50 0.89 0.37 0.00451 171.50 557.40 28,737
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MAF > 0.01 and r2 ≥ 0.8 were considered the best set for
haplotype construction. The reason for such a decision was
the large variety of block sizes, especially the fact that the
largest blocks were created in this subset. Table 2 shows the
numbers of haplotypes constructed for individual chromo-
somes. The largest number of haplotypes was obtained for
chromosome 26 (3709 haplotypes), whereas the smallest
number of haplotypes was constructed for the sex chromo-
some (99 haplotypes) and for chromosome 28 (137 haplo-
types). Also, chromosomes 23 and 24 were distinguished by
the number of haplotypes, where their number exceeded 2000
(2069 and 2843, respectively). The number of haplotypes was
dependent on block size. The larger the block, the more pos-
sible combinations of alleles, and thus the more possible

haplotypes. The criterion for the selection of haplotypes was
their frequency in the population. Only haplotypes which ap-
peared in at least 25% of the individuals in the population
were taken into account. Ultimately, the number of haplotypes
was reduced from over 21,000 to 5682.

Predicting genomic breeding values

Tables 3 and 4 show the linear correlation coefficients be-
tween DGV and EBV for the test and validation datasets,
respectively. In the test dataset, the strongest correlations were
estimated for STA, FY, MY, PY, USU, and SCS, whereas
lower correlations were estimated for reproductive traits
(NRK, PRP, OMC). The linear correlation coefficients esti-
mated in the validation dataset were lower; however, as in
the test dataset, stronger correlations were estimated for me-
dium and high heritability traits, while for the low heritability
traits the estimated correlations were lower.

Tables 5 and 6 show regression coefficients of EBV on
DGV for the test and validation datasets. All the tested models
underestimated genomic breeding values. In the test dataset,
the regression coefficients closest to the desired value (though
a few times higher) were obtained for models 3 and 4. Models
1 and 2 displayed an evident tendency to underestimate breed-
ing values, which was manifested by regression coefficients
significantly exceeding unity. This tendency was particularly
pronounced for NRK, PRP, and OMC (low heritability traits),
and also for OFL and USU.

The analysis of EBVon DGV regression coefficients esti-
mated for the validation dataset showed that models 1, 2, 3,
and 4 maintained a tendency to underestimate breeding
values, but the values of all the regression coefficients except
MY decreased slightly. None of the linear models tested was
clearly superior with regard to the studied traits.

Summing up, none of the linear models exhibited a signif-
icantly higher prediction accuracy in any of the comparisons
between EBV and DGV, no matter whether correlations or
regression were used: different types of design matrix for the
random haplotype effects and the genetic variance equally or
unequally divided into haplotypes had very little impact on the
accuracy of prediction.

Table 2 The number of haplotypes constructed for each chromosome

Chromosome no. All constructed
haplotype

Number of haplotypes
with freqency > 25%

1 1050 409

2 774 321

3 748 303

4 717 269

5 524 215

6 711 307

7 688 266

8 776 299

9 456 183

10 551 223

11 549 225

12 361 147

13 493 183

14 623 234

15 355 159

16 539 207

17 407 142

18 267 114

19 295 127

20 526 183

21 327 141

22 309 127

23 2069 175

24 2843 228

25 167 71

26 3709 162

27 145 66

28 137 63

29 227 94

Total 21,343 5643

30 (allosome) 99 39

Total 21,442 5682

Table 3 Pearson’s correlation coefficients between DGVand EBV for
the test dataset

Model Trait

MY FY PY STA OFL USU NRK PRP OMC SCS

1 0.72 0.75 0.71 0.79 0.67 0.71 0.64 0.63 0.63 0.70

2 0.72 0.75 0.71 0.79 0.67 0.71 0.64 0.63 0.63 0.70

3 0.72 0.75 0.71 0.79 0.66 0.71 0.63 0.63 0.63 0.71

4 0.72 0.75 0.71 0.80 0.66 0.71 0.63 0.63 0.63 0.71
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Discussion

Interest in haplotypes as explanatory variables in linear models
for predicting genomic breeding values was generated almost
parallel to the possibility of using information derived from
SNPs (Calus et al. 2008; Tzeng and Bondell 2010; Jiang et al.
2012; Cuyabano et al. 2014; Jónás et al. 2016; Hess et al. 2017).
Haplotypes can be constructed using various methods based on,
for example, the expectation-maximization algorithm (Excoffier
and Montgomery 1995) or the Bayesian theory (Stephens et al.
2001). In this study, based on a previous investigation
(Macierzyńska andWierzbicki 2008), the lattermethodwas used.

The number of haplotypes constructed for the purposes of
this study depended inter alia on the size of blocks. The more
SNPs in the block, the more potential allele configurations in
the haplotype. Owing to the large number of haplotypes con-
structed (explanatory variables), among which there were
many with a low probability of occurrence in the population,
the criterion of their frequency (> 25%) in the population was
used. A similar approach was used by Huang et al. (2007),
who used the limiting value of this criterion computed as 1/n
and 2/n, where n is the population size. Also, Kolbehdari et al.
(2007) and Boleckova et al. (2012) showed that predictions of
breeding values using haplotypes with higher frequencies
were more accurate than using haplotypes with lower frequen-
cies. In the study by Hayes et al. (2006), haplotypes with a
frequency of less than 1% were eliminated. That frequency
was much lower than the haplotype frequency used in the
present study. This was because of the large number of hap-
lotypes constructed and the limited number of individuals

analyzed, which caused problems with the linear modeling.
According to Calus et al. (2008), reducing the number of
haplotypes may improve both the feasibility and the power
of the model.

The correlations between EBV and DGV obtained for the
test dataset were high and comparable with those reported by
Szyda et al. (2009), who used linear models with SNPs as
random explanatory variables. The correlations estimated for
the validation dataset were much lower. This tendency was
also indicated by Habier et al. (2007) and Moser et al.
(2009). They reported that a higher accuracy of prediction
was achieved for the validation dataset using models with
random haplotype effects. Boleckova et al. (2012) drew a
similar conclusion after having tested linear models with hap-
lotypes as explanatory variables. A like tendency was de-
scribed byMucha andWierzbicki (2012), who used simulated
data in a haplotype-based breeding value prediction study. The
correlations between EBV and DGV for production traits in
the validation dataset were lower than the correlations present-
ed by Solberg et al. (2008). The authors reported correlations
from 0.69 to 0.86 using SNPs, and from 0.80 to 0.82 using
haplotypes. Kolbehdari et al. (2007) and Calus et al. (2009)
also reported higher correlations between EBVand DGV: they
ranged from 0.72 to 0.85 and from 0.79 to 0.81, respectively.
However, it should be noted that all these studies were carried
out using simulated data.

According to Hess et al. (2017), who studied the accuracy
of genomic selection in dairy cattle using fixed-length haplo-
types, fitting covariates for fixed-length haplotype alleles rath-
er than SNPs can increase the accuracy of genomic prediction
by up to 5.5%. They also found that using shorter haploblocks
led to a higher accuracy of prediction than using longer ones.

The data used in the present study were also used to predict
the breeding values based on SNP effects (Szyda et al. 2011).
The reference population in that study was a group of 984
bulls, 252 of which belonged to the validation set. The corre-
lations between EBVand DGV were 0.38 for milk yield, 0.37
for protein yield, and 0.32 for fat yield. These values were
lower than the correlations estimated using models with
random haplotype effects described in the present study.
Szyda et al. (2011) estimated different correlation coefficients
(0.43 for milk yield, 0.44 for protein yield, 0.31 for fat yield)

Table 4 Pearson’s correlation coefficients between DGVand EBV for
the validation dataset

Model Trait

MY FY PY STA OFL USU NRK PRP OMC SCS

1 0.45 0.33 0.41 0.29 0.38 0.43 0.34 0.24 0.38 0.39

2 0.45 0.33 0.41 0.29 0.38 0.43 0.34 0.24 0.38 0.39

3 0.47 0.36 0.42 0.31 0.37 0.42 0.33 0.24 0.38 0.39

4 0.47 0.36 0.42 0.31 0.37 0.43 0.34 0.23 0.38 0.39

Table 5 Regression coefficients
of EBVon DGV for the test
dataset

Model Trait

MY FY PY STA OFL USU NRK PRP OMC SCS

1 3.43 6.73 3.34 2.40 11.93 7.35 48.99 19.90 12.38 4.54

2 3.44 6.73 3.35 2.40 11.94 7.34 48.98 19.90 12.38 4.54

3 2.95 5.88 2.91 2.17 9.85 6.29 38.60 17.05 10.67 4.10

4 2.96 5.87 2.92 2.19 9.89 6.29 38.61 17.04 10.69 4.10

J Appl Genetics (2019) 60:179–186 183



after having estimated the genomic enhanced breeding value
(GEBV) by combining DGVand parental information (parent
average). The correlations between GEBVand EBV for milk
yield and protein yield were comparable to the correlations
between DGVand EBV reported in the present study.

The regression coefficients of EBVon DGV for the valida-
tion dataset indicated underestimation of GBVs of the studied
traits. This was particularly evident with regard to low herita-
bility traits (NRK, PRP, OMC). The least biased predictors
were obtained for STA, MY, PY, FY, and SCS. This confirms
that more accurate predictors of breeding values are obtained
for traits with higher heritability (Calus et al. 2008; Moser
et al. 2010). In Ireland, genomic selection was also imple-
mented with a relatively small reference population of 596
bulls, and a validation group of 207 bulls (Berry and
Kearney 2009). EBVon DGV regression coefficients were at
the level of 0.76 for milk yield, 0.78 for fat yield, 0.80 for
protein yield, and 0.77 for somatic cell score, which suggests
that the predictors of breeding values, despite the differences
between the reference population sizes, were more accurate
than the predictors obtained in this study. However, Berry and
Kearney (2009) pointed out that the accuracy of the results
could have been greater if information from the bull daughters
from the validation dataset had been included in the test
dataset.

An interesting proposal regarding genomic selection using
haplotypes was given by Da (2015). That author developed a
quantitative genetics-based multi-allelic haplotype model for
integrating functional and structural genomic information
using haplotypes separately or jointly with SNPs. This ap-
proach may be a significant contribution to improving the
accuracy of genomic prediction.

In the present study, a generational partition of the
dataset into two subsets to perform cross-validation was
applied. However, it is known that the CV layouts may
have an important effect on the accuracy of genomic
predictions (Perez-Cabal et al. 2012; Gianola and
Schön 2016). The results of the study reported by
Pszczola et al. (2012) indicate that genetic relationships
within and between training and testing datasets influ-
ence the reliability of direct genomic breeding values. A
higher relationship of the evaluated animals to the ref-
erence population together with smaller average

relationship within the reference population results in
higher reliabilities of genomic predictions. Keeping this
in mind, further studies using different cross-validation
scenarios would be needed to draw more general con-
clusions from the results of the study presented.

In conclusion, the use of high-frequency haplotypes
showed a tendency to underestimate DGVs. None of the
models tested was clearly superior with regard to the traits
studied. The type of design matrix for the haplotype effects
(either containing the probabilities of a given haplotype
being passed on by a particular bull or consisting of only
ones, if a given bull had a specific haplotype, and of zeros
if it did not) as well as the equal or unequal division of the
genetic variance between haplotypes did not significantly
affect the accuracy of prediction. DGVs of production and
conformation traits as well as somatic cell score (medium
or high heritability traits) were more accurate than those
estimated for fertility traits (low heritability traits). The
relatively low accuracy of genomic selection, especially
for low heritability traits, could well have been higher if
high-frequency haplotypes had been combined with SNPs
alleles with known effects (Calus et al. 2008) or if haplo-
type effects had been combined with parental information
(Szyda et al. 2011).
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