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Abstract 1 

As large-scale biobanks provide increasing access to deep phenotyping and genomic data, 2 

genome-wide association studies (GWAS) are rapidly uncovering the genetic architecture 3 

behind various complex traits and diseases. GWAS publications typically make their 4 

summary-level data (GWAS summary statistics) publicly available, enabling further 5 

exploration of genetic overlaps between phenotypes gathered from different studies and 6 

cohorts. However, systematically analyzing high-dimensional GWAS summary statistics 7 

for thousands of phenotypes can be both logistically challenging and computationally 8 

demanding. In this paper, we introduce BIGA (https://bigagwas.org/), a website that aims 9 

to offer unified data analysis pipelines and processed data resources for cross-trait 10 

genetic architecture analyses using GWAS summary statistics. We have developed a 11 

framework to implement statistical genetics tools on a cloud computing platform, 12 

combined with extensive curated GWAS data resources. Through BIGA, users can upload 13 

data, submit jobs, and share results, providing the research community with a convenient 14 

tool for consolidating GWAS data and generating new insights. 15 

 16 
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 3 

The rapid development of biobank-scale biomedical databases, encompassing 1 

phenotyping and genomic data, has occurred globally1. Numerous genome-wide 2 

association studies (GWAS) have been conducted to determine the genetic architecture 3 

underlying a wide range of complex traits and clinical outcomes, with the aim of 4 

improving disease prevention and treatment2. Publicly available GWAS summary-level 5 

data (or GWAS summary statistics) encompass thousands of phenotypes3-8. These 6 

summary statistics, derived from large-scale studies, provide valuable opportunities for 7 

in-depth investigations into genetic overlaps and shared architectures between 8 

phenotypes across studies and cohorts. Various statistical genetic tools have been 9 

developed to analyze GWAS summary statistics and examine the shared genetic 10 

components between pairs of phenotypes, such as LDSC9, LAVA10, SumHer11, and 11 

Popcorn12. These methods offer insights into genetic links from various perspectives and 12 

have been widely applied to clinical biomarkers and outcomes13,14. 13 

 14 

However, implementing and batch-running these tools often requires robust computing 15 

and data infrastructure, which may not always be available to all researchers. 16 

Consequently, systematic bivariate cross-trait analyses using massive GWAS summary 17 

statistics for thousands of phenotypes can be logistically and computationally challenging. 18 

As more complex and deep phenotyping data are obtained from biobanks15, addressing 19 

these limitations becomes increasingly urgent. For example, the UK Biobank (UKB) 20 

imaging study16 collected multimodal brain imaging data, generating over 5,000 imaging-21 

derived phenotypes using different imaging modalities and processing pipelines17-21. 22 

Researchers interested in a specific disease and its genetic connections with imaging 23 

biomarkers have traditionally downloaded all the GWAS summary statistics for over 5,000 24 

imaging biomarkers from the Oxford BIG40 Project (http://big.stats.ox.ac.uk) and the BIG-25 

KP project (https://bigkp.org/), and run their statistical tools in local clusters, which can 26 

be inefficient. Such challenges are also present in centralized GWAS databases, such as 27 

GWAS Catalog3 and IEU OpenGWAS7, where users are expected to download and manage 28 

large datasets locally to conduct most analyses. Several online research platforms based 29 

on cloud computing have been developed, most of which focus on one database (such as 30 

the UKB study, https://ukbiobank.dnanexus.com/), univariate trait GWAS analysis (such 31 

as FUMA22), or single data analysis method/function (such as LD Hub23 and Locus 32 
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 4 

Compare24). Developing an integrated platform for cross-trait analyses of GWAS summary 1 

data resources will make existing large-scale GWAS summary data more accessible to 2 

researchers. 3 

 4 

To address these limitations, we developed BIGA (https://bigagwas.org/), an online cloud-5 

based platform that offers unified data harmonization and analysis pipelines and 6 

processed data resources for cross-trait analyses using GWAS summary statistics. BIGA 7 

aims to provide various tools for quantifying cross-trait genetic architectures, such as 8 

genome-wide genetic correlation methods (e.g., LDSC9, Popcorn12, and SumHer11) and 9 

local genetic correlation analysis (e.g., LAVA10). We have also aggregated and harmonized 10 

GWAS summary statistics from various resources, including the GWAS Catalog3, UKB 11 

study15, Psychiatric Genomics Consortium25, FinnGen6, Biobank Japan8, CHIMGEN26, UKB-12 

PPP27, BIG-KP18,19,21, and Oxford BIG4017,20. These curated datasets, currently including 13 

over 15,000 traits, have been integrated with multiple methods, facilitating easy online 14 

analysis for users. With our established infrastructure in place, we are committed to the 15 

continuous development and growth of BIGA, aiming to broaden its capabilities by 16 

consistently including new tools and data resources.  17 

 18 

Figure 1 provides an overview of the BIGA architecture. We offer users several options 19 

for inputting GWAS summary statistics data with user-friendly features, including 20 

uploading their own data, querying data from public databases (such as the IEU 21 

OpenGWAS7, GWAS Catalog3, and Neale Lab (http://www.nealelab.is/uk-biobank), and 22 

reusing data from recent previous jobs (Supplementary Text). Users can specify the tools 23 

and job types they are interested in and submit their requests. After submission, the job 24 

request will be passed to the back-end and executed on our cloud computing platform 25 

using the specified tools and datasets. Briefly, we have developed a thorough pipeline for 26 

harmonizing user-input data, similar to procedures used in the GWAS Catalog 27 

(https://github.com/EBISPOT/gwas-sumstats-harmoniser). After harmonization, datasets 28 

will have a standard format with column names outlined in Table S1. Considering the 29 

specific data format needed by the user-requested analysis, we will accordingly adapt the 30 

data to fulfill these requirements and execute the analysis (Fig. S1) Once completed, users 31 

will receive email notification and the results will be presented to the users through the 32 
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front-end interface. A quick-start tutorial and comprehensive documentation are 1 

available on our website for users.  2 

 3 

BIGA uses a powerful and efficient computational framework for automated analysis. 4 

Every step, from the initial data input to the final results output, is organized by a 5 

standardized pipeline, offering the flexibility to incorporate new methods. For example, 6 

BIGA operates on the Django 3.2 web framework (https://www.djangoproject.com/) to 7 

accommodate various tasks and tools, and we use Redis (https://redis.io/) and Celery 8 

(https://docs.celeryq.dev) for task management and queuing system. BIGA’s 9 

computational infrastructure is efficient, currently supporting 20 concurrent user jobs 10 

running with just 128GB of RAM and 16 Intel vCPUs. Notably, cloud computing services 11 

provide a flexible management system for CPU and RAM, enabling us to easily modify our 12 

resource allocation for scaling up or down as needed. Even with only 16GB of RAM, BIGA 13 

can execute 3 jobs concurrently using our efficient configuration. We have conducted 14 

large-scale tests to validate the stability and computational efficiency of BIGA (Figs. S2-3 15 

and Supplementary Text).  16 

 17 

To showcase the extensive genetic analyses that BIGA can conduct, we present a blood 18 

pressure data analysis example, aiming to explore its genetic correlation with over 15,000 19 

complex traits and diseases curated on BIGA. We initiated the analysis by searching for 20 

blood pressure data on the IEU OpenGWAS database and used the BIGA query function 21 

to directly query systolic blood pressure28 summary statistics. BIGA performed 22 

harmonization and then used the harmonized data to run LDSC massive analysis, spanning 23 

over all groups of traits from European population on BIGA. As expected, at a false 24 

discovery rate 5% level, systolic blood pressure was widely associated with complex traits 25 

and diseases, such as hypertension, atrial fibrillation, stroke, brain and body imaging 26 

traits, as well as plasma proteomics (P range = (5.44×10-244, 4.00×10-2), Fig. S4). We further 27 

examined the diastolic blood pressure28 and found similar association patterns to systolic 28 

blood pressure (Fig. S5). We applied SumHer to repeat the analysis (Fig. S6) and observed 29 

that the results from LDSC and SumHer were generally consistent (Fig. S7, Pearson’s 30 

correlation = 0.9273). In addition, we performed local genetic correlation analysis using 31 

LAVA and cross-population genetic correlation using Popcorn. More details can be found 32 
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 6 

in the Supplementary Text (Tables S2-S8). This data analysis example demonstrates that 1 

BIGA facilitates efficient analysis of extensive GWAS summary statistics with different 2 

methods. 3 

 4 

In summary, our platform enables researchers to easily perform multiple cross-trait 5 

analyses without needing access to a local research computing cluster, implementing 6 

methods locally, or downloading large datasets. BIGA will help reduce the imbalance in 7 

the research community caused by unequal computing resources and attract a wider user 8 

base to these developed methods. The source code to build the BIGA platform will be 9 

made publicly available on GitHub. The BIGA website welcomes user feedback and 10 

requests, which aids in improving the project and implementing new tools and functions 11 

to better meet the needs of the research community.  12 

 13 

ADDITIONAL INFORMATION 14 

One supplementary pdf file and one supplementary table zip file are available. 15 
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Figure Legend  7 

Fig. 1 Overview of BIGA GWAS cloud computing platform.  8 

(A) The motivation of this project is to address the substantial logistical and 9 

computational challenges associated with implementing and batch-running the 10 

constantly evolving tools for cross-trait genetic architecture analysis. Our aim is to offer a 11 

cloud computing-based solution that can effectively overcome these challenges. (B) 12 

Overview of the BIGA GWAS platform. Users can easily upload or query GWAS summary 13 

statistics and submit data analysis jobs through the front-end interface. These jobs are 14 

then processed on the back-end, and the results are subsequently returned to the users. 15 

(C) The front-end interface of the BIGA GWAS platform offers users a comprehensive set 16 

of options to manage their data resources, choose the appropriate tools, and select the 17 

desired mode of data analysis. (D) Details of the back-end of the BIGA GWAS platform. (E) 18 

Overview of the analysis workflow.  19 
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