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Abstract: The roles of the rubber particle size, the rubber particle size distribution and the con-
stitutive behaviour of the isotactic polypropylene matrix have been studied by combining the
Lazerri–Bucknall energy criterion for cavitation with the Van der Sanden–Meier–Tervoort ligament
model adapted for impact conditions. It is concluded that an optimised morphology offers great
potential to achieve enhanced mechanical properties with far less rubber and hence achieve a superior
stiffness/toughness/processing balance.

Keywords: critical ligament model; impact; impact copolymers; morphology; polypropylene; brittle-
ductile transition; rubber content

1. Introduction

The toughening of polymers by blending in a rubber phase to improve their impact
resistance for application in for example car bumpers is necessary to improve energy ab-
sorption and to avoid hazardous brittle fracture. The brittle/ductile transition of polymers
is generally described by the Ludwik–Davidenkov–Orowan criterion [1] that simply states
that a material fails in a ductile way as soon as the yield stress drops below the fracture
stress. In general, this is achieved by reducing the yield stress by blending in a low mod-
ulus rubber phase, that cavitates easily, or easily delaminating hard particles, or simply
voids [2]. In the present paper we aim at combining an existing model that describe the role
of particle size combined with a model that describes the role of the critical interparticle
ligament thickness [3].

2. Experimental

Data were taken from existing literature and part of the measurements used in this
paper were performed at SABIC (Geleen, The Netherlands). The experimental details are
given here.

2.1. Samples

One homopolymer (Melt Flow Index (MFI) 5.5 dg/10 min, measured at 240 ◦C
and 2.16 g) and four rubber-toughened polypropylenes (PPs) with different rubber con-
tents were prepared. The rubber contents were 5, 15, 25 and 32.7 wt %. To make the
rubber-toughened PPs, the homopolymer was blended with a rubber-toughened PP (MFI
1.0 dg/min) containing 32.7% propylene-ethylene rubber. Granules were prepared with an
extruder type ZSK 3033 at a temperature between 244 and 262 ◦C at a speed of 10 kg/h.

2.2. Impact Strength Izod–Brittle Ductile Temperature

Izod tests at a range of temperatures in order to determine the brittle ductile transition
were performed with a Zwick Type 5110 impact tester according to ASTM D256. The
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dimensions of the specimen were 65 mm × 12.7 mm × 3.2 mm and the striking speed
of the hammer was 3.5 m/s. The values of impact strength given were attained from an
average of five tests.

2.3. Microscopy Techniques and Morphology Analysis
2.3.1. Ultramicrotomy

Samples were trimmed at−120 ◦C parallel to the injection moulding machine direction.
The blocks were then stained in a RuO4 solution for approximately 24 h. Thin sections
with a thickness ranging from 60 to 100 nm were prepared using a Leica EM UC7 with a
DIATOME Cryo knife operated at −120 ◦C.

2.3.2. Imaging

Imaging was undertaken with a FEI Versa 3D HR-FEG- SEM operated at 15 kV.

2.3.3. Particle Size—Interparticle Distance

The average particle size <d> is assessed by image analysis from scanning electron mi-
croscopy (SEM) images. For calculating the average interparticle distance, a monodisperse
cubic stacking is assumed following Wu [4].

ID =< d >

[
k
(

π

6ϕr

)1/3
− 1

]
(1)

where <d> is the average rubber particle diameter, ϕr the rubber volume fraction, and k is a
geometric constant, i.e., k = 1 for a simple cubic stacking, 21/3 for a body-centered stacking
and 41/3 for face-centered stacking. In practice, Wu found that the simple cubic model best
fits Nylon rubber blends, therefore we will also assume that k = 1. Because the average
densities of the Ethylene Propylene Rubber (EPR) phase (~896 kg/m3) and the isotactic
PolyPropylene (iPP) matrix, (~901 kg/m3) nearly coincide, the weight fraction and the
volume fraction of rubber will be nearly identical. In the course of this paper, the volume
fraction will be used.

3. The Brittle–Ductile Transition
3.1. Polymer Matrix Deformation Mechanisms

Homopolymer deformation and failure mechanisms for semicrystalline polymers
were already discussed in a previous publication [5]. The occurrence of these mechanisms
depends on temperature and strain rate and have been observed to occur over a range
of strain rates and temperatures. These include impact conditions such as in a notched
Izod test, probing the brittle–ductile transition temperature. The general strain rate or
temperature dependent failure response of a polymer can be plotted in a so-called Davi-
denkov balance [1] as shown in Figure 1, where the failure stress is plotted as a function of
temperature or strain rate. In such an overview, there usually exists a temperature range or
a strain rate range within which the polymer fails in a ductile way. In this ductile regime
the active deformation mechanism is shear yielding characterised by large-scale plasticity.
Before and beyond this ductile regime a brittle craze-crack mechanism occurs driven by
either disentanglement crazing (at higher temperatures and lower strain rates) or chain
scission crazing (at lower temperatures or higher strain rates such as impact).

Typically, Polypropylene (PP) homopolymer under impact conditions features be-
haviour that is typical for the low temperature fracture regime. This is shown in Figure 2,
where the notched Izod data of a PP homopolymer is compared with rubber-toughened
PP grades.
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brittle–ductile transition shifts with increasing amount of rubber. 

It is clear that the unfilled PP homopolymer does not reach its ductile plateau before 
140 °C and features brittle behaviour over the whole temperature range up to 120 °C. 

Upon introduction of a low modulus, low Tg (typically shear moduli ranging from 
0.5–1 MPa and a glass temperature of around −60 °C) rubber phase via copolymer synthe-
sis in a second reactor or via physical blending, the toughness increases. At rubber con-
tents of 25 wt % and higher, the transition from brittle to ductile behaviour is observed at 
a temperature below −10 °C. 
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Figure 2. notched Izod impact data of polypropylenes with varying rubber contents over a broad
temperature range. The rubber contents are indicated in the legend. The figure illustrates that the
brittle–ductile transition shifts with increasing amount of rubber.

It is clear that the unfilled PP homopolymer does not reach its ductile plateau before
140 ◦C and features brittle behaviour over the whole temperature range up to 120 ◦C.

Upon introduction of a low modulus, low Tg (typically shear moduli ranging from
0.5–1 MPa and a glass temperature of around −60 ◦C) rubber phase via copolymer syn-
thesis in a second reactor or via physical blending, the toughness increases. At rubber
contents of 25 wt % and higher, the transition from brittle to ductile behaviour is observed
at a temperature below −10 ◦C.

3.2. Deformation Mechanism under Impact Conditions

Post mortem examination of Izod test bars by means of SEM indicated damage areas
that are consistent with the failure mechanism as proposed by Van der Wal and Gaymans [6].
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In their description, it is suggested that the rubber particles cavitate upon deformation
of the bulk phase. Consequently, the original tri-axial stress state in the matrix ligaments
between the cavitated rubber particles converts into a uni-axial stress state as shown
schematically in Figure 3. In this uniaxial stress situation, the yield stress is significantly
reduced, leading to enhanced ductility of the ligaments, increased plasticity and hence
higher dissipated energy.
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Figure 3. Schematic representation of the rubber cavitation mechanism and the concomitant plane
strain–plane stress transition in the matrix ligament by the change from a negative hydrostatic stress
state to a uniaxial stress state.

This is shown in Figure 4 where a SEM micrograph reveals the deformation mechanism
in the plastic zone of a post mortem perpendicularly cryomicrotomed and RuO4 stained
Izod test bar. The crack surface is on the right hand side and the crack propagated from the
bottom up. The horizontal dimension then represents the depth into the specimen and the
plastic zone.
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Figure 4. Scanning electron microscopy (SEM) micrograph of a perpendicularly microtomed and RuO4 stained Izod bar
revealing the deformation mechanism in the plastic zone after impact failure in a typical PP impact copolymer with 30 wt %
rubber. The crack surface is on the right side and crack propagation went from bottom to top. The lower image is a
magnification of the crack area. The two white lines represent 20 µm.

It can clearly be seen that extensive rubber particle cavitation occurs. The cavitation
also becomes less extensive with increasing depth into the plastic zone, where the stress
has dropped below the matrix yield stress. It can also be seen that around the crack
propagation zone there are no cavitated rubber particles in the first 20 µm which leads us
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to the assumption that the cavitated particles have healed due to adiabatic temperature
rise after deformation. In the first 100 to 150 µm all rubber particles are elongated in the
average main Von Mises stress direction.

Experimental support for this concept has been provided by A. Van der Wal et al., who
investigated the influence of particle size [7], iPP matrix crystallinity [8], rubber content [9],
molecular mass and temperature of the iPP matrix [10]. In the course of this paper, the
experimental data generated by these authors will be used to validate a novel description
of the deformation behaviour at impact testing conditions.

4. The Model Description of Impact Toughness

In a number of steps, the most important features of the deformation mechanism
under impact conditions will be described and connected. It is assumed that the rubber
particle size distribution (PSD) is monodisperse. The ligament sizes are calculated using
Wu’s regular cubic stacking equation, thereby assuming that all ligament sizes are equal.
The cavitation will be described by the Lazerri–Bucknall energy criterion, whereas the
response of the ligament will be described by means of the model first described by Van
der Sanden, Meijer and Tervoort (VMT) in 1993 [11]. In order for this model to describe
impact, the VMT equation, which describes the energy balance at failure of a ligament, will
have to be adapted to the constitutive behavior at high strain rates and low temperatures.

4.1. The Role and Determination of Surface Energy

Both in the Lazerri–Bucknall energy balance description of the cavitation of the dis-
perse rubber particles and in the description of the fracture strength of the matrix ligaments
in the VMT model the surface energy Γ appears. Following the original definition of surface
energy by Kramer and Berger [12,13]:

Γ = γ +
1
4

υedeUb = γ +
1
2

ΣeUb (2)

where γ is the Van der Waals surface energy contribution, Ub is the strength of the covalent
C–C bond (i.e., 346 kJ/m2) and νe is the node density of load bearing chains at the time
scale and the temperature of the experiment, where the suffix e stands for effective. de is
the point-to-point node distance measured along the chain which is related to ve via the
number of Kuhn segments nL with length lk and mass mK in a chain segment.

de =
√

nL lk =
√

ρ

υemk
lk (3)

The Kuhn segment length is the virtual statistical step length for which a polymer
chain can be described as a freely jointed chain. The Kuhn segment length is also a measure
for the free space mechanical stiffness of the chain, expressed by the persistence length,
which is equal to lk/2 [14]. Combination of Equation (1) with Equation (2) shows that
Γ ~ υede scales as υe

1/2. Σe represents the axial density i.e., the number of load bearing
chains crossing a mathematical surface which is topologically related to νe as Σe = 1/2νede.

Equation (2) is, of course, only valid when the chain segment between nodes is
sufficiently long to allow for Gaussian statistics to be applied, which is usually the case in
polyolefin melts and rubbers. However, with increasing network densities, the number of
Kuhn segments may require another statistics to calculate de. For shorter chain segments,
the Porod worm chain model should be adopted [13]:

de =

√
lkLe

(
1−

(
lk

2Le

))(
1− e

(− 2Le
lk

)
)

(4)

where Le is the contour length of the Me segment. Clearly Equation (4) reduces to
Equation (3) for larger nL. Therefore, in this work, the Porod model is adopted for all
calculations of de, irrespective of the network density up to a network with shear modulus
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of 5 MPa, which would make de smaller than the Kuhn length, which is physically impos-
sible. Figure 5 shows the surface energy as a function of the available network density
according to Equation (1) taking into account the Porod statistics.
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The nodal network with density νe can be described by its shear modulus G′ following
rubber elastic theory:

G′ = AυeRT (5)

where A is the network topology factor which we assume to be unity following the work of
Fetters [15]. Equation (5) describes a system of fixed nodes connected by Gaussian chains
(i.e., a cross linked rubber) but it is also used to describe time-dependent networks with
both fixed and transient nodes [16]. This rubber elastic description assumes that there
is a proportionality of the network shear modulus with temperature and we know that
this is not the case. The shear modulus of an uncrosslinked melt entanglement network
and the strain hardening modulus in the solid state both decrease with T and increase
with the strain rate which indicates that this network response is mainly enthalpic [17,18]
and probably mainly caused by segmental and monomeric friction. Notwithstanding
this enthalpic nature, Van Melick et al. found that in glassy polymers there is still a
proportionality of the strain hardening modulus with the melt entanglement density with
a negative linear T dependence, which scales with the yield stress [19].

The craze microstructure at the time of failure in a slow crack growth process and
the time of failure at a given stress in such an experiment have recently been shown to be
determined by the strain hardening modulus, determined above the alfa transition [20].
A practical way of representing the surface energy is therefore via its proportionality with
the network shear modulus G′:

Γ = γ +
1
4

√
ρam

ARTmk

√
G′ (6)

where ρam is the amorphous density and mk is the mass of one Kuhn segment. Notice that
when the shear modulus vanishes, the surface energy reduces to the Van der Waals value γ
indicative of disentanglement crazing at low strain rates and high T [12].

Physical validity of this surface energy concept can be derived from comparison with
available experiments and estimations. In Kramer and Berger’s work on craze propagation
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in amorphous polymers, the value for Γ is taken from the rubber plateau modulus [12].
This is justified because the mechanically activated continuum at the craze tip is actually
in a mechanically liquefied state, comparable to the melt. For polystyrene, this leads to a
total surface energy of 0.080 J/m2, assuming a plateau modulus of 0.20 MPa and a Van der
Waals surface energy of 0.04 J/m2. In that same work, also a strain rate or a temperature
dependence of the network density and hence of Γ is assumed in order to describe the
transition from scission crazing to disentanglement crazing as a thermally activated process
of chain slip.

4.2. The Solid State Surface Energy in Impact Conditions

For the description of the surface energy in the semi-crystalline solid state at short
time scales and low T we need to know the number of chains that can be loaded effec-
tively and broken in the course of the surface creation process. There are some obvious
Gedankenexperiment-like upper limits to that value; for example, if one were to fracture
all chains aligned in a crystal one would have to muster 1.57 J/m2 for an orthorhom-
bic Polyethylene crystal and for Polypropylene in the monoclinic α phase this would be
0.840 J/m2. Another upper bound estimate comes from following Huang and Brown’s
argument [21] that in an isotropical amorphous phase, geometrically, one third of the
molecular stems are sufficiently oriented and assuming that no slip is possible for all these
chains, 30% of that upper bound crystalline surface energy is available, i.e., 253 mJ/m2

for PP. A lower bound estimate finally would be to take the entanglement density at the
rubber plateau G′ = GN

0 which leads to a value of 0.107 J/m2.
There are not many experiments that try to relate the fracture stress to the available

load-bearing surface (potential surface energy). This surface fraction of tie molecules in
polyethylene has been estimated by Brown and Ward, in their famous fracture experiment
at 90 K [22] on polyethylenes. They find up to 23% of surface to be effectively load bearing
during the fracture test, which leads us to an estimate of 0.361 J/m2, in PE. For PP the
equivalent estimate would be 0.196 J/ m2. This compares well with the above estimates.

An experimental attempt to estimate the surface energy from Griffith’s fracture me-
chanics [1] approach leads to surface energies, three to four orders of magnitude too
large. When one assumes that the critical stress intensity K1c of iPP lays typically around
3.3 MPam1/2, Griffith’s theory leads to a surface energy of 5 kJ/m2. This huge discrepancy
is attributed to volume plasticity contributions, typical for a fracture mechanics test, which
was exactly what Brown and Ward tried to avoid in their experiment [22].

It is clear that the surface energy needed to fracture a semicrystalline polymer will be
determined by the number of chains that can be loaded and broken in an impact experiment
and that number will for impact conditions be higher than the rubber plateau network.
We surmise that a valid measure for that number of chains, Σe is the solid state strain-
hardening modulus [5], following the work of Haward [23,24] and Duffo et al. [25]. For
longer time scales, like in slow crack growth processes, the contribution of the crystal
phase will be transient and the network will be limited to a number in the neighborhood of
the plateau modulus, with typical shear moduli of the order of 0.5–1.5 MPa. For shorter
time-scale processes such as impact at low temperatures, the crystalline phase will function
as a robust restraint for the chain segments to slip and virtually all the available nodes
will act as fixed nodes. The strain-hardening modulus of solid iPP in the α phase varies
from 0.46 MPa at 110 ◦C to 4.6 MPa at room temperature [25]. This would indicate that,
going from slow (high T) to fast deformation (low T) processes, the number of chains
loaded may increase a decade or even more. Of course one should be aware that in this
transition the material goes from a rubber-like state to a heterogeneous semicrystalline
material with some strain localisation caused by the crystals, both in the isotropic regime
around yield as in the strain hardening. The working hypothesis we adopt here is that,
notwithstanding varying tractability of the crystals, the material can still be considered
to form a rubber-like continuum where the strain-hardening response is a measure for
the number of load bearing molecular stems at the temperature and the strain rate of the
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experiment. The surface energies calculated from the assumption that the strain hardening
modulus is a direct measure of the number load bearing chains between Gp = 0.46 and
4.6 MPa, range from 0.107 to 0.205 J/m2 where it was taken into account that there is a
physical limit to the network density when the chain segment becomes equal to the Kuhn
length. In our set of experiments, Γ then typically lies between 0.170 and 0.205.

The order of magnitude difference in the network density going to higher strain rates
and lower temperature can also be rationalized by looking at the ratio between the number
of slipping network links and the number of fixed links in a normal tensile experiment, as
calculated from a fit with a slip link model [26–28] which is typically a factor of 10.

Conclusion of this section is that depending on strain rate and temperature, the
network density may vary and consequently the surface energy will also vary leading to a
reformulation of Equation (1) to include the rate and temperature dependence:

Γ
(

T,
•
ε
)
= γ +

1
4

de(T,
•
ε)υe(T,

•
ε)Ub (7)

4.3. Cavitation, the Lazerri–Bucknall Energy Criterion

Provided that the rubber phase is able to build up sufficient elastic energy, the negative
hydrostatic stress will cause rubber particles to void prior to shear deformation of the PP
matrix, if the yield stress of the remaining ligament happens to be lower than the brittle
fracture stress. This can only happen above the glass temperature (Tg) of the rubber phase;
otherwise, the rubber phase will not localize the strain nor build up elastic energy. This
Tg has of course to be adapted for the strain rate of the experiment, for example, the Tg at
1 Hz (the standard frequency of a dynamic mechanical thermal analysis (DMTA) test) of
the rubber phase in rubber-toughened PP lies around −60 ◦C. In Izod impact tests the rate
is equal to a frequency of 3000 Hz, three decades faster than the DMTA Tg measurement,
in a standard time-temperature equivalence shift (7.8 K/decade), and this implies that
rubber particle cavitation is limited to about −36 ◦C in impact. This generally fits the
lowest observed ductile temperatures in rubber-toughened PP well [9].

A lower brittle–ductile transition temperature could be reached if a lower Tg of the
rubber phase is achieved. The lowest possible limit would be achieved by the glass
temperature of silane rubbers which is around −125 ◦C in a DMTA measurement, resulting
in about −100 ◦C under impact conditions.

4.4. The Energy Balance Description within the Rubber Particle

The critical size of the rubber particle dc for cavitation to occur can be calculated from
the cavitation energy balance equation as formulated by Lazzeri and Bucknall [29]. The
energy of a cavitated rubber particle:

U =
2
3

πR3Kr

(
∆− r3

R3

)2

+ 4πr2Γ + 2πr3GρF(λ f ) (8)

where ∆ is the volume strain of the rubber particle, R is the particle radius and r the
cavity radius. Kr is the bulk modulus of the rubber in the particle. Γ represents the energy
required to create surface as defined in Equation (4), G is the shear modulus of the rubber.
ρ is the density ratio of the rubber phase prior and after cavitation which can to good
approximation be considered to be 1. F(λf) is a strain function at biaxial failure strain which
is typically of the order of unity [29]. Prior to cavitation (r = 0) there is only the elastic
volume strain energy built up. Equation (7) allows the contributions prior to and after
cavitation to be calculated. As stated by Lazzeri and Bucknall the driving force of the
cavitation will be lowering of the total energy to a minimum i.e., ∂U

∂r = 0.

They found that minimum to be close to ∆ = r3

R3 , i.e., complete vanishing of the
accumulated strain energy. One can further assume that the third term in Equation (7) will
be balanced by a quasi equal traction on the surrounding matrix [30], so that the energy
balance within the rubber particle before and after cavitation comes down to equating the
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two first terms of Equation (7). Switching from radia to diameters d0 = 2R and di = 2r and
using the relation di = ∆1/3d0, the condition for cavitation to occur becomes:

Utot = Uε + UΓ = − π

12
Kr∆2d3

0 + Γπ∆
2
3 d2

0 < 0 (9)

where Ue and UΓ are the elastic and the surface energy respectively. Kr is the bulk modulus
of the rubber particle, ∆ is the volume strain, d0 is the initial rubber particle size, and Γ is
the surface energy as described by Kramer and Berger’s equation shown in Equation (2).

The energy criterion as shown in Equation (9) has also been formulated by Dompas
and Groeninckx [31].

The critical condition Utot = 0 yields the critical particle diameter from Equation (9)
combined with Equation (6):

dc
0 = 12Γ(

.
ε,T)

Kr∆
4
3

=
12
(

γ+ 1
4

√
ρam

ARTmk

)√
G′((

.
ε,T))

Kr∆
4
3

(10)

This equation shows clearly that the critical particle size depends on the ratio of the
shear modulus over the bulk modulus. If easy cavitation is the goal, a high bulk modulus
and a low shear modulus are desirable. Typical values for shear moduli and bulk moduli
range around 0.5–1.5 MPa and 2–3 GPa respectively. A typical candidate for good cavitation
properties in that respect should be a polydimethyl siloxane (PDMS) rubber. The balance
described in Equation (9) is plotted in Figure 6 for a shear modulus of 0.4 MPa and a
bulk modulus of 2.5 GPa assuming a volume strain of 0.75% which is a typical value for
cavitation occurrence [32].

Polymers 2021, 13, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 6. The balance of strain and surface energy in a rubber particle as a function of particle di-
ameter for Kr = 2.5 GPa and G = 0.4 MPa. The volume strain is the critical value proposed by Dijks-
tra et al. i.e., 0.75% [32]. The critical particle diameter in this case is then 330 nm. 

In the present kind of impact-resistant EPR copolymers, the rubber particles are het-
erogeneous in nature. They are composed of areas with varying composition ranging from 
PE-rich LLDPE-like areas (featuring the typical morphology of Linear Low Density Poly-
ethylene) to PP-rich occlusions, as shown in the transmission electron microscopy (TEM) 
image in Figure 7. 

 
Figure 7. Transmission electron microscopy (TEM) image of the typical particle morphology in the 
present series of reactor copolymers. Cross-hatched lamellae are visible in the matrix phase. The 
dark areas are EPR rubber. The light grey blobs inside the particles are LLDPE like polyethylene 
(PE) and the whiter parts inside the particle are matrix occlusions. (Courtesy of Peter Neuteboom 
(Sabic Geleen)). 

Such a morphology with large differences in local modulus will lead to strain locali-
zation in the EPR domains. Because of the low surface energy, these EPR areas will cavi-
tate preferentially as has been shown by means of Scanning Transmission Electron Mi-
croscopy computer tomography [33]. In these images it is also easily seen that the PE and 
the PP domains do not feature cavitation which is also to be expected in view of the tenfold 
higher surface energy of these areas. It is assumed that the stored elastic energy that drives 
the cavitation in these particles will be identical to the energy stored in a homogenous 
particle. 

Figure 6. The balance of strain and surface energy in a rubber particle as a function of particle
diameter for Kr = 2.5 GPa and G = 0.4 MPa. The volume strain is the critical value proposed by
Dijkstra et al. i.e., 0.75% [32]. The critical particle diameter in this case is then 330 nm.

In the present kind of impact-resistant EPR copolymers, the rubber particles are
heterogeneous in nature. They are composed of areas with varying composition ranging
from PE-rich LLDPE-like areas (featuring the typical morphology of Linear Low Density
Polyethylene) to PP-rich occlusions, as shown in the transmission electron microscopy
(TEM) image in Figure 7.
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Figure 7. Transmission electron microscopy (TEM) image of the typical particle morphology in the
present series of reactor copolymers. Cross-hatched lamellae are visible in the matrix phase. The
dark areas are EPR rubber. The light grey blobs inside the particles are LLDPE like polyethylene
(PE) and the whiter parts inside the particle are matrix occlusions. (Courtesy of Peter Neuteboom
(Sabic Geleen)).

Such a morphology with large differences in local modulus will lead to strain localiza-
tion in the EPR domains. Because of the low surface energy, these EPR areas will cavitate
preferentially as has been shown by means of Scanning Transmission Electron Microscopy
computer tomography [33]. In these images it is also easily seen that the PE and the PP
domains do not feature cavitation which is also to be expected in view of the tenfold higher
surface energy of these areas. It is assumed that the stored elastic energy that drives the
cavitation in these particles will be identical to the energy stored in a homogenous particle.

Equation (10) is shown in Figure 8 for some plausible combinations of bulk and
shear moduli.
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Figure 8. Critical particle size for cavitation according to Equation (10) for a collection of bulk and
shear moduli. The grey vertical dotted line is the matrix yield strain, beyond which there is no
hydrostatic cavitation stress.

Increasing the bulk modulus (or density) decreases the critical particle size and in-
creasing the shear modulus increases the critical particle size. Furthermore, it is physically
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impossible to go beyond yield strain, because when the matrix yields it cannot convey
elastic stress to the rubber particles anymore. Particles smaller than the critical particle size
will deform affinely with the matrix and will not cavitate. This limit is indicated by the
vertical dotted line in Figure 8.

4.5. The Critical Matrix Ligament Thickness for Ductile Failure

After cavitation, the failure mechanism depends on the properties of the matrix
ligaments. Two major factors need to be studied: the glass temperature of the matrix PP,
and the ligament thickness. An elegant way of calculating the critical matrix ligament
thickness for ductile failure is the Van der Sanden, Meier and Tervoort (VMT) criterion [11]:

IDc ≤
6ΓEm

λmaxσ2
ym

(11)

This is derived from the energy balance between the available elastic energy within
the deforming ligament, represented by the yield stress, and the energy required to create a
brittle fracture, represented by Γ. Em is the matrix tensile modulus, σym is the yield stress of
the PP matrix and λmax is the maximum draw ratio of the matrix. The matrix Tg as it will
be shown later influences mainly σym, but also Γ, Em and even λmax. Assuming literature
melt entanglement densities and normal tensile test conditions at room temperature, the
critical ligament size in rubber-toughened PP to achieve toughness is of the order of 2 µm.

4.6. Maximum Drawability of the Ligament

Equation (10) features the drawability of the ligament λmax. This can be easily calcu-
lated from the number of Kuhn segments between nodes defined by Equation (3):

λmax =
√

nL (12)

To this theoretical value of λmax one should also apply Kramer’s empirical stretcha-
bility limit [12]. This limitation of stretchability, specifies that the maximum draw ratio is
limited to 60% of λmax. This is generally attributed to network imperfection and seems to
be applicable to most polymers.

4.7. The Rate and Temperature Dependence of the Network and its Physical Limits

Now that we have realized that the surface energy is determined by the available rate
and temperature dependent network density i.e., the available assembly of effective tie
molecules, it is necessary to calculate this density. As stated above in Section 4.2 we assume
that this network density is described by the shear modulus of the perceived rubbery
response [5], the strain-hardening modulus Gp.

The temperature dependence of the strain hardening modulus of isotactic PP has been
measured very accurately [25].

This leaves us with a useful experimental range for the T dependence of the apparent
node density in the solid state between room temperature (RT) and 150 ◦C as shown in
Figure 9 as a log G′ versus 1/T plot.

The straight extrapolation of the line in Figure 9 to low T leads eventually to non-
physically dense networks with shear moduli far beyond 5 MPa, meaning contour lengths
tend to become smaller than the Kuhn length. In this case, it is assumed that the contour
length is at least equal to the Kuhn length and consequently nL = 1 and λmax = 1. The
surface energy then reaches a maximum of a very acceptable 0.205 J/m2.
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Figure 9. Strain-hardening modulus, representing the network density by Equation (5), as a function
of temperature, after our own Neo Hookean fits on the work of Duffo et al. [25]. The abscissa is the
reciprocal absolute temperature multiplied by 100 for convenience.

4.8. Rate and Temperature Dependence of the Matrix Yield Stress

The iPP matrix typically has a Tg of 273 K and it is possible that the amorphous PP
rubber is in its glassy state at the time scale of a typical impact test. Therefore, it is important
to know the influence of the bulk Tg on the yield stress of iPP. To this end, the literature was
screened for such data and some valid and useful plane stress compression measurements
for a very wide strain rate range from Okereke et al. [34] was found. Since the iPP matrix
ligaments are tensile loaded in the direction of the applied stress, the compression tests of
Okereke et al. need to renormalized to tensile data. Such tensile data were obtained by Van
Erp et al. [35]. As usual the tensile values are lower. This is attributed to two major causes;
the first is the opposite sign of the hydrostatic stress in a compression test as compared to a
tensile test. This has already been investigated by Mears et al. [36] who investigated the
effect of hydrostatic pressure on both PE and iPP. Kanters et al. [37] demonstrated how
large the hydrostatic effect can be and explains that it can depend on the crystallinity and
processing conditions. A second important reason is the friction with the compression
plates, which is expected to increase linearly with strain rate, i.e., the ratio between the
compression and the tensile value of the yield stress must be constant. However, in sound
experiments this friction contribution should be reduced to negligible values, especially at
the yield stress where the strain is still quite low.

Neglecting friction contributions, an average ratio between compression yield stress
and tensile yield stress of 1.38 was observed and applied to transform the compression
data to tensile data as it is shown in Figure 10. This way an estimate of the high strain rate
tensile behavior of an iPP matrix ligament is obtained. A note of caution may be necessary
here, since our renormalisation implicitly assumes that the processing conditions for both
data sets are comparable, which might not have been the case.

Assuming a t,T shift factor of 7.8 K/decade, which is quite common for all t,T shifts
in polymers [38] for creep and yield, this rate dependence can be calculated into a T
dependence. The reference rate is taken at the lowest rate, i.e., 0.0001 Hz as is shown
in Figure 11. From RT, for example, it would then take, starting at the lowest test rate,
~3–4 decades to attain Tg. This would situate the Tg at around 1–10 Hz, which is what the
grey arrow in Figure 11 suggests, where indeed an extra rate-dependent regime kicks in.
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Figure 10. Strain rate dependence of the yield stress of isotactic PP. The black dots represent the
compression measurements by Okereke et al. [34], the large grey squares is the same data set corrected
for tensile axial load and friction, based on data measured by Van Erp et al. [35] which are plotted
in black triangles. The grey arrow indicates the assumed onset of Tg. Also the Eyring processes
mentioned in the text are indicated.
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Figure 11. T dependence of yield stress at a strain rate of 0.0001 Hz around Tg as calculated from the
data in Figure 3, assuming a t,T equivalence of 7.8 K/decade. The arrows indicate Tg at 1 Hz, and
at 0.0001 Hz.

What Figures 10 and 11 also suggest is that this strain rate/temperature dependence
beyond Tg is not typically an Eyring process, which would imply a straight line in log (t),
but rather a curved Williams Landel Ferry (WLF)-type dependence [38].

At this point, it is also meaningful to look closer into the work of Van Erp who
analysed the rate dependence of polypropylenes in terms of the Ree–Eyring activated flow
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model [35]. Generally two Eyring rate regimes are encountered, i.e., process I (low strain
rates, high temperatures) and process II that kicks in on top of process I at increased strain
rates and lower temperatures. In the range of the Okereke data, there appears to be a third
relaxation process on top of process II, most probably caused by the vitrification of the
amorphous phase. This third relaxation process has also been confirmed by Caelers et al.
in their research on the differences in the creep response of iPP polymorphs [39].

The present data for the constitutive behavior of isotactic polypropylene shown in
Figures 10 and 11 are used to calculate the yield stress by inter- or extrapolation of the
properly temperature or rate shifted data. However, there is a hard physical limit to this
extrapolation in that the estimated yield stress should never exceed the true fracture stress
which is typically 250 MPa. This limit is set as a threshold value in the in the calculation of
the critical ligaments thickness.

4.9. The Rate and Temperature-Dependent Van der Sanden, Meijer and Tervoort (VMT) Equation
for Impact

With the yield stress, drawability and the surface energy dependency on rate and
temperature made explicit we are able to fill in the rate and temperature-dependent VMT
equation:

IDc

(
T,
•
ε
)
=

6
(

γ + 1/4de(T,
•
ε)Ubυe(T,

•
ε)
)

λmax(υe(T,
•
ε))σ2

ym(T,
•
ε)

(13)

It becomes now possible to use Equation (13), respecting the physical limits of the
network density and the yield stress to interpret the available experimental data from Van
der Wal’s dataset [6–10] and from our own work, shown in Figure 12. For this calculation
it is assumed that the rubber particles are monodisperse and stacked according to a cubic
stacking scheme so that all matrix ligaments have the same size. One can then plot the
critical interparticle distance as a function of the brittle ductile transition temperature and
compare it to these experiments as shown in Figure 13.
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where it is assumed that the volume expansion at cavitation, the bulk modulus and the 
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tionality (grey curve) compared with the experimental data (black curve). The final fit 
looks more than good with the exception that the black curve increases with a power 
higher than 3, i.e., 5.3. This may be attributed to the fact that actually a lot more rubber is 
needed whenever the distribution deviates from the ideal monodisperse and homogene-
ous distribution. The theoretical achievable limit for a perfect dispersion should follow a 
third power ideally. It is clear from Figure 13 that rubber can probably be distributed 
much more effectively to achieve a given average ligament size. This would allow achiev-
ing a much better toughness/stiffness balance because a rubber content of evenly distrib-
uted monodisperse rubber particles of 15 vol % could then already lead to the same brittle 
ductile temperature as the 30 vol % polydisperse case. 
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Figure 13. Proportionality of volume fraction of rubber with critical ligament size in arbitrary units,
according to the model in this paper, assuming cubic stacking of monodisperse rubber particles with
size 1.44 µm. Black curve is the fit with experimental data, which scales with exponent 5.3; grey
curve illustrates the third power scaling.

In view of the relative simplicity of the model and the assumptions on the morphologi-
cal analysis, this is a very satisfying result. The overall trend of the observations is followed
albeit the model predicts a much smaller critical interparticle distance than the observations
reveal for high rubber content. This is because in a real blend the heterogeneous spatial
distribution allows much smaller interparticle distances than the average calculated from
the blend morphology especially at high rubber content.

In a next stage it becomes plausible to investigate possible gains in toughness from
adapting the morphology according to this simplified model.

4.10. Effectivity of Rubber Dispersion

Combination of the Lazerri–Bucknall energy criterion of Equation (9), assuming
a cubic stacking of monodisperse particles from Equation (1), with the VMT model of
Equation (12) taking <d> = d0

c allows to single out the volume fraction of rubber ϕr written

to first order as a proportionality with
λmax(σm

y )2

EmΓm
, which is proportional with the inverse

critical ligament thickness IDc.

ϕr =
π
6

[
ΓmEm(

.
ε,T)Kr∆
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∝
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.
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3

(14)

where it is assumed that the volume expansion at cavitation, the bulk modulus and
the surface energy of the rubber are constant observables. Figure 13 shows this ideal
proportionality (grey curve) compared with the experimental data (black curve). The final
fit looks more than good with the exception that the black curve increases with a power
higher than 3, i.e., 5.3. This may be attributed to the fact that actually a lot more rubber is
needed whenever the distribution deviates from the ideal monodisperse and homogeneous
distribution. The theoretical achievable limit for a perfect dispersion should follow a third
power ideally. It is clear from Figure 13 that rubber can probably be distributed much
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more effectively to achieve a given average ligament size. This would allow achieving a
much better toughness/stiffness balance because a rubber content of evenly distributed
monodisperse rubber particles of 15 vol % could then already lead to the same brittle
ductile temperature as the 30 vol % polydisperse case.

5. Conclusions

The VMT model for describing the critical ligament thickness in rubber-toughened
polymers has been extended to use for low T, impact conditions. To that end the rate
dependencies of the constitutive behaviour of the PP matrix as known from literature
are implemented, the rate dependency of the surface energy is extrapolated with the rate
increase of the network density and this is justified by comparison with Brown–Ward’s
experiments on the fracture stress of PE. The extrapolation to impact conditions is compared
with data from literature and confirmed.

The critical particle size model of Lazerri and Bucknall is combined with the adapted
VMT model. Comparison with experimental data on brittle ductile transitions confirm the
combined model in that the inverse critical ligament size scales to the >5th power with the
rubber volume fraction.

This scaling indicates the general inefficiency of the particle size distribution and its
homogeneity i.e., an ideal stacking should show a third power, so a lot of toughening
efficiency of the rubber phase is to be gained by making the rubber stacking more regular.
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