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Extreme Quantum Advantage 
when Simulating Classical Systems 
with Long-Range Interaction
Cina Aghamohammadi, John R. Mahoney & James P. Crutchfield

Classical stochastic processes can be generated by quantum simulators instead of the more standard 
classical ones, such as hidden Markov models. One reason for using quantum simulators has recently 
come to the fore: they generally require less memory than their classical counterparts. Here, we 
examine this quantum advantage for strongly coupled spin systems—in particular, the Dyson one-
dimensional Ising spin chain with variable interaction length. We find that the advantage scales with 
both interaction range and temperature, growing without bound as interaction range increases. In 
particular, simulating Dyson’s original spin chain with the most memory-efficient classical algorithm 
known requires infinite memory, while a quantum simulator requires only finite memory. Thus, 
quantum systems can very efficiently simulate strongly coupled one-dimensional classical spin systems.

The idea of a quantum computer, often attributed to Feynman1, recognizes that while simulating quantum 
many-body systems is difficult, it is apparently something that the physical quantum system to be simulated itself 
accomplishes with ease. For this reason, it was conjectured that a “quantum computer”—one that operates on 
a quantum instead of classical substrate—might have a significant advantage in such a simulation. As modern 
computational technology approaches its quantum limits, the potential for a quantum advantage is becoming 
increasingly appealing. This has motivated diverse implementations of quantum hardware from trapped ions2, 

3, cold atoms in optical lattices4, 5, superconducting circuits6, 7, photons8, 9 to liquid and solid-state NMR10, 11 and 
quantum dots12.

The phrase “quantum simulation” often refers to (as originally conceived) the simulation of a quantum sys-
tem13. However, this is not the only avenue in which we find quantum advantages. For instance, there is a variety 
of classical systems that can be simulated quantally with advantage14 including thermal states15, fluid flows16, 17, 
electromagnetic fields18, diffusion processes19, 20, Burger’s equation21, and molecular dynamics22.

Quantum advantages can also be found outside of the realm of simulation. Some mathematical problems can 
be solved more efficiently using a quantum computer. The most well-known of these include Shor’s factorization 
algorithm23, Grover’s quantum search algorithm24, a quantum eigen-decomposition algorithm25, and a quantum 
linear systems algorithm26. For factorization, the memory required for Shor’s algorithm scales polynomially23 
while the best classical algorithm currently known scales exponentially27. While neither algorithm has been 
proven optimal, many believe that the separation in resource scaling is real28.

Quantum advantages also exist in the context of stochastic process generation. Sequential generation and 
simultaneous generation are two important problems in this field29. In 1989, Crutchfield and Young30 introduced 
memory efficient classical algorithms for both of these problems. While there is a small number of known cases 
(processes) for which this algorithm can be surpassed31–33, there remains no better general classical algorithm. 
Our focus here is the problem of simultaneous generation, the potential quantum advantage therein, and the 
separation in classical-quantum scaling. [Quantum algorithms for sequential generation have been studied 
recently34–36.

Reference 37 provided a quantum algorithm that can generally perform simultaneous generation using less 
memory than the best known classical algorithms. Recently, we introduced a new quantum algorithm—the 
q-machine—that improved this efficiency. The latter demonstrated constructively how attention to higher-order 
correlations in the stochastic process can lead to an improved quantum algorithm for generation38. A sequel 
provided more detailed analysis and derived the quantum advantage of the q-machine in closed form39. This 
quantum advantage has also been verified experimentally for a simple case40. Just as for integer factorization, 
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proof of optimality of a simultaneous-generation algorithm is challenging in both classical and quantum settings. 
However, with minor restrictions, one can show that the current quantum algorithm is almost always more effi-
cient than the classical38.

While the existing results demonstrate a quantum advantage for generic processes, a significant question 
remains: What is the scaling behavior of this advantage? That is, to truly understand the nature of the advantage, 
it is critical to know how it depends on problem size. The strong separation in scaling between the classical and 
quantum integer factorization algorithms led many to expect that the separation will persist even as new algo-
rithms are developed. We wish to demonstrate an analogous separation in scaling, thus solidifying the importance 
of the current quantum construction—the q-machine.

We choose as our testing ground the generation of equilibrium states for the one-dimensional Ising system 
with N-nearest neighbor interaction. Here, the coupling range N is our problem-size parameter. We choose a 
spin-spin coupling that decays as a power law in N. This model, having been studied in detail over four dec-
ades41–44, provides a physically grounded benchmark.

To understand the use of such a system in this problem context, consider a one-dimensional chain of spins 
(with arbitrary classical Hamiltonian) in contact with a thermal reservoir. After thermalizing, the resulting 
bi-infinite chain of spins (considered together at some instant t = t0) can be regarded as a (spatial) stochastic 
process. Successful generation of this stochastic process is then equivalent to generating its equilibrium states.

We quantitatively define the quantum advantage as the ratio of necessary memories for classical and quantum 
algorithms. Our main result is that the quantum advantage scales as NT2/log T where T is the temperature. We 
also show that classically simulating Dyson’s original model requires infinite memory. In other words, exact clas-
sical simulation of the Dyson spin chain is impossible, while it is quantally possible.

Dyson-Ising Spin Chain.  We begin with a general one-dimensional classical ferromagnetic Ising spin 
chain4546 defined by the Hamiltonian:

∑= − J i j s s( , ) ,
(1)i j

i j
,



in contact with a thermal bath at temperature T, where si, the spin at site i, takes on values {+1, −1}, and J(i, j) ≥ 0 
is the spin coupling constant between sites i and j. [Throughout, T denotes the effective temperature kBT]. 
Assuming translational symmetry, we may replace J i j( , ) by J(k) with ≡ −k i j . Commonly, J(k) is a positive and 
monotone-decreasing function. An interaction is said to be long-range if J(k) decays more slowly than exponen-
tial. In the following, we consider couplings that decay according to a power law:

= δJ k J
k

( ) ,
(2)

0

where δ > 0 and, unless otherwise noted, J0 = 1. The spin chain resulting from these assumptions is called the 
Dyson model41.

To approximate such an infinite-range system we consider one with finite-range interactions. For every inter-
action range N, we define the approximating Hamiltonian:

∑ ∑= − .δ
=

+
J
k

s s
(3)N

i k

N

i i k
1

0

[N is the interaction range and should not be mistaken with the size of the lattice which is infinite here]. This 
class of Hamiltonians can certainly be studied in its own right, not simply as an approximation. But why is the 
Dyson model interesting? The ferromagnetic Ising linear spin chain with finite-range interaction cannot undergo 
a phase transition at any positive temperature47. In contrast, the Dyson model has a standard second-order phase 
transition for a range of δ. Dyson analytically proved41 that a phase transition exists for 1 < δ < 2. The existence of 
a transition at δ = 2 was established much later43. It is also known that there exists no phase transition for δ > 342, 
where it behaves as a short-range system. Finally, it was demonstrated numerically that the parameter regime 
2 < δ ≤ 3 contains a phase transition44, however, this fact has resisted analytical proof. For δ ≤ 1, the model is 
considered nonphysical since the energy becomes nonextensive.

Notably, the driven quantum Dyson model has been studied experimentally of late, since it exhibits many 
interesting nonequilibrium phases, such as the recently introduced discrete time crystal48. The experimental sys-
tem consists of a lattice of hundreds of spin one-half particles stored in a Penning trap. Particles have been chosen 
to be 9Be+49, 40Ca+50 or 171Yb+51, 52 ions. Using a combination of static electric and magnetic fields, the Penning 
trap confines the ions. A general spin-spin coupling is implemented with an optical dipole force (ODF) induced 
by a pair of off-resonance laser beams. The ODF then produces Dyson-type interactions, where δ is tunable over 
0 ≤ δ ≤ 3. Physically, δ = 1, 2, 3 corresponds to Coulomb-like, monopole-dipole, and dipole-dipole couplings, 
respectively.

For these reasons this family of Hamiltonians, derived from the Dyson spin system, offer a controlled way to 
investigate the consequences of nontrivial correlations.

Simulators.  The concept of a stochastic process is very general. Any physical system that exhibits stochastic 
dynamics in time or space may be thought of as generating a stochastic process. Here, we consider not time evolu-
tion, but rather the spatial “dynamic”. For example, consider a one-dimensional spin chain with arbitrary classical 
Hamiltonian in contact with a thermal reservoir. After thermalizing, a spin configuration at one instant of time 



www.nature.com/scientificreports/

3SCientifiC REPOrtS | 7: 6735 | DOI:10.1038/s41598-017-04928-7

may be thought of as having been generated left-to-right (or equivalently right-to-left). The probability distribu-
tion over these space-translation invariant configurations defines a stationary stochastic process.

We focus on stationary, discrete-time, discrete-valued stationary stochastic processes. Informally, such a process 
can be seen as a joint probability distribution  ⋅( ) over the bi-infinite chain of random variables … …−X X X1 0 1 . 
Formally, the process denoted by P A = Σ .{ , , ( )} is a probability space53, 54. Each spin random variable Xi, 

∈i , takes values in the set . For specificity, the observed symbols come from an alphabet = ↓ ↑{ , }  of local 
spin states, but our results easily extend to any finite alphabet.  ⋅( ) is the probability measure over the bi-infinite 
chain of random variables = … …−∞ ∞ − −X X X X X X: 2 1 0 1 2  and Σ is the σ-algebra generated by the cylinder sets 
i n  ∞ .  S t at i on ar i t y  m e ans  t h at   ⋅( ) i s  i nv ar i ant  u n d e r  i n d e x  t r ans l at i on .  T h at  i s , 
 =+ + + + + + + X X X X X X( ) ( )i i i m i n i n i m n1 1 , for all ∈ +m  and ∈n . For more information on stochastic 
processes generated by spin system we refer to refs. 55 and 56.

Consider a device that generates a stochastic process. We call this device a simulator of the process if there is 
no way to distinguish the process outputs from those of the simulator. Given a physical system that yields a sto-
chastic process, a device that generates this process is then said to simulate the physical system. In some contexts, 
the word “simulation” implies an approximation. In contrast, we require our simulators to be exact.

How do these simulators work? Generally, we implement the algorithms by writing computer programs. Two 
common formalisms used as algorithms for generating stochastic processes are Markov Chains (MC)57, 58 and 
Hidden Markov Models (HMM)53, 59, 60. The latter can be significantly more compact in their representations 
(more efficient algorithms) and, for this reason, are sometimes the preferred implementation choice.

HMMs represent the generating mechanism for a given process by a tuple S A A∈T x{ , , { : }}x( ) , where   is a 
finite set of states,  is a finite alphabet (set of symbols), and ∈T x{ : }x( )  is a set of ×   substochastic 
symbol-labeled transition matrices. The sum = ∑ ∈ TT x

x( )
  is a stochastic matrix.

As an example, consider the Even Process61, 62. This process can be explained by a simple procedure. Consider 
a biased coin that with probability p generates heads and with 1−p generates tails. To generate the Even Process 
we use the algorithm:










.
. .

.

Step A Flip the coin
Step B If the result is heads output and go to Step A Else output and go to Step C
Step C Output and go to Step A

:
: , 0 1
: 1

This algorithm is depicted by the HMM shown on the left of Fig. 1(a). For this HMM,  = A B{ , },  = {0, 1}, 

=






T p 0

0 0
(0) , and =





− 

T p0 1

1 0
(1) . The HMM, as an algorithm, simply tells the computer that: if we are in state 

A then, with probability p, output 0 and stay at state A and, with probability 1−p, output 1 and go to state B. If we 
are in state B, output 1 and go to state A.

The goal of sequential generation is to produce a very long realization of the process. For this, we use one 
computer with a code that runs the algorithm. At each step, the computer must memorize the current HMM state. 
Since the HMM has 2 states, we require 1 bit of memory for this process, independent of its bias p.

Figure 1.  (a) Left: Even Process -machine. Right: Schematic of simultaneous generation problem. Each black 
box contains an Even Process generator. They all share the same memory for tracking the individual generator 
states. (b) Alternative HMMs: Even Process generators, each with different memory costs. Top: Unifilar HMMs, 
since for every state and symbol there is at most one outgoing edge from that state emitting that symbol. Below: 
Nonunifilar HMM, since for example state G can go to different states G or H emitting symbol 0.
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Here, though, we are interested in simultaneous generation where the goal is to generate M realizations of a 
process simultaneously, each of which is statistically independent of the others. The net result is M computers 
each with the above code, as on the right side of Fig. 1(a). Similar to the sequential problem, each computer must 
memorize the current state of its HMM. If each computer uses its own memory, each needs 1 bit of memory as 
before. The total memory is then M bits.

However, we can reduce the amount of memory required by using one large shared memory among the com-
puters. Figure 1(a) emphasizes this schematically. In this way, according to Shannon’s coding theorem63, we can 
encode the HMM states to reduce the amount of memory to ≤M MH( )  bits, where  =H( )  
− −A A B BPr( ) log Pr( ) Pr( ) log Pr( )2 2 . The memory per instance is then just H( ) .

Every process has an infinite number of alternative HMMs that generate it. For example, Fig. 1(b) shows three 
HMMs that each generate the Even Process, each with different H( )  and as a result different memory costs. Now, 
an important question when considering all possible generators is, which HMM needs the minimum memory or, 
equivalently, minimum H( ) ?

∈-Machine.  A unifilar HMM is one in which each row of each substochastic matrix has at most one nonzero 
element. Informally, this means the current state and next symbol uniquely determine the next state. Many statis-
tical and informational quantities can be calculated in closed form from a process’s unifilar HMM; see ref. 64 and 
discussion therein. For example, in Fig. 1(b) the top two HMMs are unifilar and the bottom one is nonunifilar.

For a given process, finding the optimal HMM for simultaneous generation—an HMM with minimum 
state-entropy H( ) —in the space of all HMMs is still an open question. Restricting to the space of unifilar HMMs, 
though, the optimal HMM can be found. It is the -machine65, first introduced in ref. 30. -Machine states S are 
called causal states. Due to the -machine’s unifilarity property, every generated past maps to a unique causal state. 
A process’ statistical complexity Cμ

65 is the the Shannon entropy of the -machine’s stationary state distribution: 
σ σ= = −∑µ σ∈C H( ) Pr( ) log Pr( )2  . This is the required memory for simultaneous generation.

Attempts have been made to find smaller models among nonunifilar HMMs31. As of now, though, only a hand-
ful of examples exist31–33, 66. Practically speaking, the -machine is the most memory-efficient algorithm for gen-
erating stochastic processes. Its memory Cμ has been determined for a wide range of physical systems67–73. 
Helpfully, it and companion informational measures are directly calculable from the -machine, many in 
closed-form64.

We denote the process generated by the physical system with Hamiltonian Eq. (3) with J0 = 1 at temperature T 
by  N T( , ). How do we construct the -machine that simulates the process N T( , ) ? First, we must define a pro-
cess’ Markov order58: the minimum history length R required by any simulator to correctly continue a configura-
tion. Specifically, R is the smallest integer such that:

 … = … .− − − − −X X X X X X X( , , ) ( , , , ) (4)t t t t t R t t2 1 2 1

[More precisely, an ensemble of simulators must yield an ensemble of configurations that agree (conditioned on 
that past) with the process’ configuration distribution].

Reference [56, Eqs (84)–(91)] showed that for any finite and nonzero temperature T,  N T( , ) has Markov 
order N. One concludes that sufficient information for generation is contained in the configuration of the N pre-
viously generated spins. (Figure 2(a) shows this fact schematically for N = 2). More importantly, the -machine 
that simulates N T( , )  has 2N causal states and those states are in one-to-one correspondence with the set of 
length-N spin configurations.

Second, another key process characteristic is its cryptic order74, 75: the smallest integer K such that 
 … =X XH[ ] 0K 0 1 , where H[W|Z] is the conditional entropy63 and K is the random variable for Kth state of the 

-machine after generating symbols … −X X X, , , K0 1 1. Using the fact that the -machine’s states are in one-to-one 
correspondence with the set of length-N spin configurations56, it is easy to see that  N T( , )’s cryptic order K = N, 
the Markov order. We will use this fact in the quantum algorithm construction to follow.

Figure 2(b) shows the -machine of the processes N T( , )  for N = 1, 2, and 3. Let’s explain. First, consider the 
spin process  T(1, ) that, as we pointed out, is a Markov-order R = 1 process. This means that to generate the 
process the simulator only need remember the last spin generated. In turn, this means the -machine (Fig. 2(b) 
left) has two states, ↑ and ↓. If the last observed spin is ↑, the current state is ↑ and if it is ↓, the current state is ↓. 
We denote the probability of generating a  spin given a previous generated ↑ spin by . The probability of an  
spin following a ↑ spin is the complement.

Second, consider the process  T(2, ) with Markov-order R = 2 and so longer-range interactions. Sufficient 
information for generation is contained in the configuration of the two previously generated spins. Thus, the 
-machine (Fig. 2(b) middle) has four states that we naturally label ↑↑, ↑↓, ↓↑, and ↓↓. If the last observed spin pair 

−x x1 0 is ↑↓, the current state is ↑↓. Given this state, the next spin will be  with probability  and  with proba-
bility . Note that this scheme implies that each state has exactly two outgoing transitions. That is, not all 
state-to-state transitions are allowed in the -machine.

Having identified the state space, we complete the -machine construction by determining the -machine 
transition probabilities ∈T{ }x

x
( )

. To do this, we first compute the transfer matrix V for the Ising N-nearest neigh-
bors with the Hamiltonian in Eq. (3) at temperature T and then extract conditional probabilities, following ref. 56. 
(See the Method section following for details.) The minimum memory for simultaneous generation or, as it is 
called, the statistical complexity Cμ(N, T) of process N T( , )  follows straightforwardly from the process’ 
-machine.
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q-Machine.  By studying a specific process (similar to the -machine in left of Fig. 2(b)), ref. 37 recently demon-
strated that quantum mechanics can generate stochastic processes using less memory than Cμ. This motivates a 
search for more efficient quantum simulators of processes with richer correlational structure.

A process’ quantum simulator is a pair f{ , } , where → Ω∞f :   is a function from the set ∞  of past 
sequences to a set of quantum states Ω and  is some measurement process. Given a particular past −∞x :0, apply-
ing the measurement  to the quantum state −∞f x( ):0  leads to a correct probability distribution over futures 
 −∞x x( )n0: :0 . If f(·) is a deterministic function, the simulator is called unifilar and if f is a probabilistic function, 
the simulator is called nonunifilar. After generating x n0: , the new past is −∞x n:  and f can be used to map it to the 
new quantum state −∞f x( )n: . By repeating the same measurement and mapping procedure, we generate a realiza-
tion of the process. One can also define the quantum simulator in a way that  automatically maps −∞f x( ):0  to 
the correct quantum state −∞f x( )n:  and generates the correct probability distribution over x n0:

76.
Reference 38 introduced a class of unifilar simulators, called q-machines, that can generate arbitrary processes. 

As in the classical setting, nonunifilar quantum simulators are much less well understood34, 35, 66. The q-machine 
construction depends on an encoding length L, each with its own quantum cost Cq(L). Each of these simulators 
simulates the same process correctly. It is known that the cost Cq(L) is constant for L at or greater than  the pro-
cess’ cryptic order75. Based on numerical evidence, it is conjectured that this is also the minimal Cq value. Thus, 
we restrict ourselves to this choice (L = K) of encoding length and refer simply to the q-machine and its cost Cq.

The q-machine’s quantum memory Cq is upper-bounded by Cμ, with equality only for the special class of 
zero-cryptic-order processes75. And so, Cμ/Cq gives us our quantitative measure of quantum advantage.

Reference 39 recently introduced efficient methods for calculating Cq using spectral decomposition. Those 
results strongly suggest that the q-machine is the most memory-efficient among all unifilar quantum simulators, 
but as yet there is no proof. The quantum advantage Cμ/Cq has been investigated both analytically38, 39, 76–78 and 
experimentally40.

A process’ q-machine is straightforward to construct from its -machine. First, since the -machine is unifilar, 
every generated past realization maps to a unique causal state. Second, every causal state σi maps to a pure quantum 
state ηi . Thus, we can map every generated past to a unique quantum state. Each signal state ηi  encodes the set of 
length-K (cryptic order) sequences that may follow σi, as well as each corresponding conditional probability:

A S
∑ ∑η σ σ σ≡ | | | 〉

σ∈ ∈
w w( , ) ,

(5)
i

w
j i j

K
j

where w denotes a length-K sequence and   σ σ σ σ| = = = | =− −w X X w( , ) ( , )j i K K j i0 1 1 0 . The resulting 
Hilbert space is the product  ⊗ σw . Factor space σ  is of size  , the number of classical causal states, with 
basis elements |σi〉. Factor space w  is of size K , the number of length-K sequences, with basis elements 

= −w x xK0 1 . Performing a projective measurement in the σw  basis results in a correct probability dis-
tribution. After generation of a particular realization by measurement, the next corresponding quantum state can 
be indicated uniquely. This means we can repeat the measurement process and continue generating the process.

Now, let us return to simultaneous generation where the goal is to generate M process realizations simulta-
neously where each is statistically independent of the others. As before, we have M q-machines as in Fig. 1. Also 
similar to the classical setting, we can reduce the amount of required memory by having the q-machines use a 

Figure 2.  (a) A Markov order-N process generates a spin configuration from left-to-right. Markov order N = 2 
shown. The values of an isolated spin X0, say, is undetermined. To make this (stochastic) choice consistent with 
the overall process and the particular instantiation on the left, it is sufficient to consider only the previous N (2) 
spins (highlighted in green). (b) -Machine generators of 1D-configuration stochastic processes in Dyson-Ising 
systems of increasing correlational complexity (N = 1, 2, 3): T(1, )  (left), T(2, )  (middle) and  T(3, ) (right).
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single shared memory. According to the Schumacher noiseless  quantum coding theorem, we can encode the 
HMM states to reduce the amount of memory to MS(ρ) qubits where S(·) is von Neumann entropy and ρ is the 
density matrix defined by:

∑ρ π η η= .
(6)i

i i i

As a result, each q-machine needs Cq = S(ρ) qubits of memory for simultaneous generation.

Analysis.  We begin by considering the case where spin couplings decay with exponent δ = 2. Figure 3(a) dis-
plays Cμ(N, T) and Fig. 4(a) displays Cq(N, T)—the Cμ and Cq of processes  N T( , )—versus T for interaction 
ranges N = 1, …, 6. The most striking feature is that the classical and quantum memory requirements exhibit 
qualitatively different behaviors.

The classical memory increases with T, saturating at Cμ = N, since all transitions become equally likely at high 
temperature. As a result there are 2N equally probable causal states and this means one needs N bits of memory to 
store the system’s current state. For example, in the nearest-neighbor Ising model (process  T(1, )) high temper-
ature makes spin-↑ and spin-↓, and thus the corresponding states, equally likely. [At T = ∞ these processes have 
only a single causal state and thus Cμ = 0. This is a well-known discontinuity that derives from the sudden 
predictive-equivalence of all of the causal states there.]

Also, in the low-temperature limit, this system is known to yield one of only two equally likely configura-
tions—all spin-↑ or all spin-↓. In other words, at low temperature  and  converge to zero, while  and  
converge to one. [It should be pointed out that at any finite temperature  and  are nonzero and, therefore, the 
-machine states remains strongly-connected.] This is reflected in the convergence of all curves at Cμ = 1 bit. 
Equivalently, this means one needs only a single bit of memory to store the current state.

We can similarly understand the qualitative behavior of Cq(N, T) for a fixed N. As temperature increases, all 
length-N signal states become equivalent. This is the same as saying that independent of the previous spins all 
the next length-N spin configurations become equally likely. As a consequence, the signal states approach one 
another and, thus, Cq(N, T) converges to zero.

In the low temperature limit, the two N-↑ and N-↓ configurations are distinguished by the high likelihood of 
neighboring spins being of like type. This leads to a von Neumann entropy (Cq) of S(ρ) = 1 qubit.

Figure 3(a) reveals strong similarities in the form of Cμ(T) at different N. A simple linear scaling leads to a 
substantial data collapse, shown in Fig. 3(b). The scaled curves (N − Cμ)/(N − 1) exhibit power law behavior in T 
for T > 2. Increasing the temperature to T = 300 (beyond the scale in Fig. 3(b)) numerical estimates from simula-
tions indicate that this scaling is given by γ . 2 000. The scaling determines how the classical memory saturates 
at high temperature.

This behavior is generic for different coupling decay values δ > 1 and, more to the point, the scaling is inde-
pendent of δ. We do not consider δ < 1, where the system energy becomes nonextensive.

Now, we can analyze the decrease in Cq with temperature. Figure 4(a) shows that Cq is also a power law in T. 
By measuring this scaling exponent in the same way as above, we determined that α . 2 000. Furthermore, we 
find analytically that for high T:

Figure 3.  (a) Classical memory Cμ(N, T) required for simulating process N T( , )  for interaction ranges 
= …N 1, , 6, a range of temperatures = …T 1, , 50, and δ = 2. Note Cμ(·) is an increasing function of N and T. 

(b) Rescaling the classical memory requirement Cμ(N, T) to (N − Cμ)/(N − 1) shows a tight data collapse, which 
is especially strong at high temperatures (T > 2). The asymptotic behavior is a power law with scaling exponent 
γ = 2. The inset zooms in to show Cμ’s convergence with increasing N. While the figure shows the case δ = 2, the 
slope γ at high T is independent of δ.
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∝ .C N T
T

T
( , )

log ( )
(7)q

2
2

To see this, first consider nearest-neighbor coupling N = 1. Due to symmetry we have ≡ ↑ ↑ = ↓ ↓ =p Pr( ) Pr( )
F D/ , where F = exp(β) and β β= + −D exp( ) exp( 2 )  with β = 1/T. At high temperature β is small and we have 
D = 2 + β2 and F = 1 + β + β2. Again, by symmetry we have π π= = 1/21 2  and, therefore, the density matrix in 
Eq. (6) is:

ρ =






−

−







p p

p p

1/2 (1 )

(1 ) 1/2
,

(8)

which has two eigenvalues: β2/4 and 1 − β2/4. As a consequence Cq, being ρ’s von Neumann entropy, is:

ρ β β β β
= −






+





−










−










. C S
T

T
( )

4
log

4
1

4
log 1

4
log ( )

2 (9)
q

2

2

2 2

2

2
2

2

Examining the numerator, for any r > 0 we have <T Tlog ( ) r
2 . So, for large T:

< < −T
T

T T
1 log ( ) 1 ,

(10)r2
2

2 2

for all r > 0. This explains the fat tails of Cq for large T and establishes that for N = 1 the scaling exponent is α = 2.
Increasing the temperature the link between spins weakens. At high temperature the only important neighbor 

is the nearest. As a consequence, the high temperature behavior is similar to the case of N = 1 and, in addition, it 
is independent of N. This verifies and adds detail to our numerical estimate.

This behavior is generic for different coupling decay values δ > 1 and, moreover, the scaling exponent α is 
independent of δ. Notably, in this case no rescaling is required. The exponent directly captures the extreme com-
pactness of high-temperature quantum simulations.

Taking these results together, we can now appreciate the substantial relative advantage of quantum versus 
classical simulators.

Define the quantum advantage η as the ratio of the minimum required memory for the classical simulation to 
the minimum required memory for the quantum simulation:

η ≡ .µN T C N T C N T( , ) ( , )/ ( , ) (11)q

For fixed temperature ⪆T 2, Cμ (N, T) is approximately linear in N and for a fixed N is approximately independent 
of T. As a consequence, the asymptotic quantum advantage is:

(a) (b)

Figure 4.  (a) Cq(·) is an increasing function of N, but a decreasing function of T and bounded by 1 qubit, 
independent of N and T. Quantum memory Cq(N, T), similar to Cμ(N, T), shows a data collapse in N that is 
especially tight at high temperature (T > 2). The asymptotic behavior is a power law with numerically estimated 
scaling exponent α = 2. (Red dashed line.) The lower inset zooms to highlight convergence with increasing N. 
Though the curves are for the case with δ = 2, the slope α at high T is independent of T. (b) Magnetic field 
effects on classical Cμ(N, T) and quantum Cq(N, T) memory requirements for simulating the processes 
generated by Hamiltonian N  for N = 1, …, 6 over a range of temperatures T = 1, …, 10 at B = 0.3. Cq(N, T) 
curves are those under the dashed blue line.
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2
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which scales faster than any Tr for r < 2. Thus, the answer to our motivating question is that the quantum advan-
tage does, in fact, display scaling: it increases with interaction range N and also increases strongly with temper-
ature T.

Up to this point we focused on finite interaction-range systems, interpreting the chosen models as a family of 
approximations to the Dyson model. Consider, though, Dyson’s original spin chain41 which has infinite-range 
interactions. In this case, the classical memory cost of simulation diverges: → ∞µ→∞C N Tlim ( , )N . That is, it is 
impossible to simulate the Dyson model classically. In contrast, the quantum memory cost is 
finite— <→∞C N Tlim ( , ) 1N q  qubit—and so it can be simulated quantally. There is perhaps no clearer statement 
of quantum advantage.

Naturally, one might ask how our results are modified by the presence of an external magnetic field. Consider 
the one-dimensional ferromagnetic Ising spin chain with Hamiltonian:

 ∑ ∑ ∑= − − .δ
=

+


J
k

s s Bs
(13)N

i k

N

i i k
i

i
1

0

Figure 4(b) shows that, due to symmetry breaking at low temperature, both Cq(N, T) and Cμ(N, T) converge to 
zero. (All spins at low temperature align with magnetic field and, as a consequence, no memory is needed.) The 
high temperature behaviors for both memory costs are the same as before, though, and the quantum advantage 
remains the same.

Discussion
It is notoriously hard to find quantum advantage and even harder to prove79. We found such an advantage in the 
realm of stochastic process simulation. Concretely, we analyzed the N-nearest neighbor Ising spin system and 
demonstrated that its quantum advantage displays a generic scaling behavior—quadratic in temperature and 
linear in interaction range. What does this mean? The most striking conclusion is that a strongly interacting clas-
sical system can be simulated with unbounded quantum advantage. One stark contrast is that it is impossible to 
classically simulate Dyson’s original spin chain while quantum simulators can do so and with finite memory cost.

How broadly might we expect to see this quantum advantage? Or, is it merely a feature of strongly coupled 
spin systems? Define a universal spin model as one that can simulate any other spin model. That is, by using the 
low-energy sector of such universal models, the physics of every classical spin model can be reproduced. Recently, 
ref. 80 showed that the 2D Ising model with external fields is universal in this sense. This suggests that the quan-
tum advantage described here may not be limited to the particular spin system we consider, but might also be 
universal. As a result, one should expect to see the quantum advantage for other physical systems.

The Ising model has lent great insight to condensed matter physics, however it is a classical model. Given that 
we are examining the difference between classical and quantum simulators, it is natural to wonder about this 
difference in the context of a truly quantum Hamiltonian. Is the quantum advantage amplified? Are there systems 
for which we find no quantum advantage? And, is this their defining characteristic?

Here, we studied the cost of exact simulation of stochastic processes. Both classical and quantum costs, 
though, can be very different when approximation is allowed. For example, at high (but finite) temperature, we 
can approximate the process  N T( , ) as independent, identically distribution (IID). One does not require any 
classical or quantum memory to generate an IID process and, as a result, there would be no quantum advantage. 
Apparently, the difference between required classical memory for exact simulation and approximate simulation 
can be quite large. In contrast, the price we pay to go from approximate to exact quantum simulation is relatively 
small.

Methods
We show how to construct the -machine simulator of the process N T( , ) , following ref. 81. Consider a block of 
spins of length 2N, divided equally into two blocks. We denote spins in the left (L) and right (R) halves by: si

L and 
si

R for = …i N1, , , respectively. We map the left and right block configurations each to an integer η⁎ by:

∑η =




+ 



=

−
⁎

⁎s 1
2

2 ,
(14)i

N
i i

1

1

where * can be either L or R. For each block we can have 2N different configurations. Consequently, the label η⁎ 
varies between 0 and 2N − 1. The internal energy of a given block with configuration η⁎ is given by:

∑ ∑ ∑= − −η
= =

−

=

−

+
⁎ ⁎ ⁎

⁎
X B s J s s ,

(15)i

N

i
i

N
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N i

i k k i
1 1
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1

and the interaction energy between two blocks is:

∑ ∑= − .η η
= =

− +Y J s s
(16)i

N

k

i

i N k
L
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R

,
1 1

1L R
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With these we construct the transfer matrix:

= .η η
− + +η η η ηV e (17)

X Y X T
,

(1/2 1/2 )/
L R

L L R R,

The right eigenvector of V corresponding to the largest eigenvalue is denoted by u. Reference 56 shows that the 
-machine labeled-transition matrices can be written as:

λ
η

η

=







=















+




η η
η η

η

η

−

T
V

u

u
x1 ,

2
(2 )

0, otherwise

,

(18)

x
N

,
( ) , 1

0 1

0 1
0 1

1

0

where x ∈ {0, 1}, 0 for spin down and 1 for spin up. Then, the -machine simulator of N T( , )  is S A A∈T{ , , { } }x
x

( ) , 
where = {0, 1}  and  = ≤ ≤ −i i{ : 0 2 1}N .
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