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Abstract

Vascular endothelial growth factor (VEGF) is the master regulator
of angiogenesis, whose best-understood mechanism is sprouting.
However, therapeutic VEGF delivery to ischemic muscle induces
angiogenesis by the alternative process of intussusception, or
vascular splitting, whose molecular regulation is essentially
unknown. Here, we identify ephrinB2/EphB4 signaling as a key
regulator of intussusceptive angiogenesis and its outcome under
therapeutically relevant conditions. EphB4 signaling fine-tunes the
degree of endothelial proliferation induced by specific VEGF doses
during the initial stage of circumferential enlargement of vessels,
thereby limiting their size and subsequently enabling successful
splitting into normal capillary networks. Mechanistically, EphB4
neither inhibits VEGF-R2 activation by VEGF nor its internalization,
but it modulates VEGF-R2 downstream signaling through phospho-
ERK1/2. In vivo inhibitor experiments show that ERK1/2 activity is
required for EphB4 regulation of VEGF-induced intussusceptive
angiogenesis. Lastly, after clinically relevant VEGF gene delivery
with adenoviral vectors, pharmacological stimulation of EphB4
normalizes dysfunctional vascular growth in both normoxic and
ischemic muscle. These results identify EphB4 as a druggable
target to modulate the outcome of VEGF gene delivery and support
further investigation of its therapeutic potential.
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Introduction

Angiogenesis plays a key role in the pathophysiology of a wide-

spread variety of human diseases, both degenerative and neoplastic,

as well as in physiological tissue regeneration [1]. Vascular endothe-

lial growth factor-A (VEGF) is the master regulator of vascular

growth in development and postnatal life, and it is therefore the key

molecular target to promote the growth of new blood vessels in

ischemic diseases, such as myocardial infarction, stroke, or periph-

eral vascular disease [2,3]. However, simple VEGF gene delivery for

therapeutic angiogenesis has failed to prove clinical efficacy to date,

despite the clear biological activity of the factor [2,4], highlighting

the need to better understand the mechanisms of physiological

vascular growth by VEGF, especially under therapeutically relevant

conditions of factor delivery.

The best-understood mode of angiogenesis is sprouting, which is

mostly studied during development, when specialized endothelial

tip cells migrate from pre-existing vessels, followed by proliferating

stalk cells, to invade surrounding avascular tissue [5]. However,

blood vessels can also grow by the alternative mechanism of intus-

susception, or splitting angiogenesis, whereby rows of intraluminal

endothelial pillars split pre-existing vessels longitudinally into new

ones [6]. Intussusception is increasingly recognized as a therapeuti-

cally important mode of angiogenesis, both in tumor resistance to

anti-angiogenic treatments and in reparative vascular growth [7–9],

but very little is known about its molecular regulation due to a

paucity of appropriate models.

Taking advantage of a cell-based platform that we developed for

the controlled expression of specific and homogeneous doses of

angiogenic factors in vivo, we previously found that (i) VEGF can

induce either normal and functional capillary networks or aberrant

angioma-like vascular structures depending on its concentration in

the microenvironment around each producing cell in vivo [10]

and (ii) VEGF doses required for therapeutic efficacy [11], induce

robust vascular growth in skeletal muscle essentially through
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intussusception [9]. Interestingly, both normal and aberrant vascu-

lar structures form through a first stage of circumferential enlarge-

ment within the first 4 days, followed by intussusceptive

remodeling by 7 days [9], whereas the transition from normal to

aberrant angiogenesis is determined by the retention or loss of peri-

cytes during the initial stage of vascular enlargement [12].

Here, we took advantage of this unique and well-characterized

model of VEGF dose-dependent intussusceptive angiogenesis to

investigate its molecular regulation. We dissected the role of specific

pericyte-mediated signaling pathways, and we identified a critical

function for ephrinB2/EphB4 signaling, but not TGF-b or angiopoi-

etin signaling. Specifically, we show that the endothelial receptor

EphB4 controls the outcome of intussusceptive angiogenesis by fine-

tuning the degree of endothelial proliferation caused by specific

VEGF doses and therefore the size of initial vascular enlargement,

without directly affecting VEGF-R2 activation, but rather modulating

its downstream signaling through MAPK/ERK. Together, these

results identify the ephrinB2/EphB4 pathway as a key regulator of

intussusceptive angiogenesis and a druggable target to modulate the

outcome of VEGF delivery.

Results

Generation and validation of blockers of pericyte-endothelium
paracrine signaling

To determine whether and which pericyte-derived signals may

control normal vascular morphogenesis induced by moderate VEGF

doses, we blocked the three main signaling pathways responsible

for the cross-talk between pericytes (P) and endothelial cells (EC),

that is, the TGF-b1, angiopoietin (Ang)/Tie2, and ephrinB2/EphB4

axes. A clonal myoblast population that homogeneously expresses

moderate VEGF levels (V-low = 61 � 2.9 ng/106 cells/day) was

selected to induce normal angiogenesis [9,13], or myoblasts that do

not express VEGF as control (Ctrl). Both populations were trans-

duced with retroviral vectors co-expressing soluble blockers of the

TGF-b1 (latency-associated peptide, LAP), Ang/Tie2 (sTie2Fc), and

ephrinB2/EphB4 (sEphB4) signaling, together with a truncated

version of CD4 (trCD4) in a bicistronic cassette (Fig EV1A) as a

FACS-quantifiable surface marker [13] (Fig EV1B). ELISA measure-

ments confirmed that all blocker-expressing V-low populations

maintained a similar VEGF production as the original V-low clone

(V-low = 64 � 3, V-low LAP = 64 � 6, V-low sTie2Fc = 79 � 4,

V-low sEphB4 = 62 � 5 ng/106 cells/day). Specific expression of

each blocker was confirmed by RT–PCR on the in vitro cultured

myoblast populations (Fig EV1C), while the functional activity of

the secreted proteins was verified by appropriate in vitro assays on

myoblast conditioned media (Fig EV1D–F).

Blockade of ephrinB2/EphB4 signaling, but not of TGF-b1/TGF-bR
or angiopoietin/Tie2, switches VEGF-induced angiogenesis from
normal to aberrant

Simultaneous blockade of all three pathways of the P-EC cross-talk

was achieved by co-implanting the individual blocker-expressing

populations into hindlimb muscles of adult mice (Fig 1A). After

2 weeks, myoblasts expressing only the blockers in the absence of

VEGF (Ctrl 3b) did not perturb the pre-existing vasculature

compared to controls (Ctrl CD4). Low levels of VEGF induced the

growth of normal mature capillaries, tightly associated with NG2+/

a-SMA� pericytes, but co-expression of the three soluble inhibitors

converted these into aberrant vascular structures, characterized by

enlarged and irregular diameters, and covered by a patchy layer of

SMA+ smooth muscle cells instead of pericytes (V-low 3b), similar

to the angioma-like structures induced by another monoclonal

myoblast population expressing high VEGF levels alone [10]

(V-high = 137.7 � 1.6 ng/106 cells/day).

To determine whether any of the three signaling pathways was

individually responsible for the switch, each blocker-secreting

V-low population was injected separately (Fig 1B). By 2 weeks,

ephrinB2/EphB4 blockade caused the appearance of irregularly

enlarged aberrant vascular structures, similar to those induced by

high VEGF alone, whereas neither TGF-b1/TGF-bR nor Ang/Tie2

blockade affected the normal angiogenesis induced by V-low. Quan-

tification of vessel diameter distributions showed that V-low

induced angiogenesis characterized by homogeneous capillary-size

vessels with a median of 4.0 lm and 90th percentile of 6.1 lm.

However, inhibition of ephrinB2/EphB4 signaling gave rise to a frac-

tion of significantly enlarged structures, with 13% of vessels having

diameter > 10 lm, compared to 2 and 1% that could be observed in

muscles implanted with control cells expressing only sEphB4 and

no VEGF, or with V-low cells alone, respectively (Fig 1C). The aver-

age size of vessels induced by V-low was also significantly increased

▸Figure 1. Blockade of ephrinB2/EphB4 signaling switches VEGF-induced angiogenesis from normal to aberrant.

A, B Immunofluorescence staining of endothelium (CD31, red), pericytes (NG2, green), smooth muscle cells (a-SMA, cyan), and nuclei (DAPI, blue) on frozen sections of
limb muscles injected with myoblast clones expressing different VEGF levels (V-low and V-high, respectively) or co-expressing low VEGF with blockers of the TGF-
b1, angiopoietin/Tie2, and ephrinB2/EphB4 pathways together (V-low 3b) or each individually (LAP, sTie2Fc, or sEphB4). Cells expressing only CD4 surface marker
(Ctrl CD4) or blockers (Ctrl 3b) served as controls. Normal angiogenesis induced by V-low was switched to aberrant, enlarged, and smooth muscle-covered vessels,
similar to those induced by high VEGF alone (V-high), in the presence of all three blockers or selectively by inhibition of ephrinB2/EphB4 signaling alone. Scale
bar = 25 lm.

C, D Quantification of vessel diameters, displayed as distribution (C) or mean � SEM (D). A population of aberrantly enlarged vessels > 10 lm is induced by ephrinB2/
EphB4 blockade. n = 3 mice/group (Ctrl sEphB4 and V-low), n = 5 mice (V-low sEphB4); *P < 0.05 (Mann–Whitney test).

E Immunofluorescence staining for mural cell markers (NG2 or a-SMA, both green) and basal lamina (laminin, purple) shows that aberrant vessels induced by
ephrinB2/EphB4 blockade are associated with smooth muscle (a-SMA+ outside the basal lamina) rather than pericytes (NG2+ embedded inside the basal lamina).
White arrows indicate an NG2+ pericyte (in V-low left panels) and an a-SMA+ smooth muscle cell (in the V-low sEphB4 right panels); *lumen of aberrant structure.
Scale bar = 25 lm.

F Quantification of mural cell coverage of vessels induced by V-low or V-low sEphB4, shown as the ratio of NG2+/CD31+ and a-SMA+/CD31+ areas, or the ratio
between the two markers (NG2/SMA). n = 3 mice (V-low), n = 6 mice (V-low sEphB4); *P < 0.05 (Mann–Whitney test).
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by EphB4 blockade (V-low = 4.4 � 0.2 lm vs. V-low sEphB4 =

6.6 � 0.5 lm, P < 0.05; Fig 1D). The nature of mural cells associ-

ated with vessels induced by V-low alone or with sEphB4 was

further investigated by co-staining for the vascular basal lamina. As

can be seen in Fig 1E, normal capillaries induced by low VEGF were

associated with NG2+ pericytes that were completely embedded in

A

B

C D

E

F

Figure 1.
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the laminin-positive basal lamina, whereas the mural cells associ-

ated with the aberrant vascular structures induced in the presence

of sEphB4 were both a-SMA+ and positioned externally to the base-

ment membrane and were therefore identified as smooth muscle

cells rather than pericytes. Quantification of NG2+ and a-SMA+

mural cell coverage (Fig 1F) showed that the transition from peri-

cytes to smooth muscle cells by EphB4 blockade did not result in a

loss of NG2, as both mural cell types retain expression of this

marker. However, the a-SMA/CD31 ratio was significantly increased

with sEphB4, as pericytes do not express a-SMA (V-low = 0.1 � 0.0

vs. V-low sEphB4 = 0.7 � 0.1, P < 0.05), as well as the a-SMA/

NG2 ratio (V-low = 0.2 � 0.0 vs. V-low sEphB4 = 1.4 � 0.1,

P < 0.05).

Intravascular staining by FITC-labeled tomato lectin, which binds

to the luminal surface of endothelial structures only if they are

connected to the systemic circulation, co-localized with endothelium

staining (CD31), indicating that the aberrant structures caused by

V-low sEphB4 cells were not simply endothelial clusters, but were

functionally perfused (Fig EV2). This is in agreement with previous

findings for angioma-like structures induced by high VEGF alone

[11]. Further, staining for the apical- and basal-specific markers

podocalyxin [14] and laminin confirmed that endothelium in both

normal and aberrant vascular structures induced by V-low, V-low

3b, and V-low sEphB4 was functionally polarized into luminal and

basal compartments (Appendix Fig S1). Lastly, to determine the

evolution of the morphological changes caused by ephrinB2/EphB4

blockade, tissues were analyzed after 12 weeks, showing that the

aberrant structures observed by 2 weeks continued growing in size

(Appendix Fig S2).

Altogether, these results suggest that the ephrinB2/EphB4 path-

way, but not TGF-b1/TGF-bR and Ang/Tie2, has a function in the

development of normal angiogenesis by low VEGF doses and its

blockade causes the switch to an aberrant phenotype resembling the

angioma-like vascular structures induced by high VEGF alone.

Activation of EphB4 signaling prevents aberrant angiogenesis
induced by high VEGF doses

To complement the ephrinB2/EphB4 inhibition data above, we

asked whether the pharmacological activation of EphB4 might

prevent aberrant angiogenesis by high VEGF levels. A recombinant

ephrinB2-Fc chimeric protein, whereby fusion with the

immunoglobulin Fc portion enables the formation of dimers of

ephrinB2 extracellular domains, was used to activate the EphB4

receptor [15]. V-high clonal myoblasts were injected in leg muscles

of adult mice that were treated systemically with ephrinB2-Fc or Fc

control protein by intraperitoneal injection [16]. Two weeks later,

high VEGF induced heterogeneous enlarged vascular structures

associated with smooth muscles cells (Fig 2A). As normal muscle

capillaries have homogeneous sizes smaller than 10 lm, vessel

diameter distribution was quantified and showed that 26% of

induced structures were larger than 10 lm (Fig 2B). On the other

hand, treatment with ephrinB2-Fc yielded networks of pericyte-

covered normal capillaries (Fig 2A), similar to those induced by

V-low alone (Fig 1B) and with a homogeneous diameter distribu-

tion (Fig 2B; median = 5.1 lm and 6% of vessels larger than

10 lm). The average vessel size was also significantly reduced by

ephrinB2-Fc treatment (V-high + Fc = 9.5 � 0.3 lm vs. V-high +

ephrinB2-Fc = 5.8 � 0.2 lm, P < 0.05; Fig 2C). Again, podocalyxin

and laminin staining confirmed proper apico-basal polarization of

the endothelial structures (Appendix Fig S1).

These results were confirmed independently of cell-based VEGF

delivery, using an optimized fibrin-based platform that we recently

developed for controlled release of VEGF recombinant protein at

specific doses and with duration up to 4 weeks in skeletal muscle

[17]. An engineered version of murine VEGF164 was fused to the

transglutaminase substrate octapeptide NQEQVSPL (a2-PI1–8-VEGF),
to allow its covalent cross-linking into fibrin hydrogels by the coag-

ulation factor XIIIa and release only by enzymatic cleavage [18,19].

Fibrin hydrogels containing a high dose of a2-PI1–8-VEGF (50 lg/ml),

which we previously found to induce aberrant angiogenesis [17],

were injected in gastrocnemius muscles and the animals were

treated systemically with ephrinB2-Fc. In agreement with the

myoblast-based experiments, ephrinB2-Fc treatment prevented the

appearance of heterogeneous, enlarged, and smooth muscle-covered

vascular structures induced by the high VEGF dose, yielding instead

networks of pericyte-covered capillaries by 7 days (Fig 2D), with a

more homogeneous size distribution (Fig 2E) and significantly

smaller diameters (fibrin-High V + Fc = 10.0 � 0.6 lm vs. fibrin-

High V+ephrinB2-Fc = 6.9 � 0.5 lm, P < 0.05; Fig 2F).

The observed prevention of aberrant vascular structures could be

due to either their switch to a normal phenotype or to their regres-

sion. Since regressing vessels leave behind their basal lamina, a

staining for laminin was performed to detect so-called empty sleeves

of vascular basement membrane, which provide a sort of historical

record of pre-existing vessels [20]. As shown in Fig EV3, by 7 days

after injection of V-high myoblasts we could not identify laminin

sleeves in the tissues treated with ephrinB2-Fc compared with the

controls treated with Fc only. On the other hand, many empty

sleeves were clearly visible in positive control tissues treated with

the potent VEGF blocker aflibercept, which caused the regression of

vascular structures induced by high VEGF, suggesting that EphB4

stimulation could prevent the formation of aberrant structures by

regulating VEGF-induced vascular morphogenesis.

Altogether, the results of these inhibition and stimulation experi-

ments indicate that the ephrinB2/EphB4 signaling pathway determi-

nes whether a specific VEGF dose induces normal or aberrant

angiogenesis.

EphrinB2/EphB4 signaling controls the degree of initial vascular
enlargement induced by VEGF

In order to understand how ephrinB2/EphB4 signaling regulates the

switch between normal and aberrant angiogenesis, we investigated

the effects of EphB4 inhibition or stimulation on the early morpho-

genic events after delivery of low and high VEGF levels, respectively,

which comprise an initial stage of circumferential enlargement of

pre-existing vessels by 3–4 days, followed by longitudinal splitting

by 7 days [9]. As shown in Fig 3A and B, by 4 days both V-low and

V-high myoblasts induced vascular enlargements, whose diameter

was proportional to VEGF dose (V-low: median = 8.8 lm, aver-

age = 10.5 � 0.8 lm; V-high: median = 11.9 lm, average =

14.5 � 1.7 lm). However, co-expression of sEphB4 increased the

average size of vascular enlargements induced by low VEGF (V-low

sEphB4 = 15.1 � 1.1 lm, P < 0.01 vs. V-low; Fig 3E) to values simi-

lar to those caused by high VEGF alone (Fig 3F). Conversely, EphB4
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stimulation by systemic treatment with ephrinB2-Fc significantly

reduced the diameter of vascular enlargements induced by high

VEGF (Fig 3F; V-high + ephrinB2-Fc = 9.5 � 1.0 lm, P < 0.05 vs.

V-high + Fc). By 7 days, the smaller enlargements induced by V-low

remodeled to normal capillaries, whereas the larger ones induced by

V-high failed to split and some segments gave rise to aberrantly

enlarged structures (Fig 3C and D). However, upon modulation of

EphB4 signaling, the fate of initial enlargements was determined by

their size rather than the dose of VEGF. In fact, ephrinB2-Fc treat-

ment caused proper remodeling to homogeneous normal capillary

A

B C

D

E F

Figure 2. Activation of EphB4 by ephrinB2-Fc prevents aberrant angiogenesis.

A–F A high VEGF dose was delivered to limb muscles of mice either by genetically modified myoblasts (V-high, A–C) or as fibrin-bound recombinant protein (fibrin-High
V, D–F), and animals were treated intraperitoneally with ephrinB2-Fc or control Fc recombinant protein. Immunostaining (A, D) of frozen sections for endothelium
(CD31, red), pericytes (NG2, green), smooth muscle cells (a-SMA, cyan), and nuclei (DAPI, blue) showed that, with both delivery platforms, ephrinB2-Fc treatment
prevented the induction of aberrant vascular structure by high VEGF and yielded only normal capillary networks. *lumens of aberrant structures in (D); scale
bar = 25 lm. Quantification (B, C, E, and F) of vessel diameters showed a consistent and significant decrease in vessel sizes after treatment with ephrinB2-Fc.
Results are shown as diameter distributions (B, E) and mean � SEM (C, F). Red arrows and numbers indicate the fraction of vessel diameters > 10 lm. n = 4 mice;
*P < 0.05 (Mann–Whitney test).
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networks despite high VEGF, whereas EphB4 inhibition led to failure

of splitting despite low VEGF (Fig 3C and D), as shown also by the

quantification of vessel diameters (Fig 3G and H).

The transition from normal to aberrant angiogenesis by increas-

ing VEGF doses has been shown to be associated with loss of peri-

cytes at the initial stage of circumferential enlargement 4 days after

A B

C D

E F G H

Figure 3.
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factor delivery [9]. Analysis of mural cell coverage showed that inhi-

bition of ephrinB2/EphB4 signaling did not interfere with pericyte

coverage of initial vascular enlargements induced by low VEGF,

both at 3 and at 4 days (Fig 4A). In the presence of low VEGF alone,

pericytes were positive for NG2 and negative for a-SMA, as expected

and typical for microvasculature of skeletal muscle. However, upon

co-expression of the sEphB4 blocker, most mural cells associated

with vascular enlargements became double-positive for both NG2

and a-SMA (Fig 4A). Co-staining for laminin revealed that NG2+/

a-SMA+ mural cells were completely embedded into the vascular

basement membrane (Fig 4B), thereby confirming their identity as

pericytes and excluding a transition to a smooth muscle cell pheno-

type at this stage [21]. In line with this, gene expression analysis in

muscles 3 days after myoblast implantation showed that both Pdgfb

and its receptor Pdgfrb, which regulate pericyte recruitment, were

similarly upregulated after stimulation with VEGF regardless of

EphB4 inhibition (Fig 4C).

Altogether, these results indicate that ephrinB2/EphB4 signaling

(i) modulates the degree of vascular enlargement induced by a given

VEGF dose, determining whether splitting into normal capillaries

succeeds or fails; and (ii) does not interfere with pericyte recruit-

ment.

EphrinB2/EphB4 signaling modulates VEGF-induced
endothelial proliferation

The initial vascular enlargement caused by VEGF overexpression is

associated with endothelial proliferation [9]. Therefore, we investi-

gated whether ephrinB2/EphB4 signaling may regulate the amount

of endothelial proliferation induced by specific VEGF doses in vivo.

The degree of proliferation depends both on the proportion of

cycling cells and on the speed with which they cycle. Therefore, we

performed co-immunostaining for CD31 and either Ki67, which is

expressed throughout all phases of the cell cycle and marks all

proliferating cells, but not quiescent ones in G0 [22], or phosphory-

lated histone H3 (pHH3), which is only detectable during the G2-M

phase [23,24]. Since the duration of the cell cycle depends on how

long cells spend in G1, while the G2-M phase has a constant dura-

tion, the proportion of pHH3+ cells reflects how often proliferating

cells are cycling and provides an indication of the endothelial prolif-

eration rate.

Vascular enlargements induced by V-low alone or with sEphB4

co-expression contained similar proportions of Ki67+ endothelial

cells at both 3 and 4 days after myoblast implantation (Fig 5A).

However, at 3 days, EphB4 inhibition caused a significant increase

by about 40% in the frequency of pHH3+ endothelial cells

compared to low VEGF alone (Fig 5B), suggesting a faster prolifera-

tion rate. At 7 days, most of the endothelial cells in the normal

capillary networks induced by low VEGF were Ki67� and became

quiescent, as expected, whereas 40% of the endothelium in the

aberrant vascular structures generated in the presence of EphB4

blockade were still proliferating (Fig 5A), similarly to those induced

by high VEGF alone (Fig 5C). Conversely, EphB4 stimulation by

systemic ephrinB2-Fc treatment caused a significant reduction in the

proportion of Ki67+ endothelial cells at both 4 and 7 days (Fig 5C),

while the frequency of pHH3+ endothelial cells was significantly

reduced by about 40% already by 3 days (Fig 5D), reducing it to a

similar value as that induced by low VEGF alone (Fig 5B). Further-

more, EphB4 expression in angiogenic vessels in vivo was restricted

to the endothelium, with no detectable signal on associated peri-

cytes, and was not modified by either VEGF dose or its own stimula-

tion by ephrinB2-Fc or inhibition by sEphB4 (Fig EV4).

To determine whether EphB4 signaling regulated endothelial

proliferation directly or indirectly, we investigated the effects of

ephrinB2-Fc treatment on endothelial cell cycle progression in vitro.

Human dermal microvascular cells (HDMEC), which strongly

express EphB4 and are mostly negative for ephrinB2 (Appendix Fig

S3), were stimulated with recombinant VEGF or with the unrelated

strong mitogen FGF-2 [25], with or without treatment with recombi-

nant ephrinB2-Fc, and cell cycle analysis was performed by FACS

after staining for Ki67 and pHH3 (Fig 5E). As shown in Fig 5F, in

control conditions (no VEGF and 2,000 ng/ml of ephrinB2-Fc), about

◀ Figure 3. EphrinB2/EphB4 signaling regulates the degree of vascular enlargement by VEGF dose.
Mouse limb muscles were implanted with myoblast clones expressing low (V-low) or high (V-high) VEGF doses, while the ephrinB2/EphB4 signaling pathway was inhibited by
co-expression of the sEphB4 blocker (V-low sEphB4) or stimulated by intraperitoneal treatment with ephrinB2-Fc or control Fc protein.

A–D Immunostaining of frozen sections (upper panels) stained for endothelium (CD31, red), pericytes (NG2, green), smooth muscle cells (a-SMA, cyan), and nuclei (DAPI,
blue) and quantification of vessel diameter distribution (lower panels) showed that 4 days after VEGF delivery, the size of initial circumferential enlargements was
increased by ephrinB2/EphB4 inhibition and reduced by its stimulation (A, B). By 7 days, after completion of remodeling, EphB4 inhibition switched normal
angiogenesis by V-low to aberrant (C) and its stimulation converted aberrant structures by V-high into normal capillary networks (D). Red arrows and numbers
indicate the fraction of vessel diameters > 10 lm. *lumen of aberrant structures; mf, muscle fibers; scale bar, 25 lm.

E–H Quantification of vessel diameters after 4 days (E, F) and 7 days (G, H). Values represent means of individual measurements in each sample � SEM. n = 3–4
independent samples/group; *P < 0.05 and **P < 0.01 (one-tailed t-test, after data normalization by logarithmic-transformation).

▸Figure 4. Inhibition of ephrinB2/EphB4 signaling does not prevent pericyte recruitment.
Muscles were harvested 3 and 4 days after implantation of V-low or V-low sEphB4 myoblast clones.

A Immunofluorescence staining of endothelium (CD31, red), pericytes (NG2, green), smooth muscle cells (a-SMA, cyan), and nuclei (DAPI, blue). In both conditions, initial
vascular enlargements after 3 and 4 days were tightly associated with mural cells displaying a pericyte morphology, which, however, upregulated a-SMA expression
in the presence of EphB4 blockade. *lumen of vascular enlargements; scale bar = 25 lm.

B Co-staining for laminin (LAM, red) confirmed the pericyte identity of both a-SMA-positive and a-SMA-negative mural cells, as both were embedded inside the
endothelial basal lamina. *lumen of vascular enlargements; scale bar = 25 lm.

C Gene expression of Pdgfb and Pdgfrb was quantified in skeletal muscles 3 days after myoblast implantation and expressed as fold-change vs. control muscles.
Mean � SEM; n = 4 independent samples/group; ***P < 0.001, ###P < 0.001 vs. Ctrl (*) or vs. sEphB4 (#) (one-way ANOVA with Bonferroni multiple comparisons
test, after data normalization by logarithmic-transformation).
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Figure 4.

8 of 22 EMBO reports 19: e45054 | 2018 ª 2018 The Authors

EMBO reports EphB4 regulates non-sprouting angiogenesis Elena Groppa et al



50% of HDMEC were in G0. VEGF stimulation reduced this percent-

age to 30%, but treatment with ephrinB2-Fc (50 and 2,000 ng/ml)

significantly and dose-dependently increased the proportion of non-

cycling cells to 40%. Conversely, VEGF stimulation increased the

amount of cells undergoing mitosis in the G2-M phase by about 50%

(from 0.8 to 1.2%), while ephrinB2-Fc treatment dose-dependently
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reversed this effect (Fig 5G). Notably, the anti-proliferative effect of

ephrinB2-Fc treatment was not restricted to VEGF, as it similarly

reduced the mitogenic effects of FGF-2 (Fig 5F and G).

FGF2 upregulation has been associated with intussusceptive angio-

genesis during avian kidney development [26]. Therefore, we investi-

gated expression levels of Fgf2 and Vegfa 3 days after implantation of

V-low cells alone or with EphB4 blockade. Fgf2 was upregulated

during VEGF-induced angiogenesis, but it was not further increased

by EphB4 inhibition (Fig EV5A). Also, total Vegfa was significantly

increased in tissues implanted with V-low-expressing myoblasts, but

without differences in the presence of sEphB4 (Fig EV5B), whereas

endogenous Vegfa was not upregulated in any condition (Fig EV5C).

Further, the degree of upregulation of endogenous Fgf2 was threefold

to sixfold lower than the increase in total Vegfa caused by V-low

myoblast implantation (Fig EV5D). Therefore, the switch from

normal to aberrant angiogenesis caused by EphB4 inhibition did not

depend on changes in either VEGF or FGF2 expression.

Thus, combined in vivo and in vitro analyses indicate that EphB4

signaling regulates endothelial proliferation by modulating the mito-

genic activity of VEGF.

EphB4 modulates VEGF signaling output downstream of
VEGF-R2 activation

In order to determine the mechanism by which EphB4 modulates

VEGF activity, we assessed whether EphB4 stimulation regulated

VEGF-R2 internalization, phosphorylation, or downstream signaling

in HDMEC in vitro [27,28]. VEGFR-2 internalization after treatment

with VEGF was analyzed by FACS (Fig 6A). VEGF stimulation

strongly reduced the staining for surface VEGF-R2 without changing

the total amount of VEGF-R2 expressed by the cells. While surface

receptor staining could be restored by co-treatment with the VEGF-

R2 receptor tyrosine kinase inhibitor axitinib [29], this was not

observed upon co-treatment with 2,000 ng/ml of ephrinB2-Fc.

Quantification of the fraction of VEGF-R2 internalization (Fig 6B)

confirmed that axitinib could robustly prevent VEGF-induced VEGF-

R2 internalization, while ephrinB2-Fc caused a very small, albeit

significant, reduction by < 5%. Neither axitinib nor ephrinB2-Fc

had any effect in the absence of VEGF stimulation. These results

were confirmed by an enzymatic cleavage protection assay and

Western blot analysis (Appendix Fig S4), showing that ephrinB2-Fc

treatment did not reduce the amount of VEGF-R2 that was internal-

ized, and therefore protected from proteolytic degradation, upon

VEGF stimulation.

Phosphorylation of VEGF-R2 was quantified after staining with a

specific antibody for phosphotyrosine 1175 (pTyr1175), which is the

key residue by which VEGF-R2 activates the MAPK/ERK pathway

and stimulates cell proliferation [30]. EphrinB2-Fc treatment did not

reduce the increase in pTyr1175 caused by VEGF (Fig 6C), suggest-

ing that EphB4 stimulation did not directly affect VEGF-R2 activa-

tion. The effect of EphB4 activation on VEGF signaling downstream

of the receptor was investigated by quantifying the expression of the

VEGF-R2 target genes Esm-1/Endocan and Igfbp3. As shown in

Fig 6D, both genes were upregulated by VEGF in HDMEC in vitro,

as expected. However, ephrinB2-Fc treatment did not affect the

expression of Esm-1/Endocan, which is regulated by the PI3-kinase/

Akt signal transduction pathway [31], but it significantly down-

regulated expression of Igfbp3, which is instead also regulated by

ERK1/2 signaling [32,33]. Therefore, the effects of EphB4 signaling

on VEGF-induced ERK1/2 activation were assessed in vivo by quan-

tifying the percentage of endothelial cells positive for phosphory-

lated ERK1/2 (pERK1/2) in the initial vascular enlargements

induced 3 and 4 days after implantation of myoblasts expressing

low or high VEGF levels and in the presence of EphB4 inhibition or

stimulation, respectively, similarly to the experimental setup

described in Fig 3. After 3 days, about 10% of endothelial cells in

◀ Figure 5. EphrinB2/EphB4 signaling modulates endothelial proliferation.

A–D Muscles were harvested 3, 4, and 7 days after implantation of V-low or V-low sEphB4 clones, or V-high cells while treating animals systemically with ephrinB2-Fc
or control Fc proteins. Endothelial proliferation was assessed by quantifying the percentage of endothelial cells positive for Ki67, which marks all cycling cells (A
and C), or phosphorylated histone H3, which marks only cells in the G2/M phase (pHH3, B, and D), by immunofluorescence staining on frozen muscle sections.
EphB4 inhibition specifically increased the rate of endothelial proliferation (pHH3+ cells) and its stimulation by ephrinB2-Fc conversely decreased it. Mean � SEM;
n = 4 independent samples/group; *P < 0.05, **P < 0.01, and ***P < 0.001 (one-way ANOVA with Bonferroni multiple comparisons test).

E–G Human dermal microvascular endothelial cells (HDMEC) were treated in vitro with recombinant VEGF or FGF2, while EphB4 was stimulated with ephrinB2-Fc (50
or 2,000 ng/ml). Cell cycle analysis was performed by FACS after staining for Ki67 and pHH3 (E), and the proportion of cells withdrawn from cycle (G0) or in mitosis
(M) were quantified (F, G). EphB4 stimulation dose-dependently increased quiescence and decreased mitosis by both mitogens. Mean � SEM; n = 3 independent
samples/group; ***P < 0.001 vs. ephrinB2-Fc control, #P < 0.05, ##P < 0.01 and ###P < 0.001 (one-way ANOVA with Bonferroni multiple comparisons test).

▸Figure 6. EphB4 regulates VEGF-induced phosphorylation of endothelial ERK1/2 downstream of VEGF-R2 activation.
HDMEC were treated in vitro with VEGF alone or together with ephrinB2-Fc or the VEGF-R2 small molecule inhibitor axitinib as a positive control.

A, B VEGF-R2 internalization was quantified by FACS. Mean � SEM; n = 6 independent samples/group; **P < 0.01 and ***P < 0.001 vs. not stimulated control,
#P < 0.05, ###P < 0.001 (one-way ANOVA with Bonferroni multiple comparisons test).

C VEGF-R2 phosphorylation at tyrosine Y1175 (C) was quantified by immunocytochemistry. Mean � SEM; n = 4 independent samples/group; *P < 0.05 and
**P < 0.01 vs. not stimulated control (one-way ANOVA with Bonferroni multiple comparisons test).

D Expression of VEGF-R2 target genes Igfpb3 and Esm1 was quantified by real-time qRT–PCR. Mean � SEM; n = 8 independent samples/group; *P < 0.05, **P < 0.01,
and ***P < 0.001 vs. not stimulated control, ###P < 0.001 (one-way ANOVA with Bonferroni multiple comparisons test, after data normalization by logarithmic-
transformation).

E–H Muscles were harvested 3 and 4 days after implantation of V-low or V-low sEphB4 clones, or V-high cells while treating animals systemically with ephrinB2-Fc or
control Fc proteins. Frozen sections were immunostained for phosphorylated ERK1/2 (p-ERK1/2) and the endothelial junctional protein VE-cadherin (VE-CAD) (E, G),
and the percentage of p-ERK1/2-positive endothelial cells was quantified (F, H). EphB4 inhibition and stimulation, respectively, increased and decreased ERK1/2
activation downstream of VEGF-R2. *in IF panels = lumens of vascular enlargements. Scale bar = 20 lm. Mean � SEM; n = 4 independent samples/group;
*P < 0.05 and ***P < 0.001 (one-way ANOVA with Bonferroni multiple comparisons test).
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vascular enlargements induced by low VEGF stained positive for

pERK1/2, but EphB4 inhibition increased this proportion to about

15%, which was similar to that induced by high VEGF alone.

Conversely, EphB4 activation by treatment with ephrinB2-Fc signifi-

cantly reduced the amount of pERK1/2-positive endothelial cells in

structures induced by high VEGF to levels similar to those of low

VEGF alone (Fig 6E and F). By 4 days, pERK1/2-positive cells

dropped to about 3% with low VEGF alone, but EphB4 inhibition

caused this fraction to remain at about 15%, similarly to high VEGF

alone, and EphB4 activation in the presence of high VEGF again

reduced it significantly to about 5% (Fig 6G and H), in agreement

with the day 3 results.

Altogether, these in vitro and in vivo data show that EphB4 acti-

vation by ephrinB2 modulates endothelial proliferation induced by

specific VEGF doses without affecting VEGF-R2 activation, but

rather by modulating the degree of ERK1/2 activation downstream

of the receptor.

EphB4 prevents aberrant angiogenesis by VEGF through ERK1/2

Based on these results, we sought to investigate whether ERK1/2

activity is required for EphB4 function in regulating VEGF-induced

intussusceptive angiogenesis. Therefore, we asked whether ERK1/2

inhibition could reverse the switch from normal to aberrant vascular

growth caused by EphB4 blockade. After implantation with V-low

and V-low sEphB4 myoblasts, animals were treated with three dif-

ferent doses (3, 6, and 12.5 mg/kg) of the potent and selective

ERK1/2 inhibitor SCH772984 [34] or vehicle. The higher dose of

12.5 mg/kg proved toxic to the animals and therefore was not eval-

uated further. As shown in Fig 7A and B, after 4 days 5.0 � 1.0%

of endothelial cells in vascular enlargements induced by V-low

stained positive for pERK1/2 and this was increased to 15.7 � 0.9%

by sEphB4 (P < 0.001), in agreement with the results in Fig 6H.

Treatment with 6 mg/kg SCH772984 prevented this increase

(7.5 � 0.4%, P < 0.01 vs. V-low sEphB4), whereas 3 mg/kg was

ineffective (12.9 � 1.9%, P = n.s. vs. V-low sEphB4). Quan-

tification of vessel diameters at the 4-day time-point (Fig 7C and D)

showed that, in agreement with the effects on pERK1/2 activity, the

increase in vessel size caused by sEphB4 (diameter: V-low = 9.7 �
0.2 lm vs. V-low sEphB4 = 14.1 � 0.8 lm, P < 0.01) was prevented

by 6 mg/kg SCH772984 (9.2 � 0.2 lm, P < 0.001 vs. V-low sEphB4),

but not by 3 mg/kg (12.9 � 0.9 lm, P = n.s. vs. V-low sEphB4).

Based on these results, we investigated the effects of ERK inhi-

bition on the evolution of angiogenesis induced by V-low and

V-low sEphB4 cells. Animals were treated systemically with

6 mg/kg of SCH772984 or vehicle for 7 days, as during this time

intussusceptive remodeling is completed, and vascular morphology

and quantity were evaluated after 2 weeks. The smooth muscle-

covered aberrant structures induced by EphB4 blockade were

prevented by ERK inhibition, yielding instead a normal capillary

network similar to that generated by low VEGF alone (Fig 7E).

Quantification of vessel diameters (Fig 7F) confirmed that sEphB4

caused the appearance of significantly enlarged vascular structures

compared to V-low (V-low = 4.7 � 0.1 lm vs. V-low sEphB4 = 7.1

� 0.4 lm, P < 0.01), but this was prevented by ERK inhibition

(5.5 � 0.3 lm, P < 0.05 vs. V-low sEphB4). However, normal

angiogenesis was not impaired, as vessel length density was simi-

larly increased about threefold in all groups compared to controls,

regardless of ERK inhibition (Fig 7G). Therefore, these data show

that induction of aberrant angiogenesis by EphB4 blockade

requires ERK1/2 activity.

EphB4 stimulation prevents aberrant angiogenesis by
uncontrolled adenoviral VEGF gene delivery both in normal and
in ischemic muscle

We sought to extend our findings, obtained with a controlled

myoblast-based gene delivery platform, to a gene delivery system

appropriate for clinical translation as a gene therapy approach.

Therefore, first we tested whether ephrinB2-Fc treatment could

prevent aberrant angiogenesis induced by intramuscular delivery of

a VEGF-expressing adenoviral vector (Ad-mVEGF) in immune-defi-

cient SCID mice, to avoid the confounding factor of immune clear-

ance of the viral vector [35]. After 2 weeks, Ad-mVEGF induced

several enlarged and multi-lumenized, smooth muscle-covered aber-

rant vascular structures, but ephrinB2-Fc treatment prevented their

appearance and yielded only normal capillary networks associated

with NG2+ pericytes (Fig 8A), with more homogeneous diameters

(Fig 8B) and smaller in size (Fig 8C; Ad-mVEGF + Fc = 7.4 �
0.5 lm vs. Ad-mVEGF + ephrinB2-Fc = 6.1 � 0.2 lm, P < 0.05).

Lastly, we investigated whether this approach could ensure

normal and functional angiogenesis also during ischemia, in condi-

tions where a variety of endogenous angiogenic pathways are upreg-

ulated and tissue repair is occurring. Acute hindlimb ischemia was

induced in immune-competent hyperlipidemic mice [36]. Intramus-

cular adenoviral transfer of the human VEGF165 gene (Ad-hVEGF)

induced capillary growth compared to control vector (Ad-LacZ), but

also formation of aberrant, lacunae-like vascular structures

(Fig 8D). Concomitant systemic treatment with ephrinB2-Fc

prevented the formation of highly enlarged vascular lacunae

▸Figure 7. Aberrant angiogenesis by EphB4 blockade requires ERK1/2 activity in vivo.

A–D Muscles were harvested 4 days after implantation of V-low or V-low sEphB4 clones, while treating animals systemically with the selective ERK1/2 inhibitor
SCH772984 (3 or 6 mg/kg) or vehicle. Frozen sections were immunostained for phosphorylated ERK1/2 (p-ERK1/2) and the endothelial junctional protein VE-
cadherin (VE-CAD) (A), or for endothelium (CD31, red), pericytes (NG2, green), and smooth muscle cells (a-SMA, cyan) (C), followed by quantification of the
percentage of p-ERK1/2-positive endothelial cells (B) and of vessel diameters (D). ERK inhibition was effective with 6 mg/kg and completely prevented the vessel
enlargement caused by sEphB4. *lumen of vascular enlargements. Scale bar = 20 lm. Mean � SEM; n = 4 independent samples/group; *P < 0.05, **P < 0.01,
***P < 0.001, and ****P < 0.0001 (one-way ANOVA with Bonferroni multiple comparisons test).

E–G Muscles implanted as above were harvested after 2 weeks, while treating animals systemically with 6 mg/kg of SCH772984 or vehicle for the first 7 days. Frozen
sections were immunostained for endothelium (CD31, red), pericytes (NG2, green), and smooth muscle cells (a-SMA, cyan) (E), followed by quantification of the
percentage of vessel diameters (F) and vessel length density (G). ERK inhibition prevented the switch to aberrant angiogenesis caused by sEphB4, without
impairing the amount of normal angiogenesis induced by V-low. Scale bar = 20 lm. Mean � SEM; n = 4 independent samples/group; *P < 0.05, **P < 0.01,
***P < 0.001, and ****P < 0.0001 (one-way ANOVA with Bonferroni multiple comparisons test).
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(Fig 8D). Since ischemic tissue cannot be perfuse-fixed efficiently,

vascular structures undergo variable degrees of collapse, making

diameter or area measurements unreliable. Therefore, vascular size

was quantified by measuring vessel perimeters, which instead are

less affected by collapse. EphrinB2-Fc significantly reduced the

mean size of VEGF-induced vessels (Fig 8E; Ad-hVEGF + Fc =

A B C

D

E

F

G H

Figure 8. EphB4 stimulation prevents aberrant angiogenesis by uncontrolled adenoviral VEGF delivery both in normal and in ischemic muscle.

A–C Immune-deficient SCID mice received intramuscular injections of adenovirus expressing murine VEGF164 (Ad-mVEGF) and were treated systemically with ephrinB2-
Fc or control Fc proteins. Muscles were harvested 2 weeks later, and frozen sections were stained for endothelium (CD31, red), pericytes (NG2, green), and smooth
muscle cells (a-SMA, cyan) (A). Vessel diameters were quantified, and results are shown as size distribution (B) and mean of individual measurements in each
sample � SEM (C). EphB4 stimulation prevented the appearance of aberrantly enlarged and smooth muscle-covered vascular structures and reduced the average
diameter of induced vessels. Scale bar = 50 lm. n = 4 independent samples/group; *P < 0.05 (one-tailed t-test, after data normalization by logarithmic-
transformation).

D–H Hindlimb ischemia was induced in immune-competent LDLR�/�ApoB100/100 mice. Adenoviral vectors expressing human VEGF165 (Ad-hVEGF) or control LacZ (Ad-
LacZ) were delivered by intramuscular injection and animals received systemic treatment with ephrinB2-Fc or control Fc proteins. After 11 days, muscles were
harvested and immunohistochemical staining for CD31 was performed to assess vessel morphology (D) and to quantify vascular size by measuring vessel
perimeters (E), while tissue damage was quantified on H&E-stained sections (F, G), distinguishing tissue areas as normal, necrotic, early-, and late-regenerating (ER
and LR, respectively). Blood flow was measured non-invasively by contrast-enhanced ultrasound (H) before and after surgery (pre-op and post-op, respectively) and
after 4, 7, and 11 days (d4, d7, and d11) and is presented as the ratio of ischemic/contralateral normal leg of each animal. EphB4 stimulation prevented the
appearance of aberrantly enlarged vascular lacunae and normalized the size of VEGF-induced vessels, while a non-significant trend was also observed toward
reduced tissue necrosis, increased regeneration, and normalized blood flow. Scale bars = 100 lm (D) and 2 mm (F). Mean � SEM; (D–G) n = 7–9 independent
samples/group; *P < 0.05 and ***P < 0.001 (one-way ANOVA and Bonferroni post hoc test); (H) n = 4–10 animals/group; ***P < 0.001 post-op vs. pre-op,
**P < 0.01 post-op vs. day 11 Ad-LacZ, or vs. Ad-VEGF, or vs. Ad-VEGF + ephrinB2-Fc, according to the corresponding color (one-way ANOVA and Bonferroni
multiple comparisons test).
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38.5 � 2.2 lm vs. Ad-hVEGF + ephrinB2-Fc = 31.8 � 1.2 lm,

P < 0.05; Ad-LacZ + Fc = 24.9 � 1.7 lm), confirming the results in

non-ischemic muscle. Functionally, although the aberrant vascula-

ture can be highly perfused, it can have deleterious effects on

muscle function and recovery from ischemia, for example, through

the formation of arteriovenous shunts that actually reduce effective

metabolic exchange in tissue [37]. In agreement with the normaliza-

tion of vascular structure, ephrinB2-Fc treatment displayed a non-

significant trend toward normalization of the supra-physiological

perfusion increases induced by Ad-hVEGF (Fig 8H). A non-signifi-

cant trend was also observed toward reduced ischemia-related

muscle damage (necrotic area: Ad-hVEGF + Fc = 17.5 � 9.8% vs.

Ad-hVEGF + ephrinB2-Fc = 8.4 � 3.7%) and increased tissue

regeneration (regenerating area: Ad-hVEGF + Fc = 65.2 � 9.2% vs.

Ad-hVEGF + ephrinB2-Fc = 75.4 � 7.5%), although spontaneous

regeneration was significant (Ad-LacZ regenerating area = 55.8 �
12.1%) (Fig 8F and G). Taken together, these results suggest that

EphB4 simulation by systemic ephrinB2-Fc treatment is effective in

controlling undesired vascular responses of VEGF gene delivery also

under therapeutically relevant conditions.

Discussion

By complementary loss- and gain-of-function approaches, we have

identified the EphB4 receptor as a key regulator of intussusceptive

angiogenesis and a target to control the dose-dependent outcome of

VEGF delivery to skeletal muscle. EphB4 activation by systemic

treatment with recombinant ephrinB2-Fc protein effectively

prevented aberrant vascular growth without interfering with normal

angiogenesis, thereby promoting normal microvascular network

formation despite high and uncontrolled VEGF doses. Mechanisti-

cally, EphB4 activity finely tuned the degree of endothelial prolifera-

tion induced by specific VEGF doses without affecting activation of

VEGF-R2, but rather converging on its downstream signaling and

tuning the phosphorylation of ERK1/2.

While sprouting requires a coordinated interplay between

directed migration of tip cells and proliferation of stalk cells behind

the tip [38], during intussusceptive angiogenesis pre-existing vessels

initially undergo circumferential enlargement that entails exclu-

sively endothelial proliferation without migration [6]. The degree of

vascular enlargement is proportional to VEGF dose and determines

the outcome of subsequent intussusceptive remodeling. In fact,

intraluminal pillar formation is initiated with similar frequency with

both low and high VEGF, but excessive diameters prevent their

successful completion, leading to failure to split and progressive

growth into angioma-like vascular structures [9]. Here, we identified

EphB4 activation as a specific mechanism controlling the outcome

of intussusceptive angiogenesis in adult skeletal muscle, by fine-

tuning the endothelial proliferation induced by specific doses of

VEGF and therefore controlling the degree of circumferential

enlargement achieved before transluminal pillar formation and

vessel splitting. It is interesting to note how the total amount of

proliferating Ki67+ cells 3 days after VEGF delivery was similar

with both low and high VEGF doses, in agreement with our previous

findings [9], and it was not altered by EphB4 stimulation or inhibi-

tion (Fig 5A and C). Rather, both VEGF dose and EphB4 activity

controlled the proportion of endothelial cells in the G2-M phase,

marked by the phosphorylation of histone H3 (Fig 5B and D),

suggesting an effect on the speed of proliferation, that is, the

frequency of transition from G1 to the S-G2-M phase, rather than on

the re-entry into the cell cycle from quiescence, that is, the G0–G1

transition [22,23].

Pericyte recruitment to nascent vascular structures is crucial

for normal morphogenesis, stabilization, and function of

microvascular networks, through a complex array of signals with

endothelial cells [21]. Pericyte loss by interference with PDGF-BB/

PDGF-Rb signaling by genetic means during development [39,40]

or blockade during VEGF-induced angiogenesis in adult tissue

[12] leads to unabated endothelial proliferation and the growth of

aberrantly enlarged vascular structures, which are fragile and

cause lethal hemorrhages. Despite the complexity of the pericyte-

endothelial molecular cross-talk, here we provide evidence that

the ephrinB2-EphB4 pathway is responsible for the pericyte func-

tion of regulating the switch between normal and aberrant angio-

genesis by VEGF dose. In fact, the effects of EphB4 inhibition or

stimulation reported here mimic closely the results obtained in a

similar setting by blocking or promoting pericyte recruitment

through manipulation of PDGF-BB signaling, respectively [12].

Interestingly, the observed lack of effect by TGF-b blockade by

LAP overexpression is in agreement with our own recent results,

showing that a blocking anti-TGF-b1 antibody did not affect the

normal angiogenesis induced by low VEGF, although it signifi-

cantly impaired endothelial expression of Semaphorin3A and the

recruitment of a pro-stabilizing monocyte population [41]. These

results suggest non-overlapping roles for the two pathways in

vascular morphogenesis and stabilization in the setting of intus-

susceptive angiogenesis.

EphrinB2/EphB4 signaling has well-established functions in

arteriovenous differentiation, where ephrinB2 and EphB4 selec-

tively mark the arterial and venous endothelium, respectively [42],

and in sprouting angiogenesis. During sprouting, functions of the

ephrinB2/EphB4 pathway have been ascribed most clearly to the

ephrinB2 partner. In fact, ephrinB2 was found to localize on the

filopodia of tip cells, where it stimulates their motility and sprout

formation by increasing endocytosis and signal activity of both

VEGF-R2 and VEGF-R3 [30,43], but it does not appear to affect

endothelial proliferation during sprouting [30]. The role of EphB4,

which is absent from the tips and expressed on cells behind the

growing front, remains to be elucidated. On the other hand, EphB4

overexpression has been described to suppress sprouting and

switch vascular growth to circumferential enlargement, but inde-

pendently of its kinase activity and rather through stimulation of

ephrinB2 reverse signaling [44]. In contrast, here we found that

EphB4 forward signaling is crucial to regulate intussusceptive

angiogenesis, which takes place essentially without migration and

rather only through proliferation. In fact, treatment with mono-

meric sEphB4 not only inhibits activation of endogenous EphB4,

but also interferes with ephrinB2 reverse signaling, by preventing

interaction and productive multimerization of the two binding

partners. While this would be expected to cause reduced VEGF-R2

activation and tip cell migration in the setting of sprouting, we

rather observed an increase in the outcome of VEGF signaling

specifically on proliferation through ERK1/2 phosphorylation

during the process of circumferential enlargement and intussuscep-

tion, in the absence of tip cells. Conversely, specific activation of
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EphB4 by treatment with ephrinB2-Fc had the opposite effect, with

reduction in ERK1/2 phosphorylation and endothelial proliferation,

both in vitro and in vivo. Increased ERK1/2 activity was required

downstream of EphB4 blockade. In fact, treatment with an ERK

inhibitor prevented both excessive vascular enlargement and

appearance of aberrant vascular structures, while normal angio-

genesis was not impaired (Fig 7), mimicking the effects of EphB4

stimulation by ephrinB2-Fc in conditions of high VEGF. Taken

together, these data suggest a complementary function for

ephrinB2 to stimulate VEGF-induced tip cell migration in sprouting

and for EphB4 to reduce VEGF-induced ERK1/2 phosphorylation

and endothelial proliferation in the absence of tip cells during

intussusceptive angiogenesis.

From a therapeutic perspective, it is particularly important that

EphB4 stimulation did not completely abolish VEGF-induced

endothelial proliferation, but rather only reduced it by about

40%, thereby preventing aberrant angiogenesis without interfering

with normal vascular growth. This can be explained considering

that VEGF-R2 stimulates endothelial proliferation through two

parallel pathways, one through RAS and the other through PKCb,
which then converge on the RAF-MEK-ERK1/2 cascade [45,46].

The major contributor to ERK1/2 activation by VEGF-R2 in vivo

has been found to be the PKCb pathway, through recruitment of

PLCc upon phosphorylation of tyrosine Y1175/1173 [46].

However, while mutation of Y1775/1173 both abolished VEGF-

induced ERK1/2 activation and caused embryonic lethality

[47,48], global disruption of the Prkcb gene, encoding PKCb, did

not cause major vascular phenotypes [49], showing that the

control of ERK1/2 activation by VEGFR-2 is redundant down-

stream of Y1175/1173 phosphorylation. On the other hand, EphB4

directly binds and activates the RAS GTPase activating protein

RASA1, which negatively regulates RAS activity through its

GTPase function [50,51]. Therefore, by inhibiting one branch of a

redundant circuit, EphB4 stimulation can achieve modulation of

ERK1/2 activation and endothelial proliferation, while sparing suf-

ficient activity to avoid disruption of vascular growth.

Controlling precisely the outcome of VEGF signaling for thera-

peutic purposes is a significant clinical challenge [52]. Recent

findings show that delivery of an alternative ligand may activate

VEGF-R2 more gently and with less stringent requirements for

dose control. For example, VEGF-B binds VEGF-R1 and not

VEGF-R2, but it has been found to effectively induce both cardiac

angiogenesis and arteriogenesis by displacing R1-bound VEGF-A

and making it available for signaling through R2 [53,54]. Since

VEGF-R2 is activated only indirectly by endogenously available

VEGF-A, even significant VEGF-B overexpression does not cause

excessive stimulation of R2 signaling [54]. However, the vascular

effects of VEGF-B appear restricted to the heart and its delivery

does not induce any angiogenesis in skeletal muscle or other

tissues [53].

The results reported here show that targeting a separate pathway

that converges on downstream signaling provides a new paradigm

to modulate VEGF-R2 output. Pharmacologic targeting of EphB4 can

be achieved with systemic treatments offering significant transla-

tional potential, for example, in conjunction with VEGF gene ther-

apy. The therapeutic potential of such approach remains to be

established and will require further investigation in relevant large-

animal pre-clinical models.

Materials and Methods

Construction of blocker retroviral vectors

Retroviral vectors were constructed encoding the following soluble

blockers of TGF-b 1, Ang/Tie2, and ephrinB2/EphB4 signaling,

respectively: (i) the latency-associated peptide (LAP), which associ-

ates with TGF-b1 to form the non-functional latent TGFb complex,

thereby inhibiting the biological activity of endogenous TGF-b1
[55]; (ii) a receptor body formed by fusing a truncated version of

the receptor Tie2 and the Fc portion of IgG immunoglobulin

(sTie2Fc), which sequesters angiopoietins and prevents them from

signaling [56]; and (iii) a monomeric truncated version of the recep-

tor EphB4 (sEphB4), which binds membrane-bound ephrinB2 with-

out activating it, as it does not form multimers, but prevents it from

binding and activating the endogenous endothelial EphB4 receptor

[57]. The cDNAs of human LAP, murine sTie2Fc, and human

sEphB4 were cloned into the pAMFG retroviral vector in a bicis-

tronic cassette [13], linked through an internal ribosomal entry

sequence (IRES) to a truncated version of rabbit CD4 as a conve-

nient cell surface marker, producing the pAMFG.CD4, pAMFG.C-

D4.LAP, pAMFG.CD4.sTie2Fc, and pAMFG.CD4.sEphB4 retroviral

vectors.

Retroviral transduction of myoblasts

Primary myoblasts isolated from C57BL/6 mice were infected at

high efficiency [58] with retroviruses carrying the cDNA of murine

VEGF164 linked through an internal ribosome entry sequence (IRES)

to a truncated murine CD8a as a FACS-sortable marker, or only CD8

as controls [13]. Early-passage myoblast clones were isolated using

a FACS Vantage SE cell sorter (Becton Dickinson, Basel, Switzer-

land) as described [13], in order to obtain populations in which

every cell expressed the same VEGF level. V-low and control cells

were further infected with retroviruses expressing LAP, sTie2Fc or

sEphB4, or only CD4 as control. Transduced populations were

FACS-sorted based on the staining for the CD4 surface marker to

eliminate non-infected cells. All myoblast populations were cultured

in 5% CO2 on collagen-coated dishes, with a growth medium

consisting of 40% F10, 40% low-glucose DMEM, 20% FBS, 1%

penicillin/streptomycin, and 1% L-glutamine, supplemented with

2.5 ng/ml basic FGF, as previously described [59].

CD4 flow cytometric analysis

Expression of the truncated CD4 marker was assessed by staining

myoblasts with a FITC-conjugated antibody against rabbit CD4

(clone MCA799F, AbD Serotec, Raleigh, USA), using 0.4 lg of anti-

body/106 cells in 200 ll (1:50 dilution) of phosphate-buffered saline

(PBS) with 5% BSA for 20 min on ice. Data were acquired using a

FACS Calibur flow cytometer (Becton Dickinson) and analyzed

using FlowJo software (Tree Star, Ashland, USA). Cell sorting was

performed with a BD Influx cell sorter (Becton Dickinson).

Blocker expression by RT–PCR

Specific expression of the correct blockers in each myoblast popula-

tion was verified by RT–PCR using primers specific for LAP (FW
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50-GCTGTGGCTACTGGTGCTGA-30 and RV 50-CCGGGAGCTTTGCA
GATGCT-30), sTie2Fc (FW 50-GTGGAGTCAGCTTGCTCCTT-30 and

RV 50-TGCACACACAGCTCGTAGTC-30), and sEphB4 (FW 50-TTTGG
AAGAGACCCTGCTGA-30 and RV 50-CCGTTCAGGCGGGAAACC-30).
PCR was performed using HiFi PCR Premix (Takara Clontech, St-

Germain-en-Laye, France) with 35 cycles of amplification consisting

of denaturation at 98°C for 10 s, annealing at 55°C for 15 s, and

extension 72°C for 10 s, on a Veriti Thermal Cycler (Applied Bio-

systems, Basel, Switzerland).

Blocker functional assays

LAP

A TGF-b reporter cell line was produced by transducing HEK293

cells with lentiviral vectors expressing luciferase under the control

of a SMAD response element or a control minimal CMV promoter,

according to the manufacturer’s instructions (pGreenFireTM Tran-

scription Reporters, System Biosciences, Mountain View, USA).

Cells were seeded in 96-well plates at 50% confluency and cultured

with high-glucose DMEM supplemented with 10% FBS, 1% peni-

cillin/streptomycin, and 1% L-glutamine. After 12 h, medium was

replaced with conditioned medium from either LAP or control CD4

myoblasts, which was previously incubated on ice for 30 min with

different amounts of recombinant human TGF-b1 (R&D Systems)

and then warmed at 37°C for 15 min. After 24 h, medium was aspi-

rated and cells were lysed on ice in 60 ll of ice-cold lysis buffer for

15 min and luciferase activity was measured with the BrightGlo

Luciferase Assay System (Promega, Madison, USA), according to

manufacturer’s instructions. Luminescence from reporter activation

was measured for 1 s/well on a MicroLumatPlus luminometer (Bert-

hold Technologies, Bad Wildbad, Germany).

sTie2Fc

The RAW264.7 macrophage cell line [60] was seeded in 24-well

plates at the density of 100,000 cells/well and cultured with RMPI

medium supplemented with 10% FBS, 1% penicillin/streptomycin,

and 1% L-glutamine. For the assay, cells were incubated with condi-

tioned medium from either sTie2Fc or control CD4 myoblasts that

was previously kept on ice for 30 min with different amounts of

recombinant COMP-Ang1 (AdipoGen, Liestal, Switzerland) and then

warmed at 37°C for 15 min. After 60 min, conditioned medium was

replaced with fresh RPMI containing 100 ng/ml of LPS, and after

24 h, cells were collected for RNA extraction.

sEphB4

Human umbilical vein endothelial cells (HUVEC) were seeded at the

density of 500,000 cells/T25 flask and cultured overnight in M199

medium supplemented with 20% FBS, 100 lg/ml endothelial cell

growth supplement (Sigma-Aldrich, St. Louis, USA), 50 U/ml

sodium heparin (Sigma-Aldrich), and 1% penicillin/streptomycin.

Afterward, cells were incubated with conditioned medium from

either sEphB4 or control CD4 myoblasts that was previously kept on

ice for 30 min with 2 lg/ml mouse ephrinB2-Fc (R&D Systems) pre-

clustered with anti-Fc Ab [16] and then warmed at 37°C for 15 min.

After 30 min, HUVEC were lysed and the amount of phospho-EphB4

was quantified using a human phosphotyrosine EphB4 ELISA kit

(Raybiotech, Norcross, GA, USA) according to manufacturer’s

instructions.

VEGF164 ELISA

The production of VEGF164 in cell culture supernatants was quanti-

fied by a Quantikine mouse VEGF Immunoassay ELISA kit (R&D

Systems, Abingdon, UK). One milliliter of fresh medium was incu-

bated for 4 h on myoblasts seeded overnight in a 60-mm dish, fil-

tered, and analyzed in duplicate. Results were normalized by the

number of cells and time of incubation. Four dishes of cells were

assayed per cell type (n = 4).

In vivo myoblast implantation

To avoid an immunological response to transduced myoblasts

expressing xenogenic proteins (LacZ, rabbit CD4, human LAP, and

sEphB4), immunodeficient SCID CB.17 mice (Charles River Labora-

tories, Sulzfeld, Germany) were used. Myoblasts were dissociated in

trypsin and resuspended at a concentration of 108 cells/ml in sterile

PBS with 0.5% BSA (Sigma-Aldrich Chemie GmbH, Steinheim,

Germany), and 106 cells were injected into the Tibialis anterior (TA)

and gastrocnemius (GC) muscles in the lower hindlimb, using a 30-

gauge needle syringe, as previously described [10]. All experiments

were performed with similar number of samples from both muscle

locations, and the results were pooled together. Mice of 8–12 weeks

of age, with equal representation of both genders, were randomly

assigned to experimental groups, with a minimum of n = 4 mice/

group.

Recombinant VEGF delivery by fibrin hydrogels

The transglutaminase substrate sequence NQEQVSPL (a2-PI1–8)
was fused to the N terminus of the mouse VEGF-A164 cDNA by

PCR. The fusion protein was expressed into Escherichia coli strain

BL21 (De3) pLys (Novagen, Madison, WI, USA) and isolated as

described previously [61]. Fibrin matrices of optimized composi-

tion were prepared as previously described [17], incorporating

56 mg/ml of aprotinin-a2-PI1–8, to ensure controlled duration of

degradation over 4 weeks, and 50 lg/ml of a2-PI1–8-VEGF164. For

in vivo delivery, 6- to 8-week-old immunodeficient CB.17 SCID

mice (Charles River Laboratories) were used to avoid an immuno-

logical response to human fibrinogen and cross-linking enzymes.

A liquid volume of 50 ll was aspirated rapidly with a 0.3-ml

insulin syringe with integrated 30-gauge needle (Becton Dickin-

son, Basel, Switzerland) and injected into the GC muscle of the

mice previously anesthetized with 3% isoflurane inhalation. After

injection, in situ polymerization was allowed for 20 s before

slowly extracting the needle.

Recombinant adenovirus production and in vivo implantation

Recombinant adenoviruses expressing mouse VEGF164 or human

VEGF165 were produced using the Adeno-XTM Expression System

(Clontech, Saint-Germain-en-Laye, France) according to the manu-

facturer’s recommendations. Adenoviral vectors were diluted in

physiological solution and injected in TA and GC muscles in the

lower hindlimb of immune-deficient CB.17 SCID mice (Charles River

Laboratories) at the titer of 1 × 108 infectious units/injection, with a

30-gauge needle syringe, as previously described [41]. Information

on ischemia experiments is provided below.
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EphrinB2-Fc treatment

To stimulate EphB4 signaling in vivo, mice received 1 mg/kg of

mouse ephrinB2-Fc (R&D Systems) or control Fc (Abcam,

Cambridge, UK) by intraperitoneal injections twice weekly, starting

3 days before the myoblast injection, according to published proto-

cols [62].

ERK inhibitor treatment

To inhibit ERK1/2 activity in vivo, mice were treated with the selec-

tive and potent ERK inhibitor SCH772984 (Selleckchem, Lubio-

Science, Zürich, Switzerland). Mice received 3, 6, or 12.5 mg/kg of

the inhibitor or vehicle by intraperitoneal injections twice daily for 4

or 7 days, as published [34].

RNA extraction and quantitative real-time PCR

For RNA extraction from total muscles, freshly harvested tissue was

frozen in liquid nitrogen and disrupted using a Qiagen Tissue Lyser

(Qiagen, Basel, Switzerland) in 1 ml TRIzol reagent (Invitrogen,

Basel, Switzerland) for 100 mg of tissue. Total RNA was isolated

from lysed tissues or in vitro cultured myoblasts, RAW264.7, and

human dermal microvascular endothelial cells (HDMEC) with an

RNeasy Mini Kit (Qiagen) according to manufacturer’s instruction.

RNA was reverse transcribed into cDNA using the Omniscript

Reverse Transcription kit (Qiagen) at 37°C for 60 min. Quantitative

real-time PCR (qRT–PCR) was performed on an ABI 7300 Real-Time

PCR system (Applied Biosystems, Basel, Switzerland). Expression

of genes of interest was determined using the following TaqMan

Gene Expression assays (Applied Biosystems) according to manu-

facturer’s instructions: mouse Tnfa (Mm00443258_m1); mouse

Gapdh (Mm03302249_g1); mouse Pdgfb (Mm00440678_m1); mouse

Pdgfrb (Mm00435545_m1); mouse Fgf2 (Mm01285715_m1); mouse

Vegfa (Mm00437306_m1); human Igfbp3 (Hs00365742_g1); human

Esm1 (Hs00199831_m1); and human Gapdh (Hs02758991_g1). In

order to quantify endogenous Vegfa transcripts separately from

those from the transduced myoblasts, a previously designed sets of

primers and probe were used to detect a sequence on the mRNA

50-UTR, which is absent from the vector-encoded transcripts [63].

Reactions were performed in triplicate for each template, averaged,

and normalized to expression of the same-species Gapdh house-

keeping gene.

Immunofluorescence tissue staining

Mice were anesthetized with ketamine (100 mg/kg) and xylazine

(10 mg/kg) and sacrificed by intravascular perfusion of 1%

paraformaldehyde in PBS pH 7.4. TA and GC muscles were

harvested, post-fixed in 0.5% paraformaldehyde in PBS for 2 h,

cryoprotected in 30% sucrose in PBS overnight at 4°C, embedded

in OCT compound (CellPath, Newtown, Powys, UK), frozen in

isopentane, and cryosectioned. The areas of engraftment were

identified by tracking implanted myoblasts by X-gal staining (20-

lm sections) or adenoviral infection sites by the typical mononu-

clear infiltrate with H&E (10-lm sections) in adjacent serial

sections, as described previously [10]. For immunofluorescence

staining, 10-lm tissue sections were stained with the following

primary antibodies and dilutions: rat monoclonal anti-mouse CD31

(clone MEC 13.3, BD Biosciences, Basel, Switzerland) at 1:100;

mouse monoclonal anti-mouse a-SMA (clone 1A4, MP Biomedi-

cals, Basel, Switzerland) at 1:400; rabbit polyclonal anti-NG2

(Merck Millipore, Darmstadt, Germany) at 1:200; rat monoclonal

anti-VE-cadherin (clone 11D4.1, BD Biosciences, Basel, Switzer-

land) at 1:200; rat monoclonal anti-mouse endomucin (clone

V.7C7, Santa Cruz Biotechnologies, Santa Cruz, CA, USA) at 1:100;

goat polyclonal anti-mouse podocalyxin (R&D Systems) at 1:100;

rabbit polyclonal anti-Ki67 (Abcam, Cambridge, UK) at 1:100;

rabbit polyclonal anti-laminin (Abcam) at 1:200; rabbit polyclonal

anti-pHH3-Ser28 (Cell Signaling Technology, Danvers, USA) at

1:100; and goat polyclonal anti-EphB4 at 1:50 (R&D Systems).

Fluorescently labeled secondary antibodies (Invitrogen) were used

at 1:200.

For pERK1/2 staining, tissue sections were permeabilized with

ice-cold methanol for 10 min and blocked with 5% goat serum and

2% BSA in PBS with 0.3% Triton X for 1 h at RT. Rabbit mono-

clonal anti-phospho-ERK1/2 antibody (Thr202/Tyr204, clone

D13.14.4E, Cell Signaling Technology) was used at 1:100.

To study vessel perfusion, 100 lg of FITC-labeled Lycopersicon

esculentum lectin in 50 ll (Vector Laboratories, Burlingame, USA)

was injected into the femoral vein and allowed to circulate for

4 min before intravascular perfusion with 1% paraformaldehyde

and muscle collection as described above.

Vascular analyses

Qualitative analysis of vascular morphology in immunofluorescence

images was performed on all vascular structures visible in at least

three fields/section with a 40× objective on a Carl Zeiss LSM710

3-laser scanning confocal microscope (Carl Zeiss, Feldbach, Switzer-

land) in at least five sections/muscle, cut at 100–150 lm of distance

from each other (n = 4 muscles/group). All histological analyses

were performed by blinded investigators.

Vessel diameters were measured in fluorescently immunostained

sections as described (Ozawa JCI 2004). Briefly, 10–20 fields/muscle

(n = 4 muscles/group) were analyzed, measuring a total of mini-

mum 300 diameters/group. Captured microscopic images were

overlaid with a square grid, squares were randomly chosen, and the

diameter of each vessel (if any) in the center of selected squares

was measured. To avoid selection bias, the shortest diameter in the

selected vascular segment was systematically measured. All images

were taken with a 20× objective on an Olympus BX63 microscope

(Olympus, Volketswil, Switzerland), and analyses were performed

with Cell Sens software (Olympus).

Vessel length density (VLD) was quantified in fluorescently

immunostained cryosections as described [10]. Briefly, 10–15 fields

per muscle (n = 4 muscles/group) were analyzed by tracing the

total length of vessels in the acquired field and dividing it by the

area of the fields.

The quantification of mural cell coverage was performed on

sections of leg muscles after immunostaining for endothelium

(CD31), pericytes (NG2), and smooth muscle (a-SMA). The areas

occupied by their respective signals were measured by Imaris 7.6.5

software (Bitplane, Zürich, Switzerland) on Z-Stack, 1,024 × 1,024,

8-bit Fluorescence images acquired with 40× objective on a Carl

Zeiss LSM710 3-laser scanning confocal microscope (Carl Zeiss,
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Feldbach, Switzerland), and the coverage indexes were calculated

as the ratio between the values of NG2 or a-SMA and CD31.

Ki67+ and pHH3+ endothelial cells were quantified as a percent-

age of all endothelial cells in analyzed vascular structures. 300–

3,000 endothelial cells were analyzed/group in 3–5 fields taken from

each area of effect. At least five areas with a clear angiogenic effect

were analyzed per group (n = 4 muscles/group).

HDMEC in vitro assays

Human microvascular endothelial cells (HDMEC) were isolated as

previously described [64] and cultured in endothelial cell basal

medium (EBM, Vitaris, Baar, Switzerland) supplemented with 10%

FBS, 1% penicillin/streptomycin, 10 lg/ml sodium heparin, and

2.5 ng/ml FGF-2. Before each assay, cells were starved in EBM with

1% FBS for 2 h.

Flow cytometry analysis was performed with the following anti-

bodies and dilutions: PE-conjugated mouse anti-VE-cadherin (clone

BV9, Biolegend, San Diego, CA, USA) and PE-Cy7-conjugated rat

anti-CD31 (clone 390, Biolegend) at 1:100; goat anti-EphB4; and

goat anti-ephrinB2 (R&D Systems) at 1:50.

Cell cycle analysis

100,000 HDMEC were seeded in p60 dishes overnight and then

stimulated with different combinations of the following reagents:

50 ng/ml hVEGF165 (R&D Systems), 50 ng/ml or 2 lg/ml ephrinB2-

Fc (R&D Systems), and 25 ng/ml FGF-2 (BD Biosciences). After

24 h, cells were collected, fixed, and permeabilized with the FOXP3

Fix/Perm kit (Biolegend) according to the manufacturer’s instruc-

tions, stained with rabbit polyclonal anti-Ki67 (Abcam), detected

with an Alexa546-anti-rabbit secondary (Invitrogen), and with Alex-

a647-anti-pHH3 (clone HTA28, Biolegend). Finally, cells were incu-

bated with Hoechst 33342 (Life Technologies, Zug, Switzerland) for

2 h in the dark at 4°C and analyzed with a Fortessa FACS analyzer

(Becton Dickinson).

Receptor internalization assay by FACS

50,000 HDMEC were seeded in 6-well plate overnight and then

stimulated with different combinations of the following reagents:

50 ng/ml hVEGF165, 2 lg/ml ephrinB2Fc, and 30 lM axitinib

(Tocris Bioscience, Bristol, UK) [29]. After 30 min of stimulation,

cells were collected and stained for surface and total VEGF-R2, as

previously described [65]. Briefly, non-fixed and non-permeabilized

HDMEC were first stained with Alexa647-anti-VEGFR2 (clone

HKDR-1; Biolegend) to label only the surface receptor. Subse-

quently, cells were fixed and permeabilized with the FOXP3 Fix/

Perm buffer (Biolegend) and were split into two tubes, where one

half was stained again with PE-anti-VEGFR2 (clone 7D4-6,

Biolegend) in FOXP3 Perm buffer to visualize total cellular VEGFR2,

while the other half was not stained. Analysis was performed with a

Fortessa FACS analyzer (Becton Dickinson).

Receptor internalization assay by Western blot

Protection of VEGF-R2 from extracellular trypsin treatment was

exploited in the quantification of the internalized VEGF-R2.

HDMEC were grown to sub-confluency in 6-well plates and then

stimulated with 50 ng/ml hVEGF165, with or without addition of

2 lg/ml ephrinB2Fc. After 30 min of stimulation, cells were

washed with ice-cold PBS and incubated on ice for 30 min with

freshly prepared trypsin (1 mg/ml, Amimed-Bioconcept) to cleave

VEGF-R2 molecules exposed on the cell surface. The enzymatic

cleavage reaction was quenched by addition of soybean trypsin

inhibitor (1 mg/ml, Sigma). Cultures were rinsed and lysed in NP-

40 buffer containing 25 mM Tris–HCl (pH 7.4), 150 mM NaCl, 1%

NP-40, 1 mM EDTA, 5% glycerol, phosphatase inhibitor cocktail,

and protease inhibitor cocktail (both from Roche Diagnostics,

Switzerland). Lysates (10 lg protein/lane) were analyzed by SDS–

PAGE and Western blot using an anti-VEGF-R2 antibody (Cell

Signaling Technology, CST #2479). An anti-GAPDH antibody

(Abcam, Cambridge, UK) was used as protein loading control.

Secondary HRP-conjugated anti-species specific IgGs were from

Southern Biotechnology (BioReba AG, Reinach, Switzerland).

Signal detection was performed using the Bio-Rad Molecular

Imager Gel Doc XR+ system (Bio-Rad Laboratories, Hercules, CA,

USA), and densitometric quantification was performed using Image

Lab software (Bio-Rad). Two replicate wells were used for each

experimental condition.

Phosphorylation assay

10,000–15,000 HDMEC were cultured in 8-well culture slides (Corn-

ing) and stimulated with 50 ng/ml hVEGF165 and 2 lg/ml ephrinB2-

Fc alone or together for 10 min. Cells were immediately washed

with PBS, fixed with 4% paraformaldehyde in PBS, blocked with

5% goat serum and 2% BSA in PBS with 0.3% Triton X for 1 h at

RT, and stained with a rabbit monoclonal anti-phosphoTyr1175-

VEGF-R2 antibody (clone D5B11, Cell Signaling Technology) and a

goat anti-VE-cadherin (C-19, Santa Cruz Biotechnology, Santa Cruz,

CA, USA), both at 1:200, followed by secondary antibody detection

as described above. All samples were batch-stained together with

same master mix of antibodies. In order to quantify the amount of

phosphoVEGF-R2, stained cells were analyzed on a LSM710 3-laser

scanning confocal microscope (Carl Zeiss), acquiring 8-bit images

(Z-Stack, 1,024 × 1,024) with a 40× objective, and maintaining the

same acquisition settings for all samples. The amount of phos-

phoVEGF-R2 protein was measured by quantifying the staining

intensity and normalized by the endothelial volume from the VE-

cadherin staining, using the Imaris 7.6.4 software (Bitplane, Zürich,

Switzerland) to measure total pixel intensity of endothelial-specific

phosphoVEGF-R2 immunostaining.

Hindlimb ischemia, gene transfer, and analysis

Immune-competent genetically hyperlipidemic female LDLR�/�

ApoB100/100 mice (age of 14–17 months, n = 28), which are defi-

cient for the LDL receptor and express only apolipoprotein B100 in

C57Bl/6J genetic background [36], were fed on a standard chow

diet. Experimental unilateral hindlimb ischemia was induced by

permanent ligation of both common femoral artery and vein

proximal to the origin of the profound femoral artery branch.

Post-operatively, the posterior calf muscles received intramuscular

injections of 2 × 1010 pfu/ml adenoviral vectors expressing either

human VEGF-A165 (Ad-hVEGF) or beta-galactosidase (Ad-LacZ) as a

control. Mice were treated with i.p. injections of ephrinB2-Fc (R&D

Systems) or control Fc (Abcam) as described above 0, 3, 6, and

9 days after the gene transfer. All animals were assigned to the dif-

ferent treatment groups by randomization before surgery.
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Contrast-enhanced ultrasound imaging of perfusion and data analysis

To follow muscle perfusion recovery after ischemia, contrast-

enhanced ultrasound imaging (CEU) was performed pre-operatively

and 0, 4, 7, and 11 days post-operation with a Siemens Acuson

Sequoia 512 system equipped with a 15L8 transducer using the

Cadence contrast pulse sequencing (CPS) imaging mode with the

following parameters: frequency 14 MHz, power �8 dB, mechani-

cal index 0.25, CPS gain 0, and depth 20 mm [66]. Transverse

plane perfusion video clips of both ischemic and intact hindlimbs

were recorded upon the administration of an intravenous bolus

injection of 50 ll of Sonovue contrast agent (Bracco, Milano, Italy)

via the jugular vein. Maximal signal intensity (dB) of the video

clips, representing relative perfusion, was quantified with Datapro

software v2.13 (Noesis, Courtaboeuf, France), and signal intensity–

time curves were created (n = 4–10 animals/group).

Histological analyses

Animals were sacrificed on day 11. Posterior calf muscles were

collected for histological analysis after perfusion–fixation with 1%

paraformaldehyde. Muscle samples were further immersed for 4 h

in 4% paraformaldehyde-sucrose and then in 15% sucrose before

paraffin embedding. Four-lm-thick transversely cut sections were

used to analyze muscle tissue damage by H&E staining and vascu-

larity by CD31 immunohistochemistry. For tissue damage assess-

ment, four different histological muscle areas were classified on

H&E-stained sections as: (i) normal; (ii) necrotic (myofibers with no

nuclei); (iii) early regeneration (appearance of basophilic satellite

cells), or (iv) late regeneration (eosinophilic myofibers with angular

shape and centrally positioned nuclei). Each corresponding muscle

area was quantified using analySIS imaging software (Soft Imaging

System GmbH, Münster, Germany) and expressed as a percentage

of the whole cross-sectional muscle area (n = 7–9 animals/group).

Vascularity was assessed by immunohistochemical staining with

a rat monoclonal anti-mouse CD31 primary antibody (clone MEC

13.3, BD Biosciences Pharmingen, dilution 1:25, overnight at +4°C),

with blocking in 10% rabbit serum, 2% mouse serum, and 1% BSA

1 h at RT, followed by a biotinylated rabbit anti-rat secondary anti-

body (BA-4001, Vector laboratories, dilution 1:200, 30 min at RT)

and detection with the avidin–biotin–horseradish peroxidase system

(Vector Laboratories) with tyramide signal amplification (TBA,

Biotin System, PerkinElmer, Shelton, USA) and DAB as a chro-

mogen (Zymed, San Francisco, USA). Micrographs of the stained

sections were acquired with 200× magnification using an Olympus

AX-70 light microscope (Olympus Optical, Tokyo, Japan) and

analySIS imaging software (Soft Imagining System GmbH). Perime-

ters of all visible vessels were quantified from five fields/sample of

CD31-stained sections acquired within regenerating muscle tissue in

a standardized way (n = 7–9 muscles/group), using Cell Sens soft-

ware (Olympus). All measurements were performed by a blinded

observer.

Statistics

Data are presented as mean � standard error. The significance of

differences was assessed with the GraphPad Prism 6 software

(GraphPad Software). The normal distribution of all data sets was

tested and, depending on the results, multiple comparisons were

performed with the parametric one-way analysis of variance

(ANOVA) followed by the Bonferroni test, or with the nonparamet-

ric Kruskal–Wallis test followed by Dunn’s post-test, while single

comparisons were analyzed with the nonparametric Mann–Whitney

test or the parametric one-tailed t-test. Gene expression data repre-

senting fold-changes vs. control, which are asymmetrically distrib-

uted, were first normalized by logarithmic-transformation and then

analyzed by one-way ANOVA followed by the Bonferroni test for

multiple comparisons, or by t-test with Welch’s correction for single

comparisons. Vessel diameter values were first normalized by log2-

transformation and then analyzed by one-way ANOVA followed by

Bonferroni test for multiple comparisons or by one-tailed t-test for

single comparisons. P < 0.05 was considered statistically significant.

Study approval

Animal studies were performed in accordance with the Swiss

Federal guidelines for animal welfare and were approved by the

Veterinary Office of the Canton of Basel-Stadt (Basel, Switzerland;

Permit 2071). All experimental procedures for ischemia studies in

LDLR�/�ApoB100/100 mice were approved by the National Animal

Experiment Board of Finland (license number: ESAVI/5343/

04.10.07/2014) and carried out in accordance with the guidelines of

the Finnish Act on Animal Experimentation.

Expanded View for this article is available online.
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