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Diabetic nephropathy (DN) is the leading cause of death and the greatest risk to

the lives of people with advanced diabetes. Yet, the molecular mechanisms

underlying its development and progression remain unknown. In this research,

we studied the primary pathways driving DN using transcriptome sequencing

and immune repertoire analysis. Firstly, we found that the diversity and

abundance of the immune repertoire in late DN were significantly increased,

while there was no significant change in early DN. Furthermore, B cell-

mediated antibody responses may be the leading cause of DN progression.

By analyzing master regulators, we found the key DN-driving transcription

factors. In the late stage of DN, immune cells, fibroblasts, and epithelial cells

were abundant, but other stromal cells were few. Early DN kidneys had a higher

tissue stemness score than normal and advanced DN kidneys. We showed that

DN progression involves proximal tubular metabolic reprogramming and

stemness restoration using Monocle3. Through WGCNA, we found that co-

expression modules that regulate DN progression and immune repertoire

diversity mainly regulate immune-related signaling pathways. In addition, we

also found that early DN had apparent activation of immune-related signaling

pathways mainly enriched in immune cells. Finally, we found that activation of

fibroblasts is typical of early DN. These results provide a research basis for

further exploring the molecular biology and cellular mechanisms of the

occurrence and development of DN and provide a theoretical basis for the

prevention and treatment of DN.

KEYWORDS

diabetic nephropathy, immune repertoire, evolutionary trajectory, tissue microenvironment,

bulk-RNAseq
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1006137/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1006137/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1006137/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1006137/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1006137&domain=pdf&date_stamp=2022-09-23
mailto:dr_liling@126.com
https://doi.org/10.3389/fimmu.2022.1006137
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1006137
https://www.frontiersin.org/journals/immunology


Ye et al. 10.3389/fimmu.2022.1006137
Background

Diabetic nephropathy (DN) is the most prevalent cause of

renal failure (1). Although regulating blood glucose and blood

pressure might lower the prevalence of DN to a certain degree,

its incidence is still on the increase globally and has become a

threat to public health (2, 3). Consequently, identifying the

molecular processes underlying the genesis and progression of

DN may aid in the identification of novel therapeutic targets to

more effectively prevent and treat DN.

The development of DN may be broken down into five

distinct phases: the glomerular hyperfiltration phase, the

normoproteinuric period, the early DN phase, the clinical DN

phase, and the renal failure phase (4). Multiple deviations from

normal homeostasis, including increased systemic intra-

glomerular pressure and microangiopathy triggered by

haemodynamic abnormalities (hypertension), metabolic

abnormalities, oxidative stress, fibrosis, and activation of the

renin-angiotensin system, are now believed to be the primary

mechanisms underlying the pathogenesis of DN (5, 6). Several

therapies addressing these variables have been shown to

significantly delay the course of DN (7, 8). Therefore,

understanding the mechanism of occurrence and development

of DN is of great significance for developing drugs and treatment

programs for the disease.

Although much research has been done on DN, little is

known about how transcriptome changes during its

development (9). In a recent study comparing the

transcriptomes of normal renal tissue, early DN, and late

DN, genes involved in the retinoic acid pathway and the

glucagon-like peptide 1 receptor were found to be protective

in early DN, whereas genes associated with immune response

and fibrosis might be the primary cause of DN progression

(10). However, the pathogenesis of the major cell types that

comprise the kidney during the progression of DN requires

additional understanding. Moreover, the process of

immunehistocytic alterations in renal tissues during the

development of DN may play a significant role in the

progression of DN since immune cells are apparent in

advanced DN tissues. Even though investigations of the

immune pool in IgA nephropathy have demonstrated a

significant correlation between the course of renal

disease and alterations in the immune repertoire (11),

comparatively, few studies of the immune repertoire in DN

have been conducted.

Through the combined analysis of high-throughput

sequencing data of DN tissue and single-cell transcriptome

data, this work aims to expose the pathogenic process of the

immune repertoire and key stromal cells in the kidney during

the course of DN. The occurrence and progression of DN is

driven by alterations in gene expression regulatory factors and

transcription factors. This work has provided insight into

possible mechanisms behind the formation and progression of
Frontiers in Immunology 02
DN, which has significant implications for the development of

tailored treatments for this condition.
Method

Data sources

The GEO database GSE142025 (10) cohort comprises high-

throughput RNA-seq data (GPL20301) for 9 normal kidney

tissues, 6 early DNs, and 22 late DNs. The human kidney

single-cell sequencing data was collected from https://www.

kidneycellatlas.org/ (12) and contains data on the transcriptome

sequencing of 10928 cells. The single-cell sequencing dataset was

annotated using Azimuth (https://azimuth.hubmapconsortium.

org), resulting in the identification of 27 prevalent cell types in

kidney tissue (Table S1: scRNA_annotation). The canonical

signatures (canonical marker=1) of plasma cell-related cells

(Plasma cell, Plasmacytoid dendritic cell) were obtained from

PanglaoDB (13) (Table S1: Panglao_DB Plasma celltypes).
Immune repertoire analysis

TRUST4 (14) can compute immunological repertoire data in

bulk-RNA-seq samples using high-throughput RNA-seq data.

We define TCR clonotypes and BCR clonotypes using sequences

specific to the CDR3 (Complementary Determining Region 3)

region of the variable region. The CDR3 region is a major source

of diversity in the immune repertoire and plays a major role in

antigen recognition (15). By using RNAseq data from the

GSE142025 cohort, we predicted the immunological repertoire

(TCR and BCR) of 36 samples in this work. Utilizing

Immunarch (16), samples were analyzed for clonotype,

immune repertoire overlap, diversity, and Gene Usage. First,

sra-toolkit (17) was used to get the raw data of GSE142025 from

the GEO database, then fastq-dump was utilized to convert the

sra file to a fastq.gz file, and lastly, TRUST4 was utilized to infer

the immunological repertoire of the data.
Transcription factor analysis

Using master regulator analysis, the master regulatory

transcription factors of normal kidney to early DN and early

DN to late DN were analyzed. Employ the msViper

implementation of the viper (18) R package. First, ARACNE-

AP (19) was used to compute the regulatory networks of 1785

transcription factors in 36 samples, and then the msviper

function was used to evaluate the activity of these

transcription factors. Stringr (20) was used to build the

Protein-Protein-Interaction Network, whereas Metascape (21)

was utilized for functional enrichment analysis.
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Tissue microenvironment
abundance analysis

CIBERSORTX (22) was used to deconvolve transcriptome

data from bulk-RNAseq to understand tissuemicroenvironmental

changes occurring throughout DN kidney tissue. To enhance the

precision of deconvolution, we eliminated less abundant cell

populations and combined the MNPs (mononuclear

phagocytes) of four cell populations, resulting in 17 cell

populations (Table S1). For the examination of single-cell

sequencing data, Seurat4.1 (23) was used to examine single-cell

sequencing data. We selected 3000 highly variable genes and

downsampled 5000 cells to create the Signature Matrix. The S-

mode was used to remove batch effects between single-cell and

bulk-RNAseq sequencing data. Using the Impute Cell Fraction

module of CIBERSORTX, the absolute scores of 17 cells from 36

samples were analyzed.
Tissue stemness analysis

A greater number of tissue stem cells indicates a greater

capability for tissue regeneration. Using stem cell taxa from the

PCBC (24) database and their differentiated ectodermal,

mesodermal, and endodermal progenitor cells as a training set,

we employed OCLR (One Class Logistic Regression) (25) to

determine the mRNAsi (mRNA stem index) of 36 tissue

samples. Each stemness index was normalized to a range of 0

to 1, reflecting low to high tissue stemness.
Pseudo-time analysis

The incidence and development of DN is a continuous

process. Kidney tissue will undergo a series of organic changes

from normal to early DN and finally to late DN. In order to

explore the details of transcriptome changes in the occurrence

and development of DN, we used monocle3 (26) to construct a

pseudo-time-series change trajectory of DN according to the

continuous change process of DN from control, early DN, and

late DN, and obtained the simulated DN after dimensionality

reduction. The result of Pseudo-time analysis use UMAP1 and

UMAP2 two-dimensional scatter plot. Pseudotime represents

the evolutionary trajectory of the sample.
Weighted gene co-expression network
analysis (WGCNA)

WGCNA (27) (Weighted Gene Coexpression Network

Analysis) may assess the link between modules with co-

expression characteristics and clinical traits based on

transcriptome data. Since WGCNA is more sensitive to genes
Frontiers in Immunology 03
with low expression levels, genes with standard deviations below

0.5 were eliminated first. Separate WGCNA analyses were

conducted. The first WGCNA employed all 36 data,

established a soft threshold of seven, merged modules with

feature correlations more significant than 0.80, and ultimately

generated seven co-expression modules. The second WGCNA

used expression data covering from control through early DN,

chose a soft threshold of 4, merged modules with a feature

correlation better than 0.80, and ultimately produced

13 modules.

Finally, Benjamini-Hochberg FDR correction was conducted

on the Pearson correlation coefficients of the main components

of these modules with Pseudotime, and Stemness Index and

LogBCR_Chao1, LogTCR_Chao1. LogBCR_Chao1 and

LogTCR_Chao1 are the log-transformed BCR and TCR’s

Chao1. Log-transformation can make the Chao1 index fit the

normal distribution. The WGCNA analysis data are included in

the Supplemental Material. ClusterprofileR (28) was used to

analyze gene lists for functional enrichment. MSIGDB (29) GO

(Gene Ontology) TERM gene sets was mostly used in bulk RNA

level and single-cell level. As the module’s hub genes, we first

choose the genes whose absolute correlation between the genes

in each module and the module’s main components is larger

than 0.70. Then, SYMBOL was embedded on ENTREZID using

the bitr function, followed by a study of gene enrichment using

enrichGO (28). Each module’s enriched signaling pathways

display the top five (Ranked By FDR).
Statistical analysis

Using the R package psych, calculate the correlation analysis,

and use corrplot to draw the correlation heat map. The R

package ComplexHeatmap was utilized to draw heatmaps of

differentially expressed genes, differential signaling pathway

activity, and differential transcription factor activity. The

ssGSEA algorithm from the R package GSVA (30) was used to

evaluate the scores of gene sets in samples and cells. Wilcoxon

Test was used for comparison between two groups, Kruskal-

Wallis Test was used for comparison between multiple groups,

and Spearman correlation coefficient was used for correlation

analysis. Significance was defined as P < 0.01 (****P<0.0001,

***P < 0.001, **P < 0.01, *P < 0.05).
Result

Immune repertoire characteristics of DN

The first step was to compare the clonotype of the immune

repertoires of the Control, early DN, and late DN. We found no

significant difference in the number of clonotypes between

healthy kidney tissue and early DN (Control vs. Early DN
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1006137
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ye et al. 10.3389/fimmu.2022.1006137
p>0.1, Wilcoxon Test; BCR repertoire on the left, TCR repertoire

on the right), but the number of clonotypes in advanced DN was

significantly different from those in early and Control

(Figures 1A, S1A; Advanced DN vs. Control p<0.05;

Advanced DN vs. Early DN p<0.05; BCR repertoire on the

left, TCR repertoire on the right). Repertoire overlap is the most

commonly used method to measure Repertoire similarity. MDS

clustering of samples based on repertoire overlap revealed no

significant difference between the three groups, whether BCR

repertoire or TCR repertoire (Figure 1B). Next, the clonotypes of

the three groups were examined in terms of their frequency

differences (Rare:0~10-5, Small:10-5~10-4, Medium:10-4~0.001,

Large: 0.001~0.01, Hyperexpanded: 0.01~1). We first performed

an analysis of the BCR repertoire. Clonotype distributions at
Frontiers in Immunology 04
Rare and Small frequencies were found to be greater in late DN

(p=0.052), whereas distributions at Large and Hyperexpanded

frequencies were found to be higher in Control and early DN

(p<0.05). This data suggested that the clonotype diversity of

Control and early DN was low, but that of late DN was high

(Figures 1C, S1B). The analysis results in the TCR repertoire

show that the abundance of Large frequencies is significantly

higher than that of the Early DN and Control groups, while the

abundance of Hyperexpanded frequencies is significantly lower

than the other two groups. Comparing the percentage difference

in the number of distinct clones between the three groups

revealed that the clonal population of [1:10], [11:100] was

lower than that of late DN (p<0.05, Wilcoxon-Test), whereas

the clonal population of [1001:3000], [3001:6000], and
B

C D

E

A

FIGURE 1

Characteristics of DN immune repertoire (BCR repertoire and TCR repertoire). (A) Comparison of clonotype numbers for BCR repertoire and
TCR repertoire. The clonotypes here are defined according to the nucleotide sequence of CDR3. Each CDR3 sequence defines a unique clonal
population. (B) Immune repertoire overlapping clustering. Clonal contigs of BCR repertoire and TCR repertoire were clustered separately. The
number of public clonotypes is used to calculate the overlap similarity between samples (.method=“public” of the immunarch repOverlap
function) (C) Clonal Space Homeostasis comparison. Clonal Space Homeostasis analyse relative abundance (also known as clonal space
homeostasis), which is defined as the proportion of repertoire occupied by clonal groups with specific abundances. (D) Top clonal proportion of
specific segmentation length. (E) Difference comparison of the clonotype diversity indicator Chao1. Bar average, error bar standard error. P
values were obtained by Wilcoxon Test.
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[6001:30,000] was higher than that of late DN (p=0.05,

Wilcoxon-Test). This data revealed that the high-copy clonal

population included a greater fraction of the advanced DN BCR

repertoire (Figure 1D, S1C). Again we make the same

comparison in the TCR repertoire. The results show that the

ratio of [1:10] of Advanced DN is lower than that of Control and

Early DN, while the ratio of [1:100] and [101:1000] is opposite.

By using the Chao1 indicator to examine the clonal diversity of

the three groups, it was determined that the Chao1 of the late

DN group was considerably greater than that of the Control and

early DN groups (p<0.01, Wilcoxon-Test). There was no

substantial difference between Control and early DN

(Figure 1E, BCR repertoire on the left, TCR repertoire on

the right).
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The diversity of the immune repertoire is brought about by

V(D)J rearrangements, each rearranged region being expressed

by a specific gene. GeneUsage refers to the V gene utilization for

the transcripts. First, the geneUsages of TRAV (Figure 2A) and

TRBV (Figure 2B) of the three groups were compared. The

findings indicated that the number of TRAV and TRBV genes

was nearly entirely less than 10; the number of late DN in

different kinds of TCR genes was more than that of the other two

groups. The geneUsages of IGHV (Figure 2C), IGKV

(Figure 2D), and IGLV (Figure 2E) of the three groups, were

then compared. The findings indicated that the number of

IGHV, IGKV, and IGLV genes was greater than the number

of TRAV and TRBV genes. IGHV3-23 genes comprised the

greatest proportion of late DN IGHV genes, averaging close to
B

C

D

E

A

FIGURE 2

Gene usage analysis. (A) Comparison of Gene Usage of TRAV. (B) Comparison of Gene Usage of TRBV. (C) Gene Usage comparison of IGHV.
(D) Gene Usage comparison of IGKV. (E) Comparison of Gene Usage of IGLV.
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500. In late DN, the geneUsage of IGKV1-39, IGKV1-5, IGKV3-

20, and IGKV4-1 was notably high. No IGLV genes come close

to or surpass 500. These data show that IGKV is the

immunoglobulin with the highest geneUsage in advanced DN;

the expression of IGHV3-23, IGKV1-39, IGKV1-5, IGKV3-20,

and IGKV4-1 may reflect the immunological response of

advanced DN. Moreover, geneUsage due to immunoglobulins

from B cells was substantially greater than geneUsage due to

TCRs from T cells. Based on the aforementioned findings, we

determined that the abundance and diversity of the immune

repertoire in advanced DN were significantly greater than those

in Control and early DN, whereas there was no significant

difference between Control and early DN.
Regulation of transcription factors during
development of DN

Normal to early DN and early DN to late DN are the two

major phases of the development of DN. Utilizing the msViper

algorithm, the Master Regulators (MRs) responsible for the

incidence and development of DN were analyzed. During DN

emergence, we discovered that EGR1, BHLHE40, EGR3,

ZFP36L1, FOS, JUN, JUNB, NR4A2, NR4A3, KLF4, ZNF331,

ZBTB10, and ZNF600 were the principal transcription factors

that inhibited DN occurrence, whereas ZSWIM1, ZBTB39,

ZNF689, HIRA, ZNF496 and ZNF408 are the principal

regulators that promote DN (Figure 3A). By constructing a

PPI network of major transcription factors that inhibit the onset

of DN by Stringr and functionally annotating the network using

metascape, we discovered that these transcription factors are

predominantly involved in the NFAT TFPATHWAY, Orexin

receptor pathway, VEGFA-VEGFR2 signaling pathway, cellular

response to growth factor stimulus, blood vessel development,

and other signaling pathways (Figure 3B). OLIG2, HOXD4,

ZSWIM1, HELT, GATA1, OLIG1, and THRB hindered DN

advancement, whereas SCML4, TCF4, TRIM22, MYBL1, MSC,

HCLS1, AHR, RFX5, SP140, CBFB, IRF8, and ATF3 promoted

DN progression (Figure 3C). We developed a PPI network of

transcription factors that support DN progression and

discovered that the majority of these transcription factors are

engaged in the Myeloid cell differentiation signaling pathway

(Figure 3D). In addition, the msViper algorithm was utilized to

evaluate transcription factor activity in 36 samples; this result is

comparable to that of msViper based on transcription factor

heatmap enrichment (Figure S2A). The 36 samples were

evaluated using ssGSEA to determine the signaling pathway

scores of the KEGG gene sets (MSIGDB C2 KEGG). The R

package limma (31) was used to do a comparative analysis of the

gene set enrichment scores for the three subgroups (Figure 3E).

The signaling pathways RIBOSOME, RNA POLYMERASE,

BASE EXCISION REPAIR, and FRUTOSE AND MANNOSE

METABOLISM are active in Early DN and Advanced DN, as
Frontiers in Immunology 06
indicated by the heatmap of the differential enrichment analysis.

At the single-cell level, these signaling pathways were not

enriched in a particular cell population (Figure S2B);

Metabolism-related signaling pathways, such as LINOLEIC

ACID METABOLISM and GLYCNE SERINE AND

THREONINE METABOLISM/BUTANOATE METABOLISM,

were activated in the Control and Early DN groups, but

significantly inhibited in the Advanced DN group. LINOLEIC

ACID METABOLISM was mainly enriched in Transitional

urothelium at the single cell level, whereas GLYCNE SERINE

AND THERONINE METABOLISM, BUTANOATE

METABOLISM, SELENOAMINO ACID METABOLISM, and

TYROSINE METABOLISM were primarily enriched in

Proximal tubule (Figure 3F). Inflammation-related signaling

pathways were highly active in the Advanced DN group,

including ANTIGEN PROCESSING AND PRESENTATION,

INTE ST INAL IMMUNE NETWORK FOR IGA

PRODUCTION, ALLOGRAFT REJECTION, and others. We

found that INTESTINAL IMMUNE NETWORK FOR IGA

PRODUCTION and ALLOGRAFT REJECTION were

enriched in Plasmacytoid dendritic cell, MNP-c/dendritic cell,

Descending vasa recta endothel ium, MNP-d/Tissue

macrophage, Glomerular endothelium, MNP-b/non-classical

monocyte-derived, Peritubular capillary endothelium, B cell

(Figure 3G). It indicates that the majority of endothelial cells

and antigen-presenting cells in advanced DN are involved in

signaling pathways associated with inflammation. Different

states of kidney tissue are reflected by the physiological

features of these signaling pathways. Finally, the RNA

Stemness Index of the three sample groups was analyzed

(Figure 3H). Early DN stemness was substantially greater than

that of the Control (p<0.05, Wilcoxon-Test) and late DN group

(p<0.001, Wilcoxon-Test), although late DN stemness was

significantly lower than that of the Control (p<0.01, Wilcoxon-

Test). This finding suggests that in the early stages of DN, the

kidney is significantly drier than in the later stages.
Changes in the microenvironment of
tissues during the onset and progression
of DN

Alteration in the different cellular components of the

microenvironment of renal tissue might represent the

principal pathophysiological processes behind the development

and progression of DN. Using data from single-cell sequencing

to generate a feature matrix with CIBERSORTX, we achieved

absolute scores for 17 cell types across 36 samples (Figures 4A,

B). Despite the Descending vasa recta endothelium, the other 16

cells exhibited significant variations across the three sample

groups (Kruskal-Wallis Test). In late DN, scores for CD8 T

cell, MNP, Peritubular capillary endothelium, Plasmacytoid

dendritic cell, Epithelial, Principal, and Fibroblast were
frontiersin.org
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significantly higher than in the other two groups, whereas scores

for Proximal tubule, Connecting tubule, Glomerular

endothelium, and Podocyte were significantly lower. In late-

stage DN, the data reveal significant tissue inflammation,

fibrosis, and stromal tissue destruction. In addition, we

discovered that the proportion of NKT cells, Connecting

tubule in early DN was much more than in the other two

groups. It indicates that NKT cells and connecting tubules may

safeguard renal function in early DN.
Frontiers in Immunology 07
Pseudo-time analysis of DN occurrence
and development

Monocle3 was used to develop a pseudo-time series model of

DN based on the incidence and development process of DN,

utilizing transcriptome data from 36 samples. The map reveals

that the spatial distance between the Control group and Early

DN is short, but the gap between Early DN and Late DN is

longer. In addition, the expression profile data of three late DN
B

C D

E F

G H

A

FIGURE 3

Analysis of master regulators in the occurrence and development of DN. (A) Analysis of control to Early DN master regulators. (B) The results of
PPI regulatory network and functional enrichment analysis of the master regulators from Control to Early DN. (C) Analysis of master regulators
from Early DN to Advanced DN. (D) The PPI regulatory network and functional enrichment analysis results of master regulators from Early DN to
Advanced DN. (E) Results of GSVA enrichment analysis in three grouped DN samples of the MSIGDB C2 KEGG gene set. (F) Localization of
signaling pathways enriched in Control and Early DN samples at the single-cell level. (G) Localization of signaling pathways enriched in
Advanced DN samples at the single-cell level. (H) Stemness Comparison. ***P < 0.001, **P < 0.01, *P < 0.05.
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were grouped with those of early DN, possibly due to individual

variances in DN diagnostic markers (Figure 5A). We defined the

Control group as the starting point of Pseudo-time, and we

found that the occurrence and development of DN was an

approximately straight line on the UMAP 2D scatterplot

(Figure 5B). This result indicates that the process of the

occurrence and development of DN is continuous in space

and time. Using the graph_test function, 731 genes with

s i gn ifican t spa t i a l co r r e l a t i on wi th Pseudo- t ime
Frontiers in Immunology 08
(neighbor_graph = “principal_graph”, q.value<0.001) were

found. We grouped these genes into four categories using a

hierarchical clustering technique (Figure 5C). Cluster1 is

positively correlated with Pseudotime, including the genes

CD3E, CD3D, CD40LG, CCR7, CD27, CD1D, CCL19,

PTPRC, and CD8A, which are primarily enriched in T cell

activation, mono-nuclear cell differentiation, leukocyte cell-cell

adhesion, lymphocyte differentiation, and signaling pathways

such as regulation of T cell activation (Figures 5D, H). We
B

A

FIGURE 4

Kidney tissue microenvironment in patients with diabetic nephropathy. (A) Dimensionality-reduced clustering plot of reference kidney single-
cell sequencing data. (B) Comparison of microenvironmental components in DN kidney tissue. Wilcoxon-Test was used for statistical testing.
****P<0.0001, ***P < 0.001, **P < 0.01, *P < 0.05.
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clustered these genes with a hierarchical clustering algorithm to

obtain 4 clusters (Figure 5C). Among them, cluster1 is positively

correlated with Pseudo-time, including CD3E, CD3D, CD40LG,

CCR7, CD27, CD1D, CCL19, PTPRC, CD8A and other genes,

mainly enriched in T cell activation, mononuclear cell

differentiation, leukocyte cell-cell adhesion, lymphocyte

differentiation, regulation of T cell activation (Figures 5D, H).

Cluster2 is inversely correlated with Pseudo-time, containing

FABP1, ABCC11, ACE, MTTP, SLC10A2, ABCC11, TRPM6
Frontiers in Immunology 09
and other genes, which are primarily enriched in the apical

portion of the cell, lipid localization, lipid transport, cluster of

actin-based cell projections, and brush border, among others

(Figures 5E, H). Cluster3 is up-regulated in early DN and down-

regulated in late DN, including FOS, ATF3, MAFF, EGR1,

EGR2, EGR3, and other genes, which are predominantly

enriched in response to peptide hormone, muscle organ

development, skeletal muscle cell differentiation, skeletal

muscle tissue development, and other signaling pathways
B

C D E

F G

H

A

FIGURE 5

Pseudo-time analysis of DN occurrence and development. (A) Distribution of DN samples on the quasi-series plot. (B) Disease progression in
DN patients deepens with Pseudotime curve. (C) Gene expression modules driving DN progression. There were four modules here (red, orange,
yellow, green). (D,E,F,G) The functional enrichment analysis results of the four gene expression modules (KEGG genesets). (H) The gene
enrichment network information map of the four gene expression modules.
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(Figures 5F, H). Cluster4 is up-regulated in Control and terminal

DN but down-regulated in early DN, including ACTN3,

CYP4F2, CYP2W1, CYP26B1, CYP27B1, APOB, mainly

enriched in small molecule catabolic process, lipid catabolic

process, monocarboxylic acid catabolic process, fat-soluble

vitamin catabolic process, vitamin catabolic process and other

signaling pathways (Figures 5G, H).
The association between renal tissue
microenvironment, disease development,
and immune repertoire diversity

To explore the relationship between immune repertoire

divers i ty , tumor stemness , Pseudot ime and t issue

microenvironment, we analyzed the correlation between tissue

microenvironment and these indicators at different stages

(Pearson). Overall, Pseudotime was significantly positively

correlated with CD8 T cell, B cell, MNP, Peritubular capillary

endothelium, Myofibroblast, Epithelial, Principal, Fibroblast

(p<0.001), and was significantly negatively correlated with

NKT cell, Proximal tubule, Connecting tubule, Glomerular

endothelium, Podocyte(p<0.001) (Figure 6A). During the

formation and progression of DN, endothelial cells convert

into antigen-presenting cells and promote the activation of

inflammation-related signaling pathways and the proliferation

of inflammation-related cells. From normal to early stage, the

LogBCR_Chao1 was mainly related to Myofibroblast and

Fibroblast, while the Stemness is related to Proximal tubule

and Peritubular capillary endothelium (Figure 6B). The

correlation between Pseudotime and NKT, plasmacytoid

dendritic cell, was negative. It demonstrates that immune cells

enhance the progression of DN in its early stages. However,

LogBCR_Chao1 was most significantly correlated with B,

Plasmacytoid dendritic cell, Myofibroblast, and Fibroblast

from the early to the advanced stage, which explained why the

clonal population of B cells increased (Figure 6C). Positive

correlations were found between Stemness and Proximal

tubule, Glomerular endothelium, and Podocyte. Positive

correlations were found between Pseudotime and Ascending

vasa recta endothelium, Peritubular capillary endothelium, and

Myofibroblast. The description shows that cell damage may be

connected with the advancement of DN.

To explore the relationship between the immune repertoire

and its immune cells, we compared the signature scores of Plasma

cell and Plasmacytoid dendritic cell (Plasma_cell_Panglao,

Plasmacytoid_dendritic_cell_Panglao; ssGSEA algorithm) with

Pseudotime, LogBCR.Chao1, LogTCR.Chao1, Stemness, CD8 T

cell, B cell, Correlation of Plasmacytoid dendritic cells

(Spearman). The results showed that at the stage of DN

progression, these two signature scores were significantly

positively correlated with Pseudotime, LogBCR.Chao1,

LogTCR.Chao1, CD8 T cell, B cell, Plasmacytoid dendritic cell,
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but negatively correlated with Stemness (P>0.01, Spearman). In

the stage of DN occurrence, only Plasma_cell_Panglao was found

to be significantly negatively correlated with Stemness (P<0.05,

Spearman; Figures S3, A–C). This result suggests that tissue

infiltration of plasma cells and secretion of immunoglobulins

may play an important role in the progression of DN. In

addition, we also compared the CIBERSORTX scores of CD8 T

cells and B cells in three groups (Advanced_DN, Early_DN,

Control). The results showed that in the process of DN, the

tissue infiltration level of B cells was significantly higher than that

of CD8 T cells. In the Advanced_DN group, the score of B cells

was higher than that of CD8 T cells, but it was not significant

(P=0.055, Wilcoxon Test; Figure S3D).
The co-expression regulatory modules of
DN are involved in the occurrence and
development of diseases

WGCNA was used to explore the major regulatory modules

during DN progression. Finally, seven co-expression modules

were obtained from the expression profile data of all 36 samples

(Figure 7A). We performed functional enrichment analysis on

the hub genes of these seven modules, respectively (Figures 7B–

H). The blue module has the highest correlation with Stemness

(R=0.79, p<0.001), while the Turquoise module has the highest

correlation with LogBCR_Chao1(R=0.92, P<0.001) and

LogTCR_Chao1(R=0.8, P<0.001). The Blue module is mainly

involved in the small molecule catabolic process, organic acid

catabolic related to the carboxylic acid catabolic process, cellular

amino acid metabolic process, and alpha-amino acid metabolic

process. The primary function of the turquoise module is T cell

activation. Single sample enrichment analysis (ssGSEA) was

done on the hub genes(abs(R)>0.7) of these modules

(Figure 7I). The results demonstrated that the blue module

was predominantly enriched in the Proximal tubule, whereas

the turquoise module was predominantly concentrated in

immune regulation-related cells (Fibroblast, Dendritic cell,

monocyte, NK cell, CD8 T cell, CD4 T cell). This result

indicates that the Proximal tubule increases stemness mostly

through the blue regulatory module. The turquoise module of

immune regulation-related cells is primarily responsible for DN

progression and increased immune repertoire diversity. The

WGCNA module clustering and phenotypic correlation data

are shown in Figure S4.
Cellular and molecular biological
mechanisms of DN occurrence

From the preceding investigation, we can determine that the

primary hallmarks of advanced DN are the infiltration of many

immune cells and the functional impairment of stromal cells.
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However, from the graphs of illness development trajectories, we

can find that the occurrence and development of DN have

separate regulatory systems. Therefore, we undertook an in-

depth examination of the process of normal kidney development

to early DN by co-expression network analysis. Finally, we got 13

co-expression modules and did functional enrichment analysis

on 13 modules (Figures 8A, B). We discovered a substantial

association between the yellow module and LogBCR_Chao1

(R=0.91, P<0.001). The association between the Salmon

module and Pseudotime was statistically significant (R=0.71,

p<0.001). The central gene of the Yellow module is

Predominantly enriched for lymphocyte activation and

differentiation-related signaling pathways. The hub genes of

the Salmon module are predominantly enriched in signaling

pathways, including negative control of the response to an
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external stimulus, leukocyte chemotaxis, and cell-substrate

junction assembly. Similarly, we performed a single-cell

enrichment analysis (ssGSEA) on the hub genes of the 13

modules (Figure 8C). We found that the Yellow module was

mainly enriched in NKT cells, CD8 T cells, NK cells, B cells, and

CD4 T cells. The Salmon module was mainly enriched in Pelvic

epithelium. In addition, we also found that the black, magenta

and red modules of Fibroblast were significantly activated. The

pink module was significantly activated in B cells. From this, we

can think that the functional change of Pelvic epithelium is a

critical factor in the occurrence of DN. LogBCR_Chao1 and

LogTCR_Chao1 showed a significant, consistent trend

throughout our study. However, because the clone group of

the TCR repertoire is small, the number of clones is also tiny,

and the geneUsage is also relatively small, so we believe that the
B

C

A

FIGURE 6

Correlation analysis of Pseudotime, LogBCR_Chao1, LogTCR_Chao1, Stemness and various cellular components in tissue microenvironment.
(A) Correlation analysis of the scores of 17 types of cells and Pseudo time, LogBCR_Chao1, LogTCR_Chao1, Stemness during the occurrence
and development of DN. (B) Correlation analysis of 17 cell scores and Pseudotime, LogBCR_Chao1, LogTCR_Chao1, Stemness during the early
occurrence of DN. (C) Correlation analysis of 17 cell scores and Pseudotime, LogBCR_Chao1, LogTCR_Chao1, Stemness during the progression
of DN. Spearman correlation analysis for correlation comparison. ***P < 0.001, **P < 0.01, *P < 0.05.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1006137
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ye et al. 10.3389/fimmu.2022.1006137
role of the TCR repertoire in developing DN is not as significant

as that of BCR repertoire. Therefore, we focus on analyzing

Chao1 of the BCR repertoire in the follow-up study.
Discussion

Diabetic nephropathy(DN) is an end-stage renal disease

caused by diabetes (32). Inflammatory mechanisms contribute

significantly to the development of DN (33). Inflammation is
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recognized to have a role in the etiology of diabetes, and

individuals with long-term diabetes have considerably higher

levels of inflammatory blood markers (34). However, the

mechanisms underlying the onset and progression of DN and

its association with inflammation remain poorly understood. We

investigated the properties and molecular regulatory mechanisms

of the immune repertoire (TCR, BCR) throughout the emergence

and development of DN using transcriptome-sequencing data.

Immune repertoire information in DN kidney tissue can

reflect changes in the diversity and abundance of T and B cell
FIGURE 7

Co-expression network analysis during DN occurrence and development. (A) Correlation of 7 co-expression modules with Pseudotime,
Stemness, LogBCR_Chao1, LogTCR_Chao1. (B–H) Functional enrichment analysis of seven co-expression module hub genes. (I) Enrichment of
the hub genes in 7 co-expression modules at the single-cell level.
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clonal populations during disease progression (15). By

comparing the immune repertoires of normal, early DN, and

advanced DN, we discovered that the diversity and abundance of

the immune repertoire of advanced DN were greatly enhanced,

but the immune repertoire of early DN did not vary significantly

from that of normal kidney. The same result is achieved with

either BCR repertoire or TCR repertoire. This result indicates

that the erosion of solid renal tissue by immune cells mainly

occurs in advanced DN. In addition, we also found that the

geneUsage and abundance of the B cell clonal population were

much higher than that of T cells. Kidneys of diabetic patients

often exhibit a characteristic pattern of immunoglobulin G

(IgG) linear immunofluorescent staining along the glomerular

and tubular basement membranes. And stronger linear IgG
Frontiers in Immunology 13
staining was associated with higher HR of renal death (35).

Patients with diabetic nephropathy and glomerular capillary

IgM and C1q deposition have poor renal prognosis, suggesting

that B cell-derived IgMmay be involved in diabetic kidney injury

(36). Activated B cells secrete antibodies and inflammatory

cytokines, form immune complexes, and together with

complement, penetrate the glomerulus and attack solid kidney

tissue (37). These results suggest that antibodies produced by

autoreactive B lymphocytes complement the immune system as

a major cause of kidney damage in advanced DN. Using

transcription factor enrichment analysis, we then investigated

the key regulators driving DN incidence and development. The

msViper algorithm measures the transcription factor activity

based on the expression of their downstream target genes. Early
B

C

A

FIGURE 8

Analysis of co-expressed regulatory modules in the early stage of DN-ogenesis. (A) Correlation of 13 co-expression modules with Pseudotime,
LogBCR_Chao1, LogTCR_Chao1 Stemness. (B) Functional enrichment analysis of the 12-module hub genes (KEGG gene sets). The hub genes of
the Red module were not enriched for statistically significant signaling pathways. (C) Enrichment scores for 13 co-expression modules in 27
celltypes in kidney tissue.
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DN was characterized by the reduced activity of transcription

factors such as EGR1, BHLHE40, FOS, JUN, and ATF3 and the

increased activity of transcription factors such as ZSWIM1,

ZBTB39, ZNF689, and HIRA. During the progression from

early to late DN, the transcription factor activities of OLIG2,

HOXD4, ZSWIM1, HELT, and GATA1 reduced, whereas the

transcription factor activities of SCML4, TCF4, TRIM22,

MYBL1, and AHR increased. It indicates that the incidence

and progression of DN have distinct molecular regulating

mechanisms. DN samples were scored by the MSIGDB C2

KEGG gene sets and localized at the single cell level. We

found that early DN in which activation of GLYCINE SERINE

AND THERONINE METABOLISM, BUTANOATE

METABOLISM, Selenoamino acid metabolism, and Tyrosine

metabolism were mainly activated in Proximal tubule cells. In

contrast, immune-related signaling pathways are activated in

late-stage DN, mainly in immune cells.

Further, we analyzed changes in the abundance of stromal cells

and immune cells during DN occurrence and development. We

found that the abundance of immune cells, fibroblasts, and

epithelial cells was significantly increased in late DN, while the

abundance of other stromal cells was significantly decreased. This

result is consistent with typical inflammation-induced tissue

damage (38). Surprisingly, early DN included the greatest

population of NKT cells, connecting tubule, and glomerular

endothelium. NKT cells can reduce the inflammatory response

generated by a variety of autoimmunity-related conditions (39).

Consequently, NKT cells may have a protective effect on renal

tissue in the early stages of DN. Early DN is characterized by an

abundance of glomerular endothelium (40). In contrast, a joint

increase in the connecting tubule and glomerular is a typical

feature of localized renal hypertension (Connecting tubule

glomerular feedback in hypertension). In addition, we found that

the tissue stemness score was significantly higher in early DN

kidneys than in normal and advanced DN kidneys. Next, we

explored the main drivers of DN occurrence and development by

Pseudotime analysis. We constructed the disease progression

trajectory of DN using monocle3. Through correlation analysis,

we found that NKT and Plasmacytoid dendritic cells may be the

main cell types that inhibit the occurrence of DN during the

occurrence of DN, while Proximal tubule and Peritubular capillary

endothelium may be the cell types that promote the maintenance

of renal tissue stemness. In early DN, immune repertoire diversity

was positively correlated with Fibroblast and Myofibroblast.

During DN progression, Ascending vasa recta endothelium,

Peritubular capillary endothelium, and Myofibroblast are the

main cell populations that promote DN progression. The

diversity of the late DN immune repertoire is mainly provided

by B cells, MNP, Plasmacytoid dendritic cells, Myofibroblast, and

Fibroblast. We also found that the Proximal tubule of late DN is

also a cell type that promotes stemness maintenance. Proximal

tubule will proliferate significantly after cell damage, and stem cell-

related markers will be significantly increased (41). This result
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suggests that proximal tubular dedifferentiation and restoration of

stemness are typical of DN.

Further, we explored the characteristics of gene co-expression

regulatory modules during DN occurrence and development by

WGCNA analysis. First, we performed WGCNA on all 36

samples. We found that turquoise modules (mainly enriched in

immune-related signaling pathways) were mainly involved in the

regulation of Pseudotime and BCR repertoire Chao1, controlling

DN progression and diversity of immune repertoire abundance.

The hub genes of this module are mainly enriched in immune-

related cell types. The blue module (which is mainly enriched in

metabolic-related signaling pathways) is mainly involved in the

regulation of Stemness. The hub genes of this module are mainly

enriched in Proximal tubule cells. The proximal tubular

dysfunction is an early event in the pathogenesis of DN (42).

Although the proximal tubule is the main site of glucose

reabsorption in the glomerular filtrate, proximal tubule cells

mainly rely on fatty acid oxidation to meet their high energy

demands (43, 44). The Randall hypothesis or the glucose-fatty

acid cycle postulates that there is oxidative competition between

glucose and fatty acids (45). The renal cortex is approximately

90% proximal tubules that favor beta-oxidation but are exposed to

increased glucose levels during periods of hyperglycemia (46).

However, high glucose levels must activate the metabolic signaling

pathways related to glycolysis and the TCA cycle (47).

To explore the onset characteristics of early DN, we

performed WGCNA on kidney samples from normal and

early DN. The results showed that the salmon module (which

mainly regulates cell migration-related signaling pathways)

regulates DN generation (Pseudotime). The hub genes of this

module are mainly enriched in Pelvic epithelium. The yellow

module (which mainly regulates the activation of immune cells)

mainly regulates the diversity of the immune repertoire. The hub

genes of this module are mainly enriched in immune cells (NKT,

CD8 T, NK, B, CD4 T). We also found that multiple co-

expression modules (black, magenta, red, salmon) of

Fibroblast were activated. This result suggests that tissue

fibrosis is still a typical feature of early DN.

Finally, we investigated the immune repertoire and the

mechanism of DN onset and progression, showing the

alterations and regulatory mechanisms of the DN tissue

microenvironment throughout the onset and progression of

the disease. This work gives insight into possible contributors,

and allows further work to be undertaken to establish the role of

these pathways and cell populations. The majority of this

research is based on the analysis of transcriptome data, and

further study is required to corroborate it.
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SUPPLEMENTARY FIGURE 1

Immune repertoire characteristics of the DN tissue microenvironment.

(A). The heatmap of public clonotypes shared between repertoires.
(B) Distribution of clonotype ratios with different frequencies in DN

samples. (C) Distribution of clonotypes in DN samples with different
clone numbers.

SUPPLEMENTARY FIGURE 2

(A) Transcription factor activity differences in DN. (B) The enrichment

results of activated signaling pathways in normal tissues in 27 types of
cells. (C) Heatmap of transcription factor activity associated

with Pseudotime.

SUPPLEMENTARY FIGURE 3

Clonal diversity of the immune repertoire in relation to plasma cells. ssGSEA
scores of Plasma cell signatures and Plasmacytoid dendritic cell signatures

collected by PanglaoDB with Pseudotime, LogBCR.Chao1, Chao1, Stemness,
CD8 T cell, B cell, Plasmacytoid dendritic cell correlations (Spearman).

***P<0.001, **P<0.01, *P<0.05. (A) Correlat ion analysis of
Plasma_cell_Panglao and Plasmacytoid_dendritic_cell_Panglao during DN

onset and progression. (B) Correlation analysis of Plasma_cell_Panglao with

Plasmacytoid_dendritic_cell_Panglao during early onset of DN. (C) Correlation
analysis of Plasma_cell_Panglao with Plasmacytoid_dendritic_cell_Panglao

during DN progression. (D) Comparison of B cell and CD8 T cell infiltration
scores in three subgroups (Advanced_DN, Early_DN, Control) (Wilcoxon-Test).

SUPPLEMENTARY FIGURE 4

Weighted gene co-expression network analysis. (A) By WGCNA, 7 co-

expression modules were obtained. (B) In order to make the gene
expression regulatory network fit a scale-free distribution, we finally chose a

soft threshold of 14. (C) The correlation of the 7 co-expressed module genes
with Stemness. (D) The correlation of the 7 co-expressed module genes with

Immune Chaos. (E) Correlation of 7 co-expressed module genes with
Pseudotime. Correlat ions are described using the pearson

correlation coefficient.
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