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Abstract: The Internet of Things (IoT) is characterized by a large number of interconnected devices
or assets. Measurement instruments in the IoT are typically digital in the sense that their indications
are available only as digital output. Moreover, a growing number of IoT sensors contain a built-in
pre-processing system, e.g., for compensating unwanted effects. This paper considers the application
of metrological principles to such so-called “smart sensors” in the IoT. It addresses the calibration of
digital sensors, mathematical and semantic approaches, the communication of data quality and the
meaning of traceability for the IoT in general.

Keywords: Internet of Things; calibration; measurement uncertainty; traceability; semantics; ontology;
sensor network; digital sensors; redundancy

1. Introduction

With the increasing use of digital technology, along with large-scale heterogeneous
sensor networks and machine learning methods, various new possibilities and challenges
have arisen for metrology—the science of measurement [1,2]. The Internet of Things (IoT)
as the concept of interconnected devices has only recently been considered in metrology.
Of particular importance for metrology is the quantifiable assessment of data quality in any
kind of measurement task. For the IoT, data quality is important in all steps in the process
from the individual sensing elements to the final step of data processing. For example,
in predictive maintenance the quality of the sensor measurements needs to be taken into
account to derive a quality statement for the recommendation of maintenance operations.
Moreover, measurements with a small measurement uncertainty should be valued higher
than others in the data analysis. Therefore, the integration of fundamental metrological
principles—traceability to the International System of Units (SI) and the evaluation of
measurement uncertainty—into the IoT data life cycle is an area of active research, see,
e.g., [1].

A core principle in the IoT is the utilization of sensor networks. That is, the individual
measuring instruments are interconnected and form a distributed measuring system. Sen-
sor networks have been investigated for a couple of years in metrology. For instance, in [3]
measurement uncertainty evaluation when aggregating data from sensors is considered.
The authors in [4] studied the possibility of self-validation in wireless sensor networks
from a metrological point of view. The evaluation of uncertainty in sensor networks has
been studied mostly for state-space systems, e.g., with the application of Bayesian methods
for sensor fusion [5]. As for other areas, the metrological applicability of commonly used
mathematical methods has been investigated. For instance, in [6] the authors discuss the
relation of the Kalman filter covariance to a measurement uncertainty in line with standards
in metrology.
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The IoT goes beyond several of the approaches considered in these publications from
the metrology community. The size of the heterogeneous sensor networks in IoT scenarios,
the data-driven analyses and automated online post-processing of measured data are just
some of these differences. Recent research activities in metrology have started to this
end. Of particular importance is the traceability of measurements in the IoT to SI units.
This is relevant for the comparability of measurements and for improving the reliability
and resilience in the IoT. One prerequisite is information about the individual measuring
instruments that allows the establishment of a relationship between the indicated values
and the actual measurand, e.g., from a calibration. In the IoT often sensors are applied that
provide only digital outputs, which is challenging for certain types of calibration. In [7],
the authors developed an approach for the traceable calibration of the dynamic behavior of
digital sensors. In [1], a batch calibration method for micro-electro-mechanical-systems
(MEMS) sensors was developed that utilizes existing MEMS testing equipment.

The IoT is also characterized by a mostly automated flow of information and pro-
cessing of data. This requires novel approaches for the representation and distribution of
calibration data. Therefore, the European research project titled SmartCom [8] addresses
the communication of metrological information in digital infrastructures. Our work here
extends the recently published work from [8] on digital calibration certificates in sensor net-
works by an investigation of the potential use and benefits of integrating such metrological
information in a sensor network. That is, we consider the availability of information, such
as calibration data, and address the utilization of this information to achieve traceability in
the IoT.

Traceability in the metrological sense is the relation of a measurement result to a
reference through an unbroken chain of calibrations, each contributing to the measurement
uncertainty [9]. Therefore, traceability for the IoT begins with the traceability of its mea-
suring devices. In Section 2, the calibration of sensors is considered that also characterizes
frequency-dependent behavior, i.e., dynamic calibration. Calibration is of particular im-
portance when measurement results need to be comparable and transferable, e.g., when
one measuring device needs to be replaced by another. In addition, fundamental aspects
of calibration in sensor networks are discussed in that section. With the increasing use of
built-in pre-processing, sensors are becoming “smart” [10] in the sense that they contain a
certain amount of pre-processing and awareness about their surroundings. In Section 3,
a concept is presented that allows the combination of smart sensors with traceability in
the IoT—leading to what can be called “smart traceability”. The proposed concept uses
hardware and software elements that can be moved easily between the individual smart
sensor, the edge, the fog or the cloud—depending on the available computing power
and application. In principle, the utilization of smart sensors is divided into battery and
non-battery devices. For sensors that are powered by an internal battery, one needs to
balance power consumption and performance. For sensors with an external power supply,
such a distinction is not necessary. In this paper, we focus on smart sensors with an external
power supply for ease of presentation.

With smart sensors being present in the IoT in reasonable numbers, novel concepts
for using semantic information can be applied. In Section 4, an approach is described that
utilizes information from smart sensors and other sources to obtain a semantic description
of the sensor network. This information is provided in a machine-readable way such that
an algorithm can make use of it in the subsequent data analysis. Section 5 outlines the
efficient use of the above-described elements for a beneficial application of traceability
in the IoT. The detection and utilization of sensor redundancy are therefore considered.
A practical example with actual sensor network measurement data is used to illustrate
the influence of redundancy. Finally, Section 6 gives some conclusions and an outlook on
future developments.
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2. Dynamic Calibration and Sensor Network Metrology

Even for classic single sensor focused applications, dynamic calibrations were im-
portant for knowing how a sensor and the connected measuring chain react to an input
quantity varying over time. The basic question here was “Is the sensor agile enough to
follow the input?” or in other words “In how far does the sensor’s inertia influence the mea-
surement result?”. The technical answer to this question is the complex transfer function of
the sensor which is determined during dynamic calibration. It describes the sensitivity of a
sensor in relation to an applied frequency. While the magnitude is what we typically call the
sensitivity or gain, the phase describes the delay suffered by a signal from input to output at
a given frequency. The frequency dependence of magnitude and phase may already in clas-
sic measurements lead to a significant distortion of, for example, transient measurements
if the shape of the real input signal and the output of the sensor are compared. Dynamic
calibration is a topic of growing interest in metrology and several approaches have been
proposed in the literature. The European research project EMRP IND09 (Traceable Dynamic
Measurement of Mechanical Quantities) published a best practice guide on the implemen-
tation of dynamic calibration (https://www.ptb.de/emrp/ind09-best-practice-guide.html
accessed on 30 January 2021).

The typical case considered in metrology so far has been that of sensors whose dynamic
behavior can be modeled by a linear time-invariant (LTI) system model. An advantage
of LTI systems is that several equivalent representations exist to model the system: the
transfer function, frequency response, impulse response and step response. Dynamic
calibration then comprises an experiment to determine the model parameters for a suitable
representation. For instance, for the transfer function model

H(s) = K ∑m bmsm

∑n ansn , (1)

where K denotes the static gain, and bm, an the polynomial parameters of the numerator
and denominator, respectively.

Figure 1 shows an example of the dynamic behavior of the x-axis angular velocity
sensor in an MPU-9250 inertial measurement unit as a transfer function H(ω) and its
model with K = 1 and n, m = 8. The transfer function was determined according to the
method described in [7] by monofrequent sinusoidal excitation at the one-third octave
frequencies according to EN ISO 266 between 4 and 250 Hz with a rotational laser doppler
vibrometer as a reference. The polynomial parameters were determined by minimizing the
RMS distance of the modeled and measured transfer function coefficients in the complex
space using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm for all possible
combinations of 1 ≤ n, m ≤ 10. In sensor networks, in contrast, the focus is not only on a
single measurand but usually on the mutual relation of various measurands at different
locations. If, for example, inertial sensors are used to track the position and orientation
of some larger component by measurements of acceleration or angular rate at different
positions on the body, the measurements need to be processed for the same instance in
time and the potential distortion of the signal needs to be known in order to compensate it.
Therefore, the analysis of the acquired data have to take the individual dynamic calibration
of each sensor into account. This is even more important as the increased use of sensor-
internal processing power in so-called smart sensors typically leads to a significantly larger
delay than the classic analog sensor provides.

Additional complications arise if the application requires information on the individ-
ual sample, as for edge-triggering situations. The classic way was to equip the system with
a common sample clock or to utilize a centralized digitizer with a common sample clock for
all digitized channels. The increasing numbers of IoT sensors are all equipped with their
own internal digitizer typically without any means to provide an external common clock.
As a consequence the user has to rely on “nominal sampling rates” from the data sheet,
without any influence on or detailed knowledge of the accuracy of that internal timing.
New calibration methods for digital output sensors can mitigate that problem by external

https://www.ptb.de/emrp/ind09-best-practice-guide.html
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timestamping and comparisons to high-precision laboratory clock facilities. Information
about sample frequency deviation or, for example, its temperature drift might be part of a
standard dynamic calibration in the future.
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Figure 1. Example: X-axis angular velocity frequency response of an MPU-9250 yielded by dynamic
calibration [33]. The frequency response over the calibrated frequency range (4 Hz to 250 Hz) can be
described with Equation (1) with K = 1 and n, m = 8.
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Figure 2. Top: Dataflow from sensor via “Smartup Unit” to a receiving PC running an agent framework
for data processing. Bottom: Visualization of stateless data protocol.
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Figure 1. Example: X-axis angular velocity frequency response of an MPU-9250 yielded by dynamic
calibration [7]. The frequency response over the calibrated frequency range (4 Hz to 250 Hz) can be
described with Equation (1) with K = 1 and n, m = 8.

The good news is that within a modern IoT network of sensors, it should be simple to
manage the distribution of calibration data. A sensor can identify itself to the measurement
system master and provide the necessary calibration information once it is connected
to the network. This substantially eases the maintenance because the replacement of
defective sensors or the amendment of additional sensors becomes simple. That is, with the
application of the calibrated model to the sensor output data, an estimate of the measurand,
for instance, the sensor input data, can be obtained with associated uncertainties. Another
sensor at the same measurement position can be applied in the same way, also providing a
means to estimate the value of the measurand with an associated uncertainty. Thus, sensors
become replaceable by calibration, and systems become independent of the repeatability
of individuals.

This is a huge advantage of the metrological treatment of sensors in the IoT. For a
coherent implementation though, measurement uncertainty evaluation in the whole data
life cycle may need to be considered. This includes measurement uncertainty evaluation for
feature extraction, for signal processing [11] and for the removal of timing effects. Several
research activities in these directions are currently in preparation.

3. Extending Digital Sensors to Smart Traceability

We extended a digital sensor with a so-called “Smartup Unit” (SUU), such that the
sensor and the SUU together make a smart sensor. The SUU collects the data of the
sensors, converts these float values with SI units and provides the data sets with absolute
timestamps. At regular time intervals the SUU transmits meta information. This comprises
the physical quantity as well as the unit. Furthermore, information about the quantization
of the measured values is transmitted, including the minimum and maximum value of
the measured quantity, as well as the number of quantization steps. Figure 2 shows
the dataflow in the SUU as well as an example of the data yielded from an MPU-9250
inertial measurement unit. Further details on how this can be used to form a semantic self-
description will be presented in Section 4. By sending the data to a connected edge device,
a mathematical correction of the indicated values can be deployed by using the calibration
information contained within the self-description. In the case of a dynamic sensor this
could, for instance, be a frequency response characterizing the transfer behavior of the
sensor, from which a suitable deconvolution filter is computed and applied. Furthermore,
all operations leading to the corrected value need to integrate uncertainty evaluation to
maintain metrological traceability. A practical example will be described in more detail at
the end of this section.
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Figure 2. (Top) Dataflow from sensor via “Smartup Unit” to a receiving PC running an agent
framework for data processing. (Bottom) Visualization of stateless data protocol.

It is of interest to provide such correction functionality in a form that (1) operates
on datastreams with uncertainty, (2) configures itself semi-automatically based on the
sensor’s self-description, (3) allows basic building blocks to be reused and (4) hides the
complexity of the uncertainty evaluation. A suitable way to achieve these objectives is to
make use of the concept of software agents that run on (multiple) edge node(s). Agents and
networks thereof represent (physical) objects and actions [12]. Thus, to suit our application,
every agent encapsulates a certain processing step which allows for a flexible demand-
driven arrangement. Although not implemented here, establishing agent process chains
autonomously based on the provided and requested data requirements of the existing
agents is feasible. For instance, an interpolating agent only needs to be present in the
chain if some later step requires equidistant data. An agent framework that is designed
with metrological use cases in mind is the Python package agentMET4FOF 0.4.1 [13]. The
following example is implemented using this framework.

As a proof of concept we implement the data correction pipeline for the MPU-9250
sensor used in Figure 1. The code for this example is found in [14]. The pipeline requires
the establishment of a connection from the SUU to an edge node, making the stream of
sensor data available within the proposed agent framework and computing the semi-
automatic correction of indicated sensor values based on their provided self-description.
The performance of the implementation is tested up to sampling rates of 6000 Hz. The
edge node receives data from the SUU on its network connection. A data-receiving script
buffers the incoming data and reports it to programs on request. This interface is used by a
source agent to initiate the data stream (using the Python package time-series-buffer)
and data description (using the Python package time-series-metadata) within the agent
framework. Because the chosen sensor shows a dynamic transfer behavior, we correct
the indicated sensor values by the following (manually defined) pipeline: (1) assign an
uncertainty to the indicated value if possible (e.g., from quantization information), (2)
interpolate the signal to equidistant timestamps, (3) deconvolve the signal with uncertainty
using a digital filter computed to match the calibration data and (4) adjust the signal
description in every previous step to reflect modifications.
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The interpolation step is necessary, as common discrete filters expect equidistant
streams, but on-board oscillators often deviate from that assumption (which is revealed
by the absolute timestamping of our setup). The whole process is visualized in Figure 3,
further illustrating the steps behind the top left box of Figure 2. A comparison with the
screenshot in Figure 4 shows that every block of Figure 3 represents an actual agent in
the implementation. The interpolation and deconvolution routines rely on uncertainty
evaluation methods from the Python package PyDynamic 2.0.dev1 [11,15]. We use linear
interpolation of uncorrelated time series as published by [16]. This is a rather strong
assumption and might lead to unexpectedly low uncertainties of the interpolated signal
as well as lower amplitudes of the interpolated signal. Other interpolation schemes will
therefore be the focus of further research. The corrected (deconvolved) signal is shown next
to the unprocessed input in Figure 5 at a frequency of 125 Hz. The filter used to achieve the
deconvolution is calculated by a PyDynamic routine by fitting a stabilized inverse filter to
the frequency response shown in Figure 1 and is presented in Figure 6. The deconvolution
filter is only valid in the same frequency range as the frequency response known from
the calibration (and needs to be regularized outside by, e.g., a bandpass). By sticking to a
generic agent design, it is possible to implement quite efficient numerical data handling,
while also maintaining an expressive degree of data description in every processing step,
because both aspects are treated separately.

Indications w. unc.Raw indications

Sensor description

Quantization uncertainty

Process quant. specific
metadata

Interpolation

Log modified properties:
interpolated = true
equidistant = true

Input uncertainty Interpolation

Equidist. indications
Deconvolution

Log modified properties:
deconvolved_with = <fct>

adjust unit

Estimate
measurand

Est. measurand

Description

Figure 3. Chain of agents to estimate a measurand using a dynamic calibration model. A generic
template for the agents is depicted above the agent chain.

Figure 4. Implemented example: Screenshot of the network topology as shown on the dashboard.

Figure 5. Implemented example: Comparison of the incoming (raw) and processed (deconvolved)
signal. Note that the processed signal shows an increase in amplitude that corresponds to Figure 1.



Sensors 2021, 21, 2019 7 of 15

Figure 6. Example: Computed deconvolution filter and compensation behavior of the sensor presented in Figure 1.

4. Using Semantic Information in Sensor Networks

Semantics, in its most general sense, is the study of meanings in natural or artificial lan-
guages. Semantic technologies enable a formal representation of the meaning involved in
raw data. Smart sensors are self-aware in the sense that they can provide a self-description.
This raises the need for not only machine-readable, but also machine-interpretable repre-
sentations of asset-specific information and knowledge. Semantic information in sensor
networks aims to capture properties of and relations between smart devices. Semantic
information is commonly modeled using ontologies [17]. In the context of computer and
information sciences, ontologies define a formal representation of a domain of knowl-
edge. The main components of an ontological model are the individual classes belonging
to a domain, the attributes or properties of these classes and the relationships among
class members.

Semantic information in sensor networks can be modeled by means of ontological
structures developed within the semantic web community [18], which formalize the an-
notation of sensor data with spatial, temporal and thematic metadata [19,20]. Spatial
metadata corresponds to information about the location of a sensor, be it according to
a geographical or a local reference frame. The latter is particularly relevant to sensors
mounted on a moving object like an automobile. Temporal metadata contains information
regarding the time instant or interval when the sensor data was recorded. Lastly, the-
matic metadata provides domain-specific information. In our case, metrologically relevant
information would form the bulk of the thematic metadata. A method to merge these
kinds of metadata along with the sensor measurement data was proposed in [21]. The
main idea of the aforementioned paper is to split the self-description of a sensor into
four aspects: (1) observation information, (2) general sensor description, (3) calibration
information and (4) location information. Moreover, it is outlined how these aspects can be
represented by linking and extending existing schemes, while maintaining metrological
requirements. The sensor self-description was achieved by combining existing ontologies
that appropriately represented the classes, attributes and relationships corresponding to
the aforementioned aspects. In particular, the digital SI (D-SI, [22]) data model was used as
the basis to represent the observation values, units and uncertainties. The Semantic Sensor
Network (SSN, [23]) and Sensor, Observation, Sampling and Actuation (SOSA, [24]) ontolo-
gies enabled the modeling of the core relations between sensors, observations, measurands
and measurement procedures. The meta information pertaining to physical quantities,
their units and kinds was defined using the Ontology of Units of Measure and Related
Concepts (OM, [25]), the Mathematical Markup Language MathML [26] as well as ideas
from the Engineering Mathematics (EngMath, [27]) ontology. The semantic structure of
the mathematical calibration model was described using MathML, while the Geographic
Query Language (GeoSPARQL, [28]) was used to model the geometric and topological
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location information. The temporal data is represented by the XML “dateTime” datatype in
the format “YYYY-MM-DDThh:mm:ss[Z|(+|−)hh:mm]”, where Z refers to the time zone.

The definition of an angular velocity sensor on the MPU-9250 from Section 3 with a
calibration model given by the infinite impulse response (IIR) filter Function (1) and a given
measurement uncertainty is illustrated in Figure 7 using OWL notation [29]. The definition
was adapted from the simpler case of a pressure sensor with a linear calibration model
given in [21]. The numerical values, units and dimensions of the variables and parameters
are defined using the OM ontology with a prefix om. The measurement uncertainty and
its associated parameters like the coverage factor and coverage probability are defined
using the digital SI model with the prefix dsi. The metadata corresponding to the sensor
description is described using the SOSA ontology with the prefix sosa. The SUU is the
platform which hosts the sensor and is represented by the sosa:platform class. The prefix
newont is used to denote the ontology resulting from the combination of the aforementioned
models. The classes necessary to describe calibrated sensors are defined as part of this
ontology. The object ex:calibrationModel is defined using Equation (1) as an instance
of the newly defined newont:continuousIIRModel class of the newont ontology with
parameters ex:paramA, ex:paramB and ex:paramK. While ex:paramK is a scalar parameter
with an uncertainty of type dsi:ExpandedUncertainty, the vector parameters ex:paramA
and ex:paramB have uncertainties given by the covariance matrices ex:covA and ex:covB,
respectively. The uncertainties of the vector parameters are given by diagonal matrices as
the parameters ai and bi are uncorrelated.

Calibration model description

https://www.w3.org/TR/sdw-bp/#dfn-spatial-data
ex:paramA rdf:type newont:Parameter ;

om:hasNumericalValue 1.2 ;

om:hasUnit om:one ;

dsi:hasUncertainty [rdf:type

dsi:ExpandedUncertainty;

dsi:hasNumericalValue 0.01;

dsi:hasCoverageFactor 2.0;

dsi:hasCoverageProbability 0.95] .

ex:varX rdf:type newont:Variable ;

om:hasDimension om:pressure-Dimension .

ex:varY rdf:type newont:Variable ;

om:hasDimension om:pressure-Dimension .

ex:eqLinear rdf:type newont:Equation ;

# varY = paramA * varX

newont:hasMathMLDefinition

"<apply><eq/><ci>varY</ci><apply>

<times/><ci>paramA</ci><ci>varX</ci>

</apply></apply>" .

ex:calibrationModel rdf:type newont:EquationModel ;

newont:hasEquation ex:eqLinear ;

newont:hasParameter ex:paramA ;

newont:hasVariable ex:varX ;

newont:hasVariable ex:varY .

Sensor description

ex:sensorLocation1 rdf:type sosa:FeatureOfInterest ;
floor:hasTile [rdf:type floor:Tile,

floor:hasRow 1 ,
floor:hasColumn 1].

ex:sensor1 rdf:type newont:CalibratedSensor ;
newont:hasCalibrationModel ex:calibrationModel ;
sosa:hasFeatureOfInterest ex:sensorLocation1 .

Measurement description

ex:observation_1234 rdf:type sosa:Observation ;
sosa:madeBySensor ex:sensor1 ;

sosa:resultTime "2020-01-29T13:00:00Z"ˆˆxsd:dateTime ;
sosa:hasResult [rdf:type dsi:MeasureWithUncertainty ,

om:hasNumericalValue 1013.25 ;
om:hasUnit om:pascal ;

dsi:hasUncertainty [rdf:type dsi:ExpandedUncertainty;
dsi:hasNumericalValue 10.0;
dsi:hasCoverageFactor 2.0;

dsi:hasCoverageProbability 0.95] ] .

Figure 7. Definitions of the calibration, sensor and measurement models in OWL notation. The
prefixes refer to the specific ontologies imported.

In our practical implementation, as described in Section 3, we handle numerical data
and its semantic description separately. The raw numerical data coming from the sensor
is handled using the Python package time-series-buffer. This allows us to store value,
value uncertainty, timestamp and timestamp uncertainty in an efficient buffer structure on
an FIFO basis. The sensor’s semantic self-description is handled using the Python package
time-series-metadata. This package directly covers the core metrological aspects of a
measurement value: time name, time unit, quantity name, quantity unit and the sensor
ID it is originating from. Further aspects about the sensor are currently less standard-
ized, but can be stored within a miscellaneous “misc” object. The basic structure of the
time-series-metadata object is illustrated in Figure 8. This object could store metadata
of the type given in Figure 7 generated using the ontology proposed by [21]. Metadata cor-
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responding to the sensor calibration information can be obtained from official metrological
documentation (e.g., a digital calibration certificate [30]) or datasheets. A more semantic
approach to represent common mathematical models will be the focus of further research.

Figure 8. Abstract representation of a time series corresponding to data from a given sensor. The
metadata necessary to interpret the actual measured quantities and time instances is contained in the
scheme. The fields with green shading correspond to the metadata fields.

Additional attributes that track modifications of the data stream by agents are also
possible. The description of the quality of data (QoD) sent from or received by a sensor
is of particular interest. In general, the QoD depends on the principle of measurement
used, the provenance of the data and the internal processing performed on it as well as the
external environmental conditions at the time of measurement. A method to automate the
process of enriching a data stream with quality semantics using an instantiation of the SSN
ontology was proposed in [31]. By enriching sensor data with semantic quality information,
it would be possible for higher logical agents to retrieve sensor data that satisfies given
quality criteria such as accuracy, precision and drift. It would additionally be possible to
ascribe quality metrics to data based on sensor properties such as resolution, response time,
sensitivity, etc. Self-describing sensors can also enable higher logical agents to group con-
nected devices to form networks and clusters based upon provided semantic information.
As an example, consider location information. Given the ontological support, a relationship
between two given device locations can be evaluated. This could be the estimated delay
between two sensor locations in a production process or simple “is neighbor” information
of floor tiles in an intelligent shop floor [32]. Such a grouping of connected devices can also
help in exploiting the benefits of redundancy in a sensor network. For instance, semantic
information can be used to generate more robust measurements from a disparate sensor
group. A more detailed discussion of redundancy in sensor networks and its implications
will be presented in the subsequent section.

5. Benefits of Smart Traceability and Redundancy in Sensor Networks

In Section 3, it was shown how a sensor can be extended by an SUU to construct a
smart sensor in the industrial IoT. This smart sensor can store different types of metadata
(like uncertainty information, location, etc.), which enables the SUU to provide much more
machine-readable and machine-interpretable information regarding the measurement than
the classical data pair (timestamp, sensor value). How this semantic information can be
studied, modeled and stored was discussed in Section 4. One possible application of using
machine-interpretable information is that the network may become aware of redundancy
present in the network. In networks with a measurement task, i.e., where the goal is to infer
the value of a measurand (the quantity to be measured), redundancy can be defined as the
property that there are multiple, independent ways of deriving the value of the measurand
from the set of measured sensor values. Two general advantages of redundancy are that it
makes the network more robust and resilient against failing sensor nodes. In this section,
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some other advantages of redundancy relating to metrology and smart traceability will
be discussed.

In metrological sensor networks, measurements made by sensor nodes are traceable
and their measured values are accompanied by an uncertainty statement. In an agent
framework like the agentMET4FOF framework being developed in [1], a particular agent
can be in charge of combining data streams and performing uncertainty calculations. If a
smart data analysis agent (SDAA) finds out that m nodes in the network are redundantly
measuring the same quantity Y based on the semantic information provided by the smart
sensors, then the following happens. The m different estimates y1, y2, . . . , ym of the
measurand Y with associated uncertainties u(y1), . . . , u(ym) can be combined by the
SDAA by calculating an uncertainty weighted averaged estimate ŷ of the measurand with
associated uncertainty u(ŷ), i.e.,:

u(ŷ) =

(
m

∑
i=1

1
u2(yi)

)−1/2

(2)

ŷ = u2(y)
m

∑
i=1

yi
u2(yi)

. (3)

This calculation is the same as what can be used in the context of evaluating laboratory
intercomparisons [33]. The knowledge of individual sensor uncertainties allows the optimal
usage of the available information. Note that correlations between different estimates can
(and should) be taken into account as well in the calculations. If the uncertainty (covariance)
matrix of the yi (1 ≤ i ≤ m) is given by Vy, and y = (y1, . . . , ym)T and e = (1, . . . , 1)T are
column vectors of length m, then the best estimate and associated uncertainty follow from

u(ŷ) =
(

eTV−1
y e

)−1/2

ŷ = u2(ŷ) eTV−1
y y.

The amount of redundancy “RedUnc(k)” ([34]) in a network for a specific measurement
task can be quantified by assessing how much the expanded measurement uncertainty of
the measurand maximally increases when leaving out k arbitrary sensor(s) from a network
with n sensors. This can be done until the maximum possible number K0 of sensors that can
be left out has been reached while it is still possible to calculate the value of the measurand.
This latter number K0 is called “RedExcess” in [34]. Let Uk denote the maximum expanded
uncertainty when evaluating Y using n − k sensors, with the maximum taken over all
subsets with n − k sensors. The redundancy metric RedUnc(k) and its relative version
RedUncRel(k) are given by

RedUnc(k) = Uk −U0 and RedUncRel(k) =
Uk −U0

U0
· 100%.

These redundancy metrics are a function of k. They can be summarized by averaging
the uncertainty increase per removed sensor per total number of sensors taken out until a
maximum number K. This is called the redundancy loss of the network, “RedLossK”. K can
be chosen equal to K0 or less. In formula form this gives

RedLossK =
1

U0

1
K

K

∑
k=1

Uk −U0

k
· 100%.

In the case of a redundancy loss of 0%, there is no increase of uncertainty when up
to K sensors are taken out from the network and the network is perfectly redundant. A
redundancy loss of 20% means that the expanded uncertainty of the measurand increases
on average by 20% per removed sensor.
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As a practical example, the RedUnc(k) and RedLossK metrics were calculated for a
data set produced by the ZeMA testbed for condition monitoring of an electromechanical
cylinder (EMC) [10]. The EMC was measured by 11 sensors measuring different quantities
like electrical current, vibrations and pressures. A trained machine learning algorithm can
predict the residual lifetime of the EMC based on the signal of any single sensor. As it could
not be founded on an uncertainty evaluation of the sensor measurements, the uncertainty
of the estimates was quantified in a heuristic way using the prediction error, together with
uncertainty propagation through the model with the addition of a model error. When
using all sensors, the estimate has the lowest prediction uncertainty. When taking out 1, 2,
. . . sensors, the maximum uncertainty increases (unless the uncertainty calculation depends
on the data values themselves for some cases). Both the relative uncertainty increase as a
function of k and the overall redundancy loss value (constant) are shown in Figure 9 for
the case when 5 sensors are used and 0 to 4 sensors are removed. The redundancy loss for
the EMCs varies between 30 and 60%.

Figure 9. Relative uncertainty increase and redundancy loss values for condition monitoring of
EMCs in ZeMA testbed when using 5 sensors and taking out 0 to 4 sensors.

Another advantage of traceable, redundant smart sensor networks is that incorrect
sensor values can be more easily detected and removed. If a quantity is measured at least
twice, a statistical test can be performed to assess if the measured values are consistent
in view of the specified uncertainties. If this is not the case, a warning can be raised to
the user. A test that is often used in a metrological context [33] is based on the observed
chi-squared value

χ2
obs =

m

∑
i=1

(
yi − ŷ
u2(yi)

)2
.

Assuming that the uncertainties of the yi are normally distributed, the distribution of
χ2

obs is chi-squared with m− 1 degrees of freedom. As a consistency check it can be verified
if the probability of observing a value of χ2

obs or more is less than 5%, in which case the
individual sensor estimates are evaluated as being inconsistent.

If a quantity is measured at least three times (m ≥ 3), a smart algorithm can determine
the largest consistent subset (LCS) of measured values. In the case that two values are
correct, and one sensor value is incorrect, the algorithm can identify and reject the incorrect
value and return a best estimate based on the consistent values. See [33], where this method
is applied in the context of interlaboratory comparisons. This idea can be extended to
situations in which the quantity of interest is not directly measured (e.g., a temperature
being measured by multiple sensors) to the case when there is a (linear) model y = a + Ax
relating a vector of sensor values x to a vector y of multiple estimates of the measurand
Y (see ZeMA example below). In the latter case a modified algorithm to find the largest
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consistent subset of sensor values (LCSS) can be used ([35]). The main steps of the algorithm
are outlined in Algorithm 1, where Vx denotes the uncertainty matrix of x. The algorithm
always terminates, because a subset with one sensor always provides a consistent estimate.

As a practical application this algorithm was applied to the ZeMA testbed for condition
monitoring of an EMC [10]. Using 11 separate machine learning models for each sensor,
these 11 models sometimes give different predictions for the residual lifetime at a given
set of measurement data taken at a specific time point. When an uncertainty estimate is
associated with each estimate, the LCS algorithm can be applied to the different predictions.
When uncertainty information of the raw sensor measurements is known and a linear
machine learning model is used, the LCSS algorithm can even be applied to the raw sensor
values. In this way a new, metrologically underpinned estimate can be calculated, where
inconsistent estimates or sensor values have been identified and rejected. For the ZeMA
data set example, the results of LCS, LCSS and other data analysis approaches were of
comparable quality.

Algorithm 1: Outline of largest consistent subset of sensor values (LCSS) algorithm.

input :Vector x with n sensor values, uncertainty matrix Vx, linear system of equations defined by a and A
output :Best estimate ŷ with uncertainty u(ŷ) and index set I of retained sensor values

Verify that the system matrix A is not self-contradictory;
if Vx is rank deficient then

if Vx contains a zero row and column then
x contains an entry with vanishing uncertainty. Using A, move it to a, take out the zero row and column

of Vx and update a, A and x;
else

There is a sensor that can be written as a linear combination of the others. Reduce Vx, x, a and A by using
this relationship;

end
end
Calculate best estimate and determine consistency using set of all sensor values and y = a + Ax;
if sensor value set is consistent then

Return ŷ, u(ŷ) and I = {1, . . . , n};
end
k← 1;
while no consistent subset is found do

for each subset with n− k retained sensor values and k removed values do
Reduce the system y = a + Ax by linear transformations eliminating k sensors from the matrix A such
that the reduced system y′ = a′ + A′x′ does not depend on the k removed values;

Calculate best estimate and determine consistency for the reduced system y′ = a′ + A′x′;
if sensor value set is consistent then

Set consistent-subset-found-flag to true;
if observed chi-squared value of consistency test is lowest obtained so far for this value of k then

Store estimate ŷ, uncertainty u(ŷ) and index set I;
end

end
end
k← k + 1;

end
Return ŷ, u(ŷ) and corresponding I (possibly multiple solutions).

In a smart traceable sensor network the replacement of sensors is more straightforward:
As the response of a sensor is well characterized and all deviations are known, these
deviations can be uploaded to and corrected by the software of digital smart sensors. In the
case of a strongly redundant network, a new sensor can be calibrated and/or characterized
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by comparing it with the values indicated by sensors which are known to be strongly
correlated with the new sensor. For some applications there may be time periods when all
sensors are supposed to give equal results, e.g., a uniform temperature in a production hall
during nighttime, which can be exploited to get a form of “smart traceability”. Another
observation is that for some applications a full sensor calibration is not needed. In the
ZeMA testbed example the constructed machine learning models only use the sensor
amplitudes at very specific frequencies. Smart traceability may involve only calibrating
these amplitude responses and not addressing phase information or other frequencies. As
the ZeMA testbed contains three current sensors measuring different current phases, it can
also be envisaged to calibrate a new current sensor by putting it in series with one of the
existing sensors and comparing the responses. Another option is to verify if the amplitudes
of the frequencies of interest are almost identical in the three current phases, possibly only
in certain periods of time. In that case a new sensor can directly be calibrated in situ for the
amplitude response at these frequencies. If the network is redundant, sensors can often be
replaced without having to shut down the complete network first (if not prevented by, e.g.,
safety precautions).

We thus see that redundancy in industrial networks is a powerful tool for a large range
of purposes. This extends from being resilient to broken sensor nodes, being able to identify
and reject incidentally faulty sensor values, reducing measurement uncertainty, replacing
sensors on the fly without having to shut down the complete network and allowing
the implementation of smart calibration strategies in order to reach smart traceability.
When the sensors are smart and semantic meta information is encoded in a machine-
interpretable fashion, smart data agents can perform the required network meta-analysis
(e.g., establishing the presence of redundancy) in an automatic way, and take advantage of
the outcomes of the meta-analysis where possible.

6. Conclusions and Outlook

Metrology for the Internet of Things (IoT) and similar concepts of heterogeneous sen-
sor networks is of growing interest, but many challenges remain to be solved. These include
the requirement of novel calibration approaches for smart digital sensors, mathematical
modeling of complex sensor networks for uncertainty propagation and uncertainty-aware
machine learning methods.

The traceability of measurements to the SI units is important also in the IoT. Even
more so as the data analyses become automated and intelligent, and as the layout and
topology of the network can change rapidly. The efficient application of artificial intelli-
gence (AI) methods to a sensor network requires a machine-interpretable representation of
the knowledge available about the individual measuring instruments and their relation to
each other. Smart traceability in the sense described in this paper can help to achieve that.
Furthermore, the replacement or failure of a single sensor must not result in the necessity
to re-train large parts of the AI method. With traceable measurements, this can be avoided
by taking the calibration information into account in the data analysis. Traceability also
allows more efficient data analysis methods to be applied, for instance, to take advantage
of network redundancy. Methodologies like that of the largest consistent subsets can be
applied to determine sub-networks of smaller measurement uncertainty—and thus, with
more reliable results.

Many of these principles and concepts have been applied by metrologists in science
and industry for decades. However, with sensors becoming smart and sensor networks
becoming more complex, the situation is changing significantly. Thus, the metrology
principles such as traceability and measurement uncertainty evaluation need to become
smart too. They also need to become applicable to complex situations in a highly automated
way. The agent framework approach described here can help to achieve this. With a
semantic description of the sensors and the sensor network, machine-readable information
is available that allows algorithms to process the data streams automatically. In this way, the
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principles applied by metrologists off-line and manually can be implemented in algorithms
for automated processing.

Future work will contain the end-to-end implementation of these principles. As a first
step, the existing agent framework implementation will be expanded into a simulation
toolbox for metrological principles in the IoT.
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