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Abstract: Rotavirus is a common viral infection among young chil-
dren. As in many countries, the infection dynamics of rotavirus in 
the Netherlands are characterized by an annual winter peak, which 
was notably low in 2014. Previous study suggested an association 
between weather factors and both rotavirus transmission and inci-
dence. From epidemic theory, we know that the proportion of sus-
ceptible individuals can affect disease transmission. We investigated 
how these factors are associated with rotavirus transmission in the 
Netherlands, and their impact on rotavirus transmission in 2014. We 
used available data on birth rates and rotavirus laboratory reports 
to estimate rotavirus transmission and the proportion of individuals 
susceptible to primary infection. Weather data were directly available 
from a central meteorological station. We developed an approach for 
detecting determinants of seasonal rotavirus transmission by assess-
ing nonlinear, delayed associations between each factor and rotavirus 
transmission. We explored relationships by applying a distributed 
lag nonlinear regression model with seasonal terms. We corrected 
for residual serial correlation using autoregressive moving average 
errors. We inferred the relationship between different factors and the 
effective reproduction number from the most parsimonious model 
with low residual autocorrelation. Higher proportions of susceptible 
individuals and lower temperatures were associated with increases in 
rotavirus transmission. For 2014, our findings suggest that relatively 
mild temperatures combined with the low proportion of susceptible 
individuals contributed to lower rotavirus transmission in the Neth-

erlands. However, our model, which overestimated the magnitude 
of the peak, suggested that other factors were likely instrumental in 
reducing the incidence that year.
(Epidemiology 2017;28: 503–513)

Rotavirus generally infects unvaccinated children initially 
between 6 and 24 months of age, and nearly always before 

5 years of age.1 Reinfections are generally less severe than 
the first episodes, with primary rotavirus infection account-
ing for an estimated 86% of the moderate-to-severe diarrhea 
associated with rotavirus.1,2 As in many countries, the infec-
tion dynamics of rotavirus in the Netherlands are character-
ized by predictable annual winter peaks in reported incidence 
that vary in height and breadth. In 2014, the pattern of rota-
virus incidence in England and in the Netherlands was nota-
bly different from that of previous years.3,4 In England, the 
substantially lower reported incidence was attributed to the 
introduction of an infant rotavirus vaccine in July 2013.3 The 
reason for the nearly identically low reported incidence in the 
Netherlands is less clear because the uptake of rotavirus vac-
cine among Dutch infants has been negligible to date.

A preliminary look at data (Figure 1) suggested two 
hypotheses for this observation. First, previous study has sug-
gested that lower temperatures are associated with increased 
rotavirus transmission and incidence, with the effect of colder 
temperatures lasting for up to 1 or 4 weeks, respectively.5–10 
If temperature indeed (indirectly) affects rotavirus incidence,6 
then the unusually mild winter temperatures in 2014 contrib-
uted to the relatively low rotavirus incidence that year. How-
ever, it is unclear whether prior analyses corrected for residual 
serial correlation. Generally, for time series data, the residu-
als of classical regression are correlated over time. Failing to 
correct for these correlations violates the independent errors 
assumption, and generates, at least, incorrect confidence inter-
vals that are too narrow and statistical tests that overstate the 
significance of the regression coefficients, and, at most, spuri-
ous associations.11–13

Second, a lower proportion of susceptible individuals is 
associated with a lower incidence of infection at some future 
time depending on the duration of the incubation period.14 The 
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FIGURE 1. Available time series data 
over the period 1999–2015 in the 
Netherlands. A, Reported rotavirus 
incidence by week for the Nether-
lands, weighted according to the 
number of the laboratories report-
ing in any given week. B, Maximum 
daily temperature recorded at the 
meteorological station in De Bilt, 
the Netherlands. C, Maximum daily 
absolute humidity recorded at the 
meteorological station in De Bilt, 
the Netherlands. D, Daily ultraviolet 
light recorded at the meteorologi-
cal station in De Bilt, the Nether-
lands. E, Daily rainfall recorded at the 
meteorological station in De Bilt, 
the Netherlands. F, Actual number 
of births per day in the Netherlands 
2000–2013 (black), including the 
simulated number of births per day 
for 2014–2015 (grey).
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relatively high incidence in 2013 may have left fewer indi-
viduals susceptible to primary infection, leading to a lower 
reported incidence in 2014.

A useful metric to estimate the transmissibility of infec-
tious diseases is the effective reproduction number, R t( ), 
defined as the average number of secondary cases produced 
by any one infectious case at time t. An epidemic is under 
control and incidence decreases when R t( ) < 1.

Here, we set out to disentangle possible effects of 
weather factors and the proportion of susceptible individuals 
(factors) on the effective reproduction number of rotavirus 
(outcome) in the Netherlands. We assessed whether past val-
ues of a factor are more strongly associated with the current 
value of an outcome than the past values of the outcome itself 
by assessing Granger causality.15 Throughout our analyses, 
we applied a strict test for detecting associations by explicitly 
correcting the regression residuals for serial correlation using 
autoregressive moving average methods.

METHODS
We first describe data available and the methods used 

to estimate required data from available data. We then present 
the statistical methods used to test for associations.

Available Data

Rotavirus Incidence
Data on weekly reported rotavirus detections from July 

27, 1999 to December 31, 2015 were obtained from the Dutch 
Working Group for Clinical Virology. This database contains 
data on the number of individuals with stool testing positive 
for rotavirus from 17 to 21 virology laboratories in the Neth-
erlands. Reported test-positive incidence data were weighted 
by the number of laboratories reporting per week, and were 
then used as a proxy for incidence of the event of interest: a 
primary rotavirus infection.

Weather Data
Data on the maximum, minimum, and average daily 

temperature and absolute humidity, ultraviolet light, and rain-
fall from January 1, 1950 to December 31, 2015 were avail-
able from the Royal Netherlands Meteorological Institute. We 
used data from the meteorological station in De Bilt, located 
in the middle of the Netherlands and considered representa-
tive for the country.

Number of Births
Data on the daily number of births in the Netherlands 

from January 1, 1995 to December 31, 2013 were obtained 
from Statistics Netherlands. For 2014–2015, only monthly 
birth rate data were available. Daily birth rate data for these 
years were estimated using the available monthly data and the 
daily trends from previous years. See eAppendix B (http://
links.lww.com/EDE/B186) for additional details.

The study period that we considered in this analysis 
was from 1 January 2000 to 31 December 2015, providing us 
with a large dataset for our analyses. No ethical approval was 
required. Original time series data on the weighted reported 
rotavirus incidence, maximum daily temperature, maximum 
absolute humidity, ultraviolet light, rainfall, and birth rate 
are shown in Figure 1. Note the low reported rotavirus inci-
dence in 2014 (Figure 1A), which coincided with a relatively 
mild winter (Figure 1B). In addition to the clear yearly trend 
observed in each time series plot, the daily number of births 
gradually decreased over time. We expected the temperature 
and the proportion of susceptible individuals to directly affect 
rotavirus transmission. We additionally evaluated the effect of 
variables for which we did not expect to observe an associa-
tion, including ultraviolet light, rainfall, and absolute humid-
ity. We did not assess the effect of school vacations because 
most primary infections occur before children are old enough 
to attend school.

Estimating the Proportion of Susceptible 
Individuals

The primary infection with rotavirus is the most likely 
to be symptomatic and severe. Therefore, in calculating the 
proportion of susceptible individuals from the weekly num-
ber of reported rotavirus cases, we made two assumptions: 
(1) the majority of cases represented in our reported rotavirus 
incidence data were of primary infections and (2) individuals 
were removed from the population at risk for severe infection 
after their primary infection. Sensitivity of our results to this 
second assumption was assessed in eAppendix E (http://links.
lww.com/EDE/B186). Because infants younger than 6 months 
are generally protected from rotavirus infection due possibly 
to maternal immunity,16–18 children older than 6 months who 
had never been infected constituted the susceptible population 
in our analysis.

The infection dynamics described above are akin to a 
standard epidemic susceptible-infected-recovered model, 
common in mathematical modeling.19 The absolute number 
of susceptible individuals for any given week S t( ) was cal-
culated as the number of susceptible individuals at the start 
of follow-up S0( ), plus the cumulative number of individuals 
older than 6 months of age ( δ ) from the start of our time 
series to week t subtracted by the cumulative number of rota-
virus cases (I ) from the start of our time series to week t. We 
estimated S0 as the average expected duration in the suscep-
tible class (9 months, discussed below) times the average daily 
number of new susceptible individuals in 1999.

Reported rotavirus incidence data (I r) underestimate 
primary rotavirus infection in the Netherlands: not all Dutch 
laboratories report to the database and laboratory tests are 
conducted on a small fraction of all individuals with rotavirus. 
To estimate the proportion of case ascertainment at each week 
α t( ), we used local linear regression of births versus rotavirus 
cases. Because all individuals become infected with rotavirus 
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and primary infections occur shortly after individuals become 
susceptible, the ratio of cases to births estimates well the case 
ascertainment.20 For our main analysis, we set to 9 months the 
average time that individuals are expected to be susceptible 
to primary infection. In eAppendix E (http://links.lww.com/
EDE/B186), we tested the sensitivity of our results to alterna-
tive average durations in the susceptible class.

We adjusted the number of reported cases for under-
ascertainment to arrive at a balance equation for the number 
of susceptible individuals:

S t S i
i

I i
i

t
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Because all children are infected with rotavirus at least 
once before 5 years of age, we set the time-dependent denomi-
nator of the total number of individuals in the population N t( )  
to be the total number of births in the Netherlands in the previ-
ous 5 years. Therefore, the proportion of susceptible individu-
als at week t  was S t N t( ) / ( ) . In eAppendix B (http://links.
lww.com/EDE/B186), we show how α ( )t  changes over time.

Estimating the Effective Reproduction Number 
of Rotavirus

The effective reproduction number, R t( ), measures the 
number of secondary cases infected per primary case at time 
t  and can be calculated as21
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where I u�( )  is the rotavirus infection incidence at time u  
and g u( )  is the probability density of the generation interval 
distribution at time u , which we calculated in eAppendix B 
(http://links.lww.com/EDE/B186). The mean of the generation 
interval was 2.1 days (SD = 0.9), which agrees with the esti-
mated rotavirus incubation period of 2 days.1 In eAppendix E 
(http://links.lww.com/EDE/B186), we tested the sensitivity of 
our results to a longer generation interval. Because the mean 
of the generation interval distribution was less than 1 week, 
we converted weekly incidence data into daily data using a 
smoothing spline to estimate R t( ) , and then averaged R t( ) by 
week. To reduce the impact of noise on our results during peri-
ods of low incidence, we smoothed the effective reproduction 
number over time using Bayesian integrated nested Laplace 
approximations models.22,23 (Reasoning and details are avail-
able in eAppendix B; http://links.lww.com/EDE/B186.)

Statistical Analysis
Throughout our analyses, we considered as outcome the 

log effective reproduction number of rotavirus, log R t( )( ) , and 
as factors the log proportion of susceptible individuals, ultra-
violet light, rainfall, the maximum, minimum, and mean tem-
perature and absolute humidity. Because the original reported 

rotavirus incidence data were aggregated by week, our analy-
ses relied on weekly data (eFigure 15; http://links.lww.com/
EDE/B186). Here, we outline preliminary analyses used to 
construct methods for our main analysis, described in the rest 
of this subsection.

Preliminary Analyses: Granger Causality
We assessed Granger causality for each factor F using

log log logR t R t R t l

F t F t l
l

l

( )( ) = −( )( ) +…+ −( )( )
+ −( ) +…+ −(
α α

β β
1

1

1

1 )) + ε( ),t
 (1)

for the number of lags l  that optimized model fit according 
to the Akaike Information Criterion (AIC). A factor is consid-
ered to Granger-cause log R t( )( )  if at least one βi i l, , , ,= …1 2  
is statistically different from zero. Our analyses suggested a 
Granger causal association between log R t( )( )  and all factors 
considered except rainfall. Notice that because the Granger 
model does not account for seasonality, it may detect spurious 
associations.

Preliminary Analyses: Simulation Study
Using simulations, we assessed the effect of correct-

ing for residual serial correlation (described in eAppendix A; 
http://links.lww.com/EDE/B186). Our analyses demonstrated 
that (1) failing to account for serial correlation increased the 
probability of identifying an association when there was none 
(i.e., increased false positive rate), (2) accounting for serial 
correlation did not reduce the probability of detecting an asso-
ciation when there was one (i.e., did not increase the false neg-
ative rate), and (3) accounting for serial correlation improved 
the probability of correctly identify the nature of associations 
(e.g., whether the effect of a factor was immediate or delayed).

Regression Model
For our main analysis, we used a regression model to 

first assess the linear immediate and 1-week delayed associa-
tion between each factor and log R t( )( ) . We then tested for non-
linear and delayed associations using flexible natural splines.24 
We adjusted for yearly (seasonal) correlation using ms  sine 
terms and mc cosine terms with a period of 52.2 weeks. Thus, 
our regression model was as follows:
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In this equation, β0  is the underlying constant level 
of rotavirus transmission in the Dutch population over time, 
each σ i  represents the seasonal effect contributed by the cor-
responding sine or cosine term, and η t( )  denotes the error 
terms of the regression model. The number of sine and cosine 
terms included in the model was selected using the AIC. 
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f x t k( , )( )  denotes either a linear (immediate or delayed) 
effect or a time-dependent natural cubic spline x t( )  of the fac-
tor with k  degrees of freedom (hereafter: “functional form”). 
For each factor included in the regression model, the selected 
functional form yielded optimal model fit (lowest AIC).

Accounting for Serial Correlation
As written, the ordinary regression model (Equation 2) 

assumes independent residuals, which is generally an invalid 
assumption for time series analyses. We augmented Equa-
tion 2 to automatically correct the regression estimates for 
autocorrelation, such that the residuals were modeled using 
autoregressive moving average terms:

1 1
1 1

−
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i
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where the p  autoregressive terms account for correla-
tion between p  consecutive weeks, the q  moving average 
terms account for correlation between the regression errors 
between q  consecutive weeks, η t( )  refers to the error terms 
from the regression equation (Equation 2), and ε ( )t  denotes 
normally and independently distributed error terms. Note that 
B t t iiη η( ) = −( )  and B t t iiε ε( ) = −( ) . For a given (set of) 
factor(s) and prespecified values for ms , mc , p , q , and k , 
all coefficients of these regression models, Equations 2 and 3, 
were iteratively estimated using the Arima function in R 3.1.0 
such that model fit was optimized (lowest AIC).

Model Selection
Along with analyses using one factor in the regression 

model (“univariate” analyses), we combined the different 
factors into one multivariate model to assess the combined 
effect. The best model was the one that had the lowest AIC and 

relatively low (partial) autocorrelation. We used Q–Q plots to 
ensure that our final model had normally distributed errors.

Finally, we used a 28-week moving average of the 
results of the regression model (Equation 2) to suggest time 
periods where the model was insufficient to explain, on aver-
age, the observed trends in the effective reproduction number. 
Further details are provided in eAppendix B (http://links.lww.
com/EDE/B186).

All statistical analyses were conducted in R 3.1.0, using 
the tseries, splines, INLA, forecast, and dlnm packages.25–29 
Example code is provided in eAppendix C (http://links.lww.
com/EDE/B186).

RESULTS

Estimated Proportion of Susceptible Individuals 
and Effective Reproduction Number

We estimated that approximately 150,000 individuals in 
the Netherlands were susceptible to rotavirus at the start of 
our time series. An estimate of the proportion of susceptible 
individuals over time (Figure 2) shows that the proportion of 
susceptible individuals generally peaks just before the start of 
a new rotavirus season when rotavirus incidence is still low 
(December–January) and reaches a trough at the end of the 
rotavirus season (April–May). An anomaly was observed in 
2014, where the proportion of susceptible individuals con-
tinued to increase well into the usual epidemic months, and 
peaked when rotavirus incidence (mildly) peaked that year. 
The gradual decline was partially caused by a reduced influx 
of new susceptible individuals (6-month-olds) in the first half 
of 2014. In Figure 3, we plotted the time-dependent log effec-
tive reproduction number of rotavirus calculated using Bayes-
ian integrated nested Laplace approximations models, which 
was the outcome in our analyses. Clear seasonal patterns were 
observed in Figures 2 and 3.

FIGURE 2. Proportion of susceptible individuals over time, S(t)/N(t), calculated using an estimate of the number initially suscep-
tible and the estimated proportion of case ascertainment.
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Regression Modeling with Autoregressive 
Moving Average Errors

Using “univariate” regression models that accounted 
for seasonality and serial correlation, we found that natural 
cubic splines with three degrees of freedom provided the best 
fit for both the log proportion of susceptible individuals and 
minimum, maximum, and mean temperature. Optimal model 
fit was obtained when a delay of up to 2 weeks for temperature 
and when a delay of up to 3 weeks for the log proportion of 
susceptible individuals were included in the model (eFigure 
16; http://links.lww.com/EDE/B186). Delayed effects were 
also modeled using a natural cubic spline with three degrees of 
freedom. The effect of the proportions of susceptible individu-
als fluctuated from week to week. Therefore, we calculated the 
total current and delayed effect of each proportion of suscep-
tible individuals. We observed that weeks with higher propor-
tions of susceptible individuals were associated with a higher 
effective reproduction number (eFigure 16a; http://links.lww.
com/EDE/B186). Furthermore, the shapes of splines suggest 
that lower temperatures in the current and previous week were 
associated with a higher log R t( )( )  (eFigure 16b–d; http://links.
lww.com/EDE/B186). There was no evidence of an immediate 
or delayed association between ultraviolet light, rainfall, and 
absolute humidity and log R t( )( )  (eFigure 16e–i; http://links.
lww.com/EDE/B186).

Next, we considered multivariate models that accounted 
for seasonality and serial correlation. The model with the best 
fit, and therefore selected as our final model, included the log 
proportion of susceptible individuals and mean temperature, 
modeling their effects using a natural cubic spline with three 
degrees of freedom. Optimal model fit was obtained when 
temperature with a delay of up to 2 weeks and the log propor-
tion of susceptible individuals with a delay of up to 3 weeks 
were included in the model. In eAppendix D (http://links.lww.

com/EDE/B186), we compare results of multivariate models 
with different numbers of delayed terms. Ultraviolet light, 
rainfall, and absolute humidity were not associated with the 
effective reproduction number of rotavirus. The remainder of 
this section presents findings based on this final model.

The shapes of the splines representing the total effects of 
mean temperature and the proportion of susceptible individu-
als (Figure 4), which were nearly identical to the univariate 
models, suggest that higher proportions of susceptible indi-
viduals and lower temperatures were associated with a higher 
log R t( )( ). The estimated total effect of a high current propor-
tion of susceptible individuals (e.g. 0.27) was an increase in 
log R t( )( )  of 0.03 relative to the average proportion of suscep-
tible individuals (0.11) (Figure 4A). The estimated effect of 
low temperatures (e.g., −7°C) on log R t( )( )  was an increase in 
log R t( )( )  of 0.075 relative to the average temperature (16°C) 
(Figure 4B). Similar results were observed for models with 
different numbers of delayed terms (eFigures 19–21; http://
links.lww.com/EDE/B186). Additional results of our final 
model, including the estimated coefficients, are available in 
eAppendix D (http://links.lww.com/EDE/B186).

We combined the estimated effects of the proportion 
of susceptible individuals and of mean temperature on the 
effective reproduction number to arrive at an estimated criti-
cal threshold, where R t( ) = 1 . Assuming a negligible effect of 
seasonality and serial correlation on R t( ) , this critical thresh-
old suggests the proportion of susceptible individuals and 
the mean temperature for which an epidemic could change 
from increasing to decreasing incidence. The shaded region 
in Figure 5 shows the proportion of susceptible individuals 
and the mean temperature for which our model suggests this 
critical shift could occur. For example, a proportion of sus-
ceptible individuals equal to 0.10 may be sufficient to reduce 
the effective reproduction number to below one for all mean 

FIGURE 3. Log of the effective reproduction number, R(t), estimated using Bayesian integrated nested Laplace approximations 
models.
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temperatures above 6.7°C (95% confidence interval [CI] = 
2.5°C, 9.3°C; Figure 5).

In the following two paragraphs, we break down the 
contribution of different variables in explaining log R t( )( )  
variability over time in the final model. Separate graphs of the 

explanatory value of the proportion of susceptible individu-
als and mean temperature in estimating log R t( )( )  time trends 
show a clear seasonal trend (Figure 6). Together these two 
factors alone explain up to the total magnitude of log R t( )( )  
at its peak (Figure 7A). The year 2014 was an anomaly: the 
unusually low rotavirus incidence during the 2014 season left 
the highest proportion of individuals susceptible to infection 
at the end of the rotavirus season in the 15 years for which 
data were available (Figures 2 and 6A). The high proportion 
of susceptible individuals suggests that epidemic-level rotavi-
rus transmission R t( ) >( )1  could have continued into the sum-
mer, and perhaps through most of the year (Figure 6A). When 
considering this factor along with temperature, it appears as 
though the warmer summer weather reduced the effective 
reproduction number to below one.

The proportion of susceptible individuals, mean temper-
ature, and seasonal effects alone did not completely capture the 
week-to-week variability in the effective reproduction number 
(Figure 7B). When we additionally considered the effects of 
serial correlation, we observed a closer approximation of the 
week-to-week variability (Figure 7C). When the estimated 
combined effect of the proportion of susceptible individu-
als, mean temperature, and seasonal factors were averaged 
over 28 weeks, we observed that they generally followed the 

A

B

FIGURE 4. The total, immediate, and delayed effect on the effective reproduction number, R(t), of the (A) proportion of suscep-
tible individuals S(t)/N(t) and (B) mean temperature, as estimated in our best-fitting model that corrected for serial correlation and 
included terms for seasonality. The black line represents the estimated effect, and the grey region indicates the 95% confidence 
intervals.

FIGURE 5. The proportion of susceptible individuals and the 
mean temperature for which our model suggests an increasing 
incidence (effective reproduction number above one; in grey) 
and a decreasing incidence (below one; in white), assuming 
the effect of the seasonality on the effective reproduction 
number was equal to one and the effect of serial correlation 
equals one. Dashed lines depict the 95% confidence interval.
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peaks of the 28-week average effective reproduction number 
(Figure 8). Our final model overestimated the peak in 2014, 
which may suggest that the reduction in the effective repro-
duction number that year may have been caused by factors not 
included in our analysis.

Sensitivity Analyses
Sensitivity analyses showed, first, that there were only 

minor changes in the results when the average duration in the 
susceptible class was varied from 9 months to 3, 15, and 30 
months (eFigures 22–26; http://links.lww.com/EDE/B186). 
Second, stronger associations for one or both factors were 
observed when the serial interval was delayed or lengthened 
(eFigures 27–29; http://links.lww.com/EDE/B186). Third, 
results were sensitive to the assumption of complete immu-
nity, with the effect of the proportion of susceptible individuals 
becoming insignificant when 15% of the infected individuals 
are assumed to re-enter the susceptible class 6 months after 

infection (eFigures 30–31; http://links.lww.com/EDE/B186). 
The results of sensitivity analyses are presented and further 
discussed in eAppendix E (http://links.lww.com/EDE/B186).

DISCUSSION
We investigated how the proportion of susceptible indi-

viduals and various weather factors are associated with the 
effective reproduction number of rotavirus in the Netherlands 
using regression techniques that adjust for serially correlated 
residuals and seasonality. We observed an association of both 
the proportion of susceptible individuals and temperature 
with the effective reproduction number of rotavirus—a larger 
proportion of susceptible individuals and a lower temperature 
increased the effective reproduction number that decreases 
either as the proportion of susceptible individuals decreases 
or as the temperature increases.

Our findings align well with those of previous studies.6,8 
Pitzer et al.8 showed that the timing of the annual epidemics 

A

B

FIGURE 6. A breakdown of the effect of the variables included in our final model compared with the effective reproduction 
number (grey). A, The estimated effect of the log proportion of susceptible individuals. B, The estimated effect of the mean 
temperature.

http://links.lww.com/EDE/B186
http://links.lww.com/EDE/B186
http://links.lww.com/EDE/B186
http://links.lww.com/EDE/B186


Copyright © 2017 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

Epidemiology • Volume 28, Number 4, July 2017 Determinants of Rotavirus Transmission

© 2017 Wolters Kluwer Health, Inc. All rights reserved. www.epidem.com | 511

A

B

C

FIGURE 7. A breakdown of the effect of the variables included in our final model compared with the effective reproduction num-
ber (grey). A, The estimated effect of the log average weekly proportion of susceptible individuals and the average weekly mean 
temperature. B, The estimated effect of the proportion of susceptible individuals, mean temperature, and seasonality. C, The fit of 
the complete, best-fitting model, including serial correlation correction.
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observed in the United States can be partially explained by 
yearly birth rate patterns. They suggested that even a small 
seasonal variation in rotavirus transmission—driven, for 
example, by weather factors—may be sufficient to result in 
strong rotavirus seasonality. Atchison et al.6 demonstrated 
an association between temperature and rotavirus transmis-
sion, but no association with absolute humidity. Other pop-
ulation-based and laboratory studies have similarly shown 
that rotavirus incidence and virus survival are associated with 
temperature.7,9,30 Studies found contradictory results on the 
association between other weather factors (such as rainfall 
and relative/absolute humidity) and rotavirus incidence,6,7,9,30 
which could be explained by the settings in which the stud-
ies were conducted and the variability of humidity in those 
settings.6,30

The method that we developed for detecting determi-
nants of seasonal rotavirus transmission by assessing nonlin-
ear, delayed associations—distributed lag nonlinear models 
that account for seasonality and adjust for autoregressive mov-
ing average errors—provides an approach for investigating the 
determinants of (seasonal) disease transmission. Inspired by 
time series susceptible-infected-recovered models,20,31,32 this 
model allows for flexible parameter estimation and accounts 
for seasonal and serial correlation as in autoregressive mov-
ing average modeling, while focusing on the disease transmis-
sion process. Regression models that rely on time series data, 
but that fail to account for serial correlation, neglect a key 
assumption in regression analysis, namely, that the calculation 
of confidence intervals assumes that the residuals generated 
by a regression model are white noise. Removing seasonal and 
serial correlation reduces the possibility of arriving at spu-
rious associations between two variables13 and may thereby 
result in a loss of significance of originally identified, logically 

attractive variables.12 As we showed in our simulation analy-
ses (eAppendix A; http://links.lww.com/EDE/B186), ordinary 
regression analysis detects spurious associations in serially 
correlated data, and serial correlation correction using autore-
gressive moving average error terms does not hinder the abil-
ity to detect an association. Our contribution was to introduce 
a test on statistical footing and firmly establish that there are 
associations between the effective reproductive number of 
rotavirus and both temperature and the proportion of suscep-
tible individuals, but not absolute humidity.

A limitation of our analysis was that we relied on 
reconstructed data, which could have biased our results. We 
reconstructed the proportion of susceptible individuals by 
estimating the number of individuals infected in the popula-
tion. Because laboratory tests are not conducted on all indi-
viduals with a primary rotavirus infection, reported weekly 
incidence statistics, the assumption that all individuals are 
infected with rotavirus,1 and an estimate of the time-varying 
reporting fraction were used to inform our estimate of the true 
weekly national incidence of rotavirus. Moreover, the ages of 
the reported rotavirus cases were unavailable in our dataset. 
Therefore, we assumed that all reported cases were of primary 
infections in children under 5 years of age and that the pri-
mary infection with rotavirus occurs at 15 months of age, on 
average.1 No data were available to further inform our model.

Based on our findings, it would appear as though the 
relatively mild temperatures in 2014 combined with the low 
proportion of susceptible individuals contributed to lower 
rotavirus transmission in the Netherlands that same year, and, 
more generally, that temperature and the proportion of sus-
ceptible individuals has an impact on rotavirus transmission 
from year to year. However, the fact that the modeled effec-
tive reproduction number in 2014 was higher than what was 

FIGURE 8. The 28-week moving average of the estimated effective reproduction number of rotavirus (grey) and the 28-week 
moving average of estimates of the final model that included the log average weekly proportion of susceptible individuals, the 
average weekly mean temperature, and the estimated effect of seasonality (black).

http://links.lww.com/EDE/B186
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estimated suggests that other factors played a role in the low 
rotavirus incidence that particular year. This shows that it will 
be difficult to attribute a decrease in rotavirus epidemic size 
to an intervention, such as the introduction of the rotavirus 
vaccination program in England. Possible candidate factors 
that could play a role in rotavirus transmission include strain 
dynamics.

ACKNOWLEDGMENTS
The authors thank Dr. Hester Korthals Altes and three 

anonymous reviewers for constructive feedback that improved 
this study.

REFERENCES
 1. Centers for Disease Control and Prevention. Rotavirus: epidemiology 

and prevention of vaccine preventable diseases. The Pink Book: Course 
Textbook - 12th Edition Second Printing (May 2012). Available at: http://
www.cdc.gov/vaccines/pubs/pinkbook/rota.html. Accessed 15 May 2015.

 2. Velázquez FR, Matson DO, Calva JJ, et al. Rotavirus infection in infants as 
protection against subsequent infections. N Engl J Med. 1996;335:1022–1028.

 3. Atchison CJ, Stowe J, Andrews N, et al. Rapid declines in age group-
specific rotavirus infection and acute gastroenteritis among vaccinated 
and unvaccinated individuals within 1 year of rotavirus vaccine introduc-
tion in England and Wales. J Infect Dis. 2016;213:243–249.

 4. Hahné S, Hooiveld M, Vennema H, et al. Exceptionally low rotavirus in-
cidence in the Netherlands in 2013/14 in the absence of rotavirus vaccina-
tion. Euro Surveill. 2014;19:pii=20945.

 5. D’Souza RM, Hall G, Becker NG. Climatic factors associated with hos-
pitalizations for rotavirus diarrhoea in children under 5 years of age. 
Epidemiol Infect. 2008;136:56–64.

 6. Atchison CJ, Tam CC, Hajat S, van Pelt W, Cowden JM, Lopman BA. 
Temperature-dependent transmission of rotavirus in Great Britain and 
The Netherlands. Proc Biol Sci. 2010;277:933–942.

 7. Sumi A, Rajendran K, Ramamurthy T, et al. Effect of temperature, relative 
humidity and rainfall on rotavirus infections in Kolkata, India. Epidemiol 
Infect. 2013;141:1652–1661.

 8. Pitzer VE, Viboud C, Simonsen L, et al. Demographic variability, vacci-
nation, and the spatiotemporal dynamics of rotavirus epidemics. Science. 
2009;325:290–294.

 9. Brandt CD, Kim HW, Rodriguez WJ, Arrobio JO, Jeffries BC, Parrott RH. 
Rotavirus gastroenteritis and weather. J Clin Microbiol. 1982;16:478–482.

 10. Ansari SA, Springthorpe VS, Sattar SA. Survival and vehicular spread 
of human rotaviruses: possible relation to seasonality of outbreaks. Rev 
Infect Dis. 1991;13:448–461.

 11. Orcutt GH, Cochrane D. A sampling study of the merits of autoregressive 
and reduced form transformation in regression analysis. J Am Stat Assoc. 
1949;44:356–372.

 12. Andrews BH, Dean MD, Swain R, Cole C. Building ARIMA and 
ARIMAX models for predicting long-term disability benefit application 
rates in the public/private sectors. 2013 Society of Actuaries. Available at: 
https://www.soa.org/research-reports/2013/research-2013-arima-arimax-
ben-appl-rates/. Accessed April 12, 2017.

 13. Aldrich J. Correlations genuine and spurious in Pearson and Yule. Statist 
Sci. 1995;10:364–376.

 14. Anderson RM, May RM. Infectious Diseases of Humans, Dynamics and 
Control. Oxford: Oxford University Press; 1991.

 15. Granger CWJ. Investigating causal relations by econometric models and 
cross-spectral methods. Econometrica. 1969;37:424–438.

 16. WHO. Rotavirus and other viral diarrhoeas. Bull World Health Org. 
1980;58:183–198.

 17. Fernandes JV, Fonseca SM, Azevedo JC, et al. [Rotavirus detection in fe-
ces of children with acute diarrhea]. J Pediatr (Rio J). 2000;76:300–304.

 18. Salim H, Karyana IP, Sanjaya-Putra IG, Budiarsa S, Soenarto Y. Risk fac-
tors of rotavirus diarrhea in hospitalized children in Sanglah Hospital, 
Denpasar: a prospective cohort study. BMC Gastroenterol. 2014;14:54.

 19. Kermack WO, McKendrick AG. A contribution to the mathematical theo-
ry of epidemics. Proc R Soc. 1927;115:700–721.

 20. Finkenstädt, BF, Grenfell BT. Time series modelling of childhood dis-
eases: a dynamical systems approach. J R Stat Soc Ser C Appl Stat. 
2000;49:187–205.

 21. Wallinga J, Lipsitch M. How generation intervals shape the relation-
ship between growth rates and reproductive numbers. Proc Biol Sci. 
2007;274:599–604.

 22. Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent 
Gaussian models using integrated nested Laplace approximations (with 
discussion). J R Stat Soc Series B Stat Methodol. 2009;71:319–392.

 23. Martins TG, Simpson D, Lindgren F, Rue H. Bayesian computing with 
INLA: new features. Comput Stat Data Anal. 2013;67:68–83.

 24. Bhaskaran K, Gasparrini A, Hajat S, Smeeth L, Armstrong B. Time se-
ries regression studies in environmental epidemiology. Int J Epidemiol. 
2013;42:1187–1195.

 25. Trapletti A, Hornik K. tseries: time series analysis and computational fi-
nance. 2013 R package version 0.10–32.

 26. R Core Team. R: A language and environment for statistical computing. 
2014 R Foundation for Statistical Computing, Vienna, Austria. Available 
at: http://www.R-project.org/.

 27. Rue H, Martino S, Lindgren F, Simpson D, Riebler A, Teixeira Krainski E. 
INLA: functions which allow to perform full Bayesian analysis of latent 
Gaussian models using Integrated Nested Laplace Approximation. 2015 
R package version 0.0-1420281647.

 28. Hyndman RJ. forecast: forecasting functions for time series and linear 
models. 2014 R package version 5.5.

 29. Gasparrini A. Distributed lag linear and non-linear models in R: the pack-
age dlnm. J Stat Softw. 2011;43:1–20.

 30. Moe K, Shirley JA. The effects of relative humidity and temperature on 
the survival of human rotavirus in faeces. Arch Virol. 1982;72:179–186.

 31. Bjørnstad ON, Grenfell BT. Noisy clockwork: time series analysis of 
population fluctuations in animals. Science. 2001;293:638–643.

 32. Ferrari MJ, Grais RF, Bharti N, et al. The dynamics of measles in sub-
Saharan Africa. Nature. 2008;451:679–684.

http://www.cdc.gov/vaccines/pubs/pinkbook/rota.html
http://www.cdc.gov/vaccines/pubs/pinkbook/rota.html
http://www.R-project.org
/

