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Abstract: Serum albumin physically interacts with fatty acids, small molecules, metal ions, and
several other proteins. Binding with a plethora of bioactive substances makes it a critical transport
molecule. Albumin also scavenges the reactive oxygen species that are harmful to cell survival.
These properties make albumin an excellent choice to promote cell growth and maintain a variety
of eukaryotic cells under in vitro culture environment. Furthermore, purified recombinant human
serum albumin is mostly free from impurities and modifications, providing a perfect choice as an
additive in cell and tissue culture media while avoiding any regulatory constraints. This review
discusses key features of human serum albumin implicated in cell growth and survival under
in vitro conditions.

Keywords: human serum albumin; cell culture; ligand binding

1. Introduction

Albumins are globular proteins commonly found in blood plasma, egg white, milk,
and plants [1–4]. Serum albumin is the most abundant protein in the blood plasma of all
vertebrates [5]. It is synthesized in the liver as pre-pro-albumin and matures in the endo-
plasmic reticulum and the Golgi bodies before being secreted from the hepatocytes [5,6].
Human serum albumin (HSA) has a plasma concentration of 35–50 mg/mL [6,7], an ap-
proximate half-life of 19 days, and it is present in both extravascular and intravascular
spaces [7,8]. Albumin performs a variety of essential functions. It regulates the oncotic
pressure and pH of the blood [5]. It also binds and transports various bioactive molecules,
including proteins, peptides, fatty acids, hormones, amino acids, drugs, nutrients, and
metal ions [6,9]. These properties make albumin an excellent candidate for several clinical
and biotechnological applications.

HSA is clinically used in hemorrhagic shock due to excessive blood loss, hypovolemia,
hypoproteinemia, and fetal erythroblastosis [6,10]. In addition, purified HSA is commonly
used in eukaryotic cell culture practices [11,12]. The past decade has seen HSA been exten-
sively explored as a nanoparticle for targeted drug delivery [13]. For all these applications,
large quantities of HSA are classically sourced from blood serum. However, recombinant
HSA from heterologous sources such as Pichia pastoris, Saccharomyces cerevisiae, Escherichia
coli, Kluyveromyces lactis, transgenic animals, and plants have proven to be most beneficial
for biotechnological purposes [14–22].

Albumins are extensively used as drug delivery vehicles for various ailments due to
their high serum concentration, long half-life, frequent recirculation, abundant accumula-
tion in benign and malignant tissue types, non-toxicity, and non-immunogenicity [8,23,24].
Albumin quickly diffuses across leaky blood vessels in tumors, making it ideal for carrying
anticancer drugs [24]. A large and diverse variety of drug molecules can be very effectively
bound to the albumin-based nanoparticles (NP) [13,25]. These albumin NPs have been
shown to have high drug entrapment capacity, controlled release, and high biocompatibility,
and they are also biodegradable [13,25]. Moreover, albumin NPs are designed for efficient
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drug loading [26]. The NP can also accommodate surface modifications for improved
drug binding, solubility, and enhanced drug targeting in a controlled fashion [13]. The
conjugation of drugs to the albumin can be achieved by covalently linking the therapeu-
tic compound to the N- or C-terminus of the protein or any other unique amino acid of
albumin using click chemistry, recombinant DNA technology, chemical cross-linking, or
non-covalent interaction [24,27,28].

Traditionally, fetal bovine serum (FBS) was a critical factor in eukaryotic cell cultures.
It provides essential elements required for the desired growth of cells under in vitro condi-
tions [11]. A crucial factor in FBS is bovine serum albumin (BSA), which accounts for >95%
of the protein content of the serum, along with small amounts of other proteins, including
insulin, hormones, and growth factors. However, being a biological product, FBS exhibits
significant batch-to-batch variability. It is often found to be contaminated by pathogens
such as mycoplasmas, viruses, and prions responsible for transmissible spongiform en-
cephalopathies (TSE). Therefore, there is a desire to avoid the use of serum, especially
among those growing cells in a Good Manufacturing Practice (GMP) environment. Nowa-
days, purified recombinant albumin from heterologous sources has replaced serum in the
cell culture media due to increasing regulatory concerns and quality control [29,30]. In
addition, the structural similarities between albumins from different vertebrate sources
allow them to be swapped in cell cultures to attain comparable results [11]. Consequently,
bovine serum albumin (BSA) is more frequently used than HSA as its production is more
cost-effective [31].

The action of albumin in cell culture is primarily dependent on its antioxidant prop-
erties, toxin sequestering properties, and transportation of bioactive ligands. This review
highlights the inherent structural and biochemical features that allow human serum albu-
min (HSA) to be exploited for cell culture applications.

2. Recombinant HSA

Classically, HSA was commercially produced by fractionating human plasma [32].
However, human plasma always has a limited supply. In addition, inconsistencies in the
quality of the raw material from different sources and other contamination issues lead to
variations in the quality and quantity of the final purified protein.

Recombinant DNA technology has played a crucial role in the large-scale production
of high-quality recombinant HSA (rHSA) [12]. Yeast, in particular, Pichia pastoris, is the
most promising source for rHSA production, with easy scale-up of the cell culture to
5000–7500 L [15,33–36]. Yeast cells provide several post-translational modifications such
as proteolytic processing, folding, and disulfide bond formation and can be genetically
manipulated to avoid undesirable post-translational modifications [6]. Secretion of the
protein into culture media lowers the number of downstream purification steps [15].
A series of ion exchange and hydrophobic chromatographic resins are used to clean up the
recombinant albumin to attain desired purity [15,37].

Plant seed bioreactors are another promising method for recombinant albumin produc-
tion. Recombinant HSA can be produced in Oryza sativa seeds [14,38,39]. The expression
level of the rHSA can be at least 0.3% based on the rice grain’s weight. rHSA produced in
this manner is structurally and functionally equivalent to plasma-derived HSA [14]. rHSA
is also stably produced to 0.7% of total soluble protein in transgenic tobacco cell suspension
culture [16]. Similar to yeast, in this approach, the recombinant protein is secreted into
the cell culture media. The media is further subjected to downstream chromatographic
processes to achieve desired purity [16].
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Heterologous prokaryotic expression hosts have been used for rHSA expression and
purification, with only moderate success due to the large size and many required disulfide
bonds. Suboptimal processing of the recombinant albumin peptide due to lack of the
eukaryotic protein folding machinery results in misfolded protein. Minimal secretion of
the recombinant albumin is achieved from Bacillus subtilis as higher levels of expression
overwhelm the secretion pathway [40]. In Escherichia coli, rHSA tends to accumulate as
unfolded, insoluble aggregates in inclusion bodies, requiring denaturation and refolding
to obtain a suitably active product [19]. These factors are major bottlenecks that increase
the number of purification steps, production cost, and highly stringent quality control to
achieve the desired quality and quantity of recombinant HSA. Co-expression of rHSA in
E. coli along with the chaperone proteins can increase the amount of rHSA expressed in
the soluble fraction from 10% to 60% [18] and this protein appears to be monomeric and
structurally similar to HSA purified from plasma [41]. Some success has also been achieved
by engineering HSA as a fusion protein with maltose-binding protein (MBP). Co-expression
with protein disulfide isomerase enhances the recombinant protein’s solubility [19].

3. Structural and Biochemical Features of HSA

HSA is encoded by a single gene mapped on the long arm of chromosome 4 at position
q13.3 [7]. Hepatocytes synthesize albumin as pre-pro-albumin [42]. This pre-mature form
of the protein has a 24 amino acid N-terminal extension [43]. These 24 N-terminal amino
acids facilitate transport into the endoplasmic reticulum. Once inside, the first 18 amino
acids are cleaved to make pro-albumin [43]. This pro-albumin is the primary intracellular
form of albumin before it gets transported into the Golgi apparatus. The remaining six
amino acids are cleaved from the N-terminus by furin, and the mature albumin is secreted
from the hepatocytes [43]. The mature human albumin consists of 585 amino acids and has
a molecular mass of 66,348 Da.

HSA is a globular, heart-shaped protein with a repeating series of six helical subdo-
mains [44,45]. HSA is comprised of 67% α-helices, 10% turns, 23% random coils, and no
β-sheets [46]. High-resolution X-ray crystallography structures show three predominant
domains in albumin. They are generally numbered as domain I (1–195 aa), domain II
(196–383 aa), and domain III (384–585 aa) [44] (Figure 1). Each domain is subdivided into
two subdomains, A and B. There is a remarkable degree of sequence and structural similar-
ity as well as surface charge distribution similarity between HSA and its counterparts from
bovine (BSA), equine (ESA), leporine (LSA), and canine (CSA) sources (Figure 2) [47–49].
At a sequence level, HSA and BSA share 76% identity [50], while, overall, serum albumins
from various sources share more than 62% sequence identity [48]. The average root mean
square deviation (RMSD) of BSA crystal structure compared to HSA structure is 1.1 Å; for
ESA and LSA, it is 1.2 Å [48]. This structural similarity is one of the main reasons HSA can
be substituted with BSA or albumins from other sources in cell culture practices [11]. Molec-
ular dynamics analysis of HSA, BSA, and CSA indicate that motion of domains I and III
are key in defining the properties of the albumins [49]. BSA is structurally somewhat more
rigid than HSA, while CSA is more flexible and possesses larger, more water-accessible
drug binding sites.
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Figure 1. Domain organization of human serum albumin. Domain I (red), domain II (blue), and domain III (green). The 3-
D model was generated by PyMOL using 1AO6 PDB file. 

Figure 1. Domain organization of human serum albumin. Domain I (red), domain II (blue), and domain III (green). The 3-D
model was generated by PyMOL using 1AO6 PDB file.

HSA has 17 intramolecular disulfide bridges that are present primarily between the
α-helices. These disulfide bonds are essential for the stability of the protein [51]. It also
has one free cysteine residue (Cys-34), present in domain I and conserved across species.
This residue is responsible for albumin dimerization during purification by forming an
intermolecular disulfide bridge [44]. Chemical modification of Cys-34 can prevent dimer
formation [52]. Purification of only domain I also results in protein dimerization because of
this free cysteine residue [53]. The free cysteine residue is in a≈10 Å deep crevice and plays
a critical role in the redox properties of albumins shown to be crucial in cell culture [11]. Cys-
34 forms complexes with various metal ions and scavenges free radicals under in vivo and
in vitro conditions [11]. The Cys-34 residue is also involved in scavenging the free radical
nitric oxide and other reactive oxygen species (ROS) [54]. It is attributed to protection
against lipid peroxidation by reactive oxygen species by scavenging ROS [55]. Additionally,
a conserved histidine residue (His-3) also acts as a critical metal chelator that scavenges
reactive oxygen species [56].



Int. J. Mol. Sci. 2021, 22, 8411 5 of 16Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 17 
 

 

 
Figure 2. A comparison of surface charge distribution between HSA (A,B) and BSA (C,D). The two views for each protein 
structure are flipped 180° along the vertical axis. The images were generated by PyMOL using 1AO6 and 4F5S PDB files. 
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4. Fatty Acid Interactions

HSA binds and carries fatty acids in the vascular system [57]. Albumin is the carrier of
99% of non-esterified fatty acid (FA) present in blood plasma. Classically, albumin is shown
to have 7 high- and more than 20 low-affinity FA-binding sites [6,58]. FA affinity to albumin
is also chain length-dependent, with oleate (16 carbons) having a higher affinity than laurate
(10 carbons) [59]. FA binding modulates conformational changes in albumin [60]. Defatted
albumin is present in a specific conformation know as N-form (neutral-form) [61]. The FA
bound form of albumin is known as B-form (basic-form) [58,61]. These forms have also
been observed as FA-free HSA undergoes reversible conformational transitions at different
pH values [62,63]. At pH of lower than 3, HSA has an extended conformation [63,64].
Between pH 3 to 4.3, HSA assumes a fast migrating (F) form characterized by increased
viscosity and lower solubility [63]. Between pH 4.3 and 8.0, the N-form is represented by
the characteristic heart-shaped structure (Figure 1) [63]. At a pH greater than 8.0, HSA is
present as the B-form [63]. The transition from N to B forms is characterized by domain
rotation within the molecule; domains I and III in particular appear to pivot around a point
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close to the interface with domain II [58]. The most distal subdomains display the most
significant deviations in position as a consequence of FA binding [58].

The seven high-affinity FA binding sites are asymmetrically distributed throughout
the protein [65–67] (Figure 3). The first site is located in subdomain IB. This FA binding site
also binds with heme, sequestering free heme in the blood and subsequently recirculating
it. The second FA-binding site lies at the interface between IA and IIA. FA-binding sites
three and four are present in subdomain IIIA. These FA bind sites are also therapeutic
compound binding hotspots [68]. The FA-binding site five is present in IIIB. Site six is
between subdomains IIA and IIB, and site seven is present in subdomain IIA. NMR studies
show sites two, four, and five are the primary FA interacting sites. They offer the most
favorable conditions by providing a highly enclosed environment that allows the aliphatic
chain of the FA to be tightly bound. Additionally, the presence of basic amino acid side
chains at the binding pockets edge leads to salt bridge interactions with the fatty acyl
carboxylic head group [58].
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FA binding sites also accommodate other ligands, including several drug molecules [58].
Albumins from different species, such as human, bovine, and equine, are structurally simi-
lar, with similar amino acid compositions within the FA binding sites [47]. In eukaryotic
cell culture systems, albumins present in the media bind with the FAs, circulate them, and
help facilitate the FA uptake by the cells [6].

5. Metal Ion Interactions

Metal ions are essential for the growth and development of cells [69]. HSA is a key
transporter of the crucial metal ions Cu2+ and Zn2+ in plasma [70]. In addition, metal
ions such as copper undergo univalent redox reactions that catalyze the formation of free
radicals [71]. It has been shown both in vivo and in vitro conditions that the potential toxic
activity of metal ions is mitigated by albumin binding [6]. Albumin has four metal-binding
sites with partially selective metal affinity preferences [6,72].
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5.1. The N-Terminus Metal-Binding Site (NTS)

The first metal-binding site comprises the first three residues (Asp-Ala-His in HSA)
at the N-terminus of the protein [6,72,73]. The nitrogen atoms of the peptide bonds
between these residues, the N-terminal amine and His-3 residue, coordinate with the Cu2+

and Ni2+ metal ions in a square planar ligand arrangement [6,73,74]. Cu2+ binds with
high affinity to albumin, with the dissociation constant for the HSA-Cu2+ complex being
6.7 × 10−17 M [75]. The His-3 residue is considered critical for the high-affinity binding
of Cu2+. His-3 is highly conserved in mammals, except dogs and pig albumins [75]. They
have His-3 substituted with Tyr-3, leading to higher suscpetibility of copper toxicity in
these species [72]. The Ni2+ affinity to the NTS is comparatively lower, with a dissociation
constant value of 2.5 × 10−10 M. Co2+ ions also bind to the NTS and have a dissociation
constant of 1 × 10−4 M [74]. The NTS has a highly flexible conformation as it is not
observed even in the high-resolution crystal structures of albumin.

5.2. The Cys-34 Metal-Binding Site

The second metal-binding site is present at reduced Cys-34 residue [6,72]. It is the only
cysteine residue within HSA that does not pair with another cysteine to form an intramolec-
ular disulfide bond [45]. The disulfide bond patterns are highly conserved in all vertebrate
albumins with 17 disulfide bridges and a single free thiol cysteine residue [45,47,76]. HSA,
in its reduced form, has the free thiol of Cys-34. However, this amino acid residue tends to
form a heterogenic disulfide bond with other cysteines, leading to protein dimerization [44].
Cys-34 is located in a cleft between helices 2 and 3 of subdomain IA, which results in limited
accessibility and high specificity in metal ion interactions [44,72]. Ag+, Au +, Hg2+, Pt2+,
and Fe2+ metal ions specifically bind to Cys-34 [72]. Ag+ has a measured dissociation
constant on 1 × 10−5 M for its binding to Cys-34 [77].

5.3. The Multi-Metal Binding Sites A and B (MBS-A, -B)

The MBS-A is present at the interface of domains I and II [6]. The MBS-A and MBS-B
are also known as primary and secondary cadmium binding sites as Cd2+ was the first
metal ion associated with these sites in NMR studies [78,79]. Site-directed mutagenesis
studies show that His-67 present in domain I is crucial for Cd2+ binding for MBS-A [79].
The dissociation constant for Cd2+ binding at MBS-A and -B is 5.0 × 10−6 M [79].

X-ray crystallographic studies of apo and metal bound HSA and site-directed mu-
tagenesis analysis have identified Asn-99 present in domain I, His-247, and Asp-249 in
domain II as primary residues that coordinate with Zn2+ in MBS-A [79,80]. The dissociation
constant for Zn2+ binding is 2 × 10−5 M [80]. It is now well documented that Zn2+ ion
binds primarily at MBS-A to induce cooperative allostery [72,80]. FA1, FA2, and FA7
binding sites surround the MBS-A, suggesting that the FA loading significantly influences
the metal ion affinity to MBS-A [6,72]. The MBS-A additionally binds to Cu2+ and Ni2+.
The multi-metal binding site B (MBS-B) is the fourth and final metal-binding site [6,79,80].
This site primarily associates with Cd2+ ions [72]. The amino acids involved in the Cd2+

binding at MBS-B are unknown. This site might have a higher degree of flexibility, resulting
in multiple conformations; hence, it has not been characterized with confidence by X-ray
crystallography or other structural methods. Recently, Co2+ ions were also shown to be
associated with MSB-B [81].

The toxic effects of metals ions can be detrimental to cell growth, however, some
metal ions are required for efficient cell growth as they serve as co-factors for several
enzymes involved in critical biological pathways [11]. Albumin, with its ability to interact
with various metal ions, can play a dual role in both scenarios. Some metal ions such as
vanadium (bound to the drug binding site 1) and selenium (attached to disulfide bonds) are
essential for cell growth under in vivo and in vitro conditions [82–84]. Albumin coordinates
with these trace elements and ensures their transport for optimal cell growth and survival.
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6. Antioxidant Features of HSA

The antioxidant activity of HSA is primarily attributed to the redox properties of the
four main metal-binding sites [85]. Free Cu+, Fe2+, and other metal ions react with oxygen
to generate ROS [86]. Moreover, they can also interact with H2O2 to generate harmful
hydroxyl radicals [86]. On the other hand, albumin binding to the metal ions limits the
ability of these ions to participate in the ROS generation [85].

The industrial-scale eukaryotic cell cultures performed in bioreactors contain dissolved
oxygen and free metals such as iron, copper, cobalt, and nickel, generating ROS that
degrades the cell membranes [11,87]. The inclusion of BSA or HSA leads to lower ROS
stress, enabling healthy cell cultures. On the other hand, the binding of albumins to
these metals, especially copper, zinc, vanadium, and selenium, facilitates the uptake of
these metals by cells, stimulating culture growth and considerably improving recombinant
protein production in eukaryotic cells [11].

7. Pyridoxal and Riboflavin Interactions

Amino acids are the critical components of cell culture media. Any cell culture
medium composition comprises essential amino acids that are required by the cells for
efficient translation of the proteins ensuring optimal cell growth, survival, and cell division.
Pyridoxal and its derivative pyridoxal 5′phosphate (PLP) react with free amino acids,
especially lysine and arginine, to form a Schiff base [88]. These Schiff bases are highly
unstable. When exposed to metal ions, they lead to amino acid degradation prohibiting
cell growth under in vitro culture conditions. The free pyridoxal moieties are sequestered
by binding to albumin [89]. PLP forms a Schiff base with the Lys-190 of HSA [90]. The HSA
stabilizes PLP by preventing its degradation [89,91]. It removes the free PLP contaminants
from the cell culture media barring PLP–amino acid complex formation.

Riboflavin is another factor that can react with free amino acids to degrade them [92].
It acts as a photosensitizer and oxidizes free amino acids such as tryptophan that are present
in the cell culture media. The photoproduct of the riboflavin–amino acid complex is known
as lumichrome [92]. This lumichrome formation leads to rapid degradation of the riboflavin-
bound amino acids [92,93]. Albumin stabilizes the photoreactive riboflavin. It donates an
electron to riboflavin, creating a reduced inactive adduct [94,95]. By doing so, albumin
titrates free riboflavins in the cell culture media, eliminating amino acid degradation.

8. Chemical Modifications of HSA

Albumins undergo several post-translational modifications that influence the ligand
binding and other activity of the proteins [96]. These chemical modifications are acetylation,
glycosylation, glycation, nitrosylation, oxidation, carbonylation, phosphorylation, and
chlorination [6]. Here, we only discuss essential modifications that influence albumin’s
function as an additive in cell culture. Albumin glycation occurs when the amino group
of a basic residue forms a Schiff base with a sugar carbonyl group [97,98]. Arg410 and
Lys 525 are glycation hotspots in HSA [98]. Upon glycation, albumin shows a significant
change in protein conformation caused by a loss in secondary and tertiary structures [99].
Glycation triggers modification of critical residues such as His and Trp, as observed by the
loss of intrinsic fluorescence of the protein [100,101]. These modifications also impair the
antioxidant properties of albumin [6]. It has been shown that as little as one glycyl group
attached to albumin can cause toxicity [6]. Thus, the albumin purification process from
plasma or recombinant protein from heterologous sources should avoid albumin glycation.

The Cys34 is another chemical modification hotspot [102,103]. S-nitrosylation of Cys34
alters its metal-binding properties [96]. Cys34 oxidation attributes to the significant antioxi-
dant activity of albumins [96]. Additionally, methionine residues also undergo oxidation
to scavenge the reactive oxygen species [104]. Met87, Met123, Met329, Met446, and Met548
are primary residues that act as metal chelators to neutralize the ROS [56]. Together, Met
and Cys residues account for 40–80% of the antioxidant activity of HSA [56,85].
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9. Ligand Interactions

The ligand-binding sites are the primary basis of HSA-based cargo delivery [9,105].
High-resolution structures of HSA with therapeutic compounds alongside biochemical and
biophysical studies have characterized three ligand binding sites located in the IIA, IIIA,
and IB subdomains (Figure 1). The IIA and IIIA subdomain binding sites are commonly
referred to as ‘Sudlow sites’ 1 and 2, respectively [68]. Carter et al. demonstrated the
presence of the third major drug-binding region of HSA in the subdomain IB [106,107].

The drug-binding site 1 (Sudlow site 1) is present in subdomain IIA. The site is
predominantly apolar, with a couple of groups of polar residues. One group of polar
residues is present at the very bottom of the site and comprises residues Tyr150, His242,
and Arg257 [9]. The second group is located at the opening of the binding pocket and
contains residues Lys195, Lys199, Arg218, and Arg222 [9]. The abundance of basic residues
defines the ligand-binding specificity of this site. The Sudlow site 1 accepts warfarin,
phenylbutazone, amantadine, azapropazone, azidothymidine, indomethacin, iodipamide,
oxyphenbutazone, 2′indole sulfate, and 3′diflunisal [9].

The subdomain IIIA harbors the drug-binding site 2 (Sudlow site 2) [9]. This ligand-
binding pocket is predominantly hydrophobic, with characteristic electrostatic features.
Polar residues present at one side of the binding pocket entrance [9]. Arg410, Ser489, and
Lys414 are critical residues within this site that interact with associated ligands. Several
drug molecules such as ibuprofen, digitoxin, benzodiazepine, halothane, propofol, and
non-steroid anti-inflammatory drugs are shown to bind specifically to this drug site 2 [9].

A third drug binding site, identified in subdomain IB, has been shown to accommodate
lidocaine, bilirubin, warfarin, myristic acid, naproxen, indomethacin, and heme iophenoxic
acid [106]. This site offers more affinity towards endogenous ligands and heterocyclic
compounds. Tyr138, Tyr161, Arg141, and Lys190 are the critical residues involved in ligand
binding site [108].

The ligand-binding affinity of all these sites is affected by the conformational changes
that occurred due to FA binding [6]. The FAs association with the albumin has shown
to increase the binding affinity of ligands such as warfarin to the Sudlow site1 while
decreasing the binding affinity of diazepam to the Sudlow site 2 [96]. The Sudlow sites
1 and 2, and third ligand binding site share the amino acid composition with the FA
binding hotspots [6]. The FA7-binding site overlaps with Sudlow site 1, and the FA3-
and FA4-binding sites overlap with Sudlow site 2 [6]. Allosteric changes resulting in FA
binding might affect the ligand interacting side chains of the amino acids lining the binding
pocket [6,57,58].

The HSA sequesters and transports free heme by interacting with the third drug
binding site in the subdomain IB [6]. Heme under physiological conditions serves as a
prosthetic group for heme-binding proteins essential for the growth and division of cells.
Higher levels of heme can cause generation of ROS, resulting in oxidative stress [109].
Heme also causes the oxidation of high- and low-density lipoproteins [110]. HSA titrates
the surplus heme and channels it into the heme degradation pathways, thus helping in
cell survival [111]. Similarly, the HSA–bilirubin complex prevents cell death from bilirubin
toxicity in culture conditions [112].

10. Protein Interactions

Various protein interactions facilitate albumin uptake from the extracellular environ-
ment to inside the cell. Specialized plasma membrane surface proteins are involved in
these processes. These membrane proteins use clathrin-dependent or dynamin-dependent
endocytosis processes. Some of the common membrane-bound albumin-binding proteins
are glycoprotein 60 (gp60)/albondin, gp18, gp30, apolipoprotein B-100, IgG receptor FcRn
large subunit p51, alpha-2-HS-glycoprotein, apolipoprotein A-I, fibronectin type III, alpha-
1-acid glycoprotein 1, antithrombin-III, fibrinogen alpha chain, vascular endothelial growth
factor A, and SPARC protein (secreted protein, acidic, and rich in cysteine) [7,113–116].
More than 50% of albumin is absorbed from the blood capillarylumen by albondin in-
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teractions [117]. SPARC protein binds to albumin in a similar fashion to albondin and
is shown to enhance drug-bound albumin accumulation within tumorous tissues [116].
The most studied albumin interaction is the FcRn–albumin complex. The FcRn binding
site is present in the C-terminal of the domain III of albumin. FcRn binds to albumin in a
pH-dependent manner. Site-directed mutation studies show that three conserved histidine
residues (H646, H510, and H535) on domain III of HSA play a critical role in FcRn binding.
The FcRn regulates the half-life of the bound albumin to about three weeks by protecting
albumin from intracellular degradation [118]. Recently, recombinant albumin variants with
altered FcRn binding kinetics resulted in an extended albumin half-life [119–121]. These
protein interactions facilitate albumin trafficking inside the cells in a culture environment.
This results in the import of albumin-bound ligands such as metals and FAs essential for
optimal cell growth and survival [11].

11. Protective Role of Albumin against Physical Damage in Cell Culture

Eukaryotic cells, especially mammalian cells, are susceptible to physical stress in a
bioreactor environment [122–125]. Albumin protects the eukaryotic cell damage in sparged
and airlift type bioreactors [126]. Evidence shows that minimal usage (1 g/L) of albumin
can significantly reduce cell lysis in mammalian cell cultures in pilot airlift bioreactors
or bubble-free membrane aerated bioreactors [127]. Albumins are also used along with
other additives such as anti-foaming agents and pluronic acid as a shear protectant for
optimal results [128]. It is now widely believed that albumins might interfere with the cell
culture’s physiochemical properties to prevent physical cell damage [128]. It is, however,
largely unclear how additives, especially proteins such as albumin, prevent acute lethal
cell damage in a bioreactor environment [129,130].

12. Role of Albumins in Bioprocess Development

Albumins have now wholly replaced the usage of serum and its derivatives in bio-
process development on an industrial scale. This is possible only with the availability
of desirable quantities of highly purified recombinant albumins expressed and purified
from heterologous hosts [11]. It have been shown to maintain cell stability in bioreac-
tors for producing interleukin-2 and other therapeutic proteins [127]. Albumins are used
in antibody production in hybridoma cell culture media [131]. Albumins support the
growth of the immortal cell lines in the culture medium, working as a physical shear
protectant [11,132]. HSA is also used in stem cell culture applications to promote the highly
reproducible differentiation of human embryonic stem cells [133]. HSA also promotes
growth of mouse embryo culture [134]. rHSA is highly desirable for these purposes as it
meets stringent regulatory requirements for clinical applications [23]. Albumin is used for
the development of serum-free media for fibroblast culture [135,136]. Not all albumin has
the same efficacy in the cell culture media. The purity of the protein and the composition of
albumin-associated ligands are the key factors that govern the protein’s role as an additive
in culture media [11,137]. The ligands associated with the purified proteins heavily depend
on the protein source (serum or recombinant) and the purification process [138]. This is
the main reason for batch-to-batch variation in the cell culture with albumin as an addi-
tive [138,139]. The addition of stabilizers, such as octanoic acid, with rHSA compositions
has been shown to have profound adverse effects in specific cell culture systems [140].
Moreover, different post-translational modifications, including glycation and oxidation
in HSA from recombinant or serum origins, produce significant batch-to-batch variabil-
ity [141]. It is generally advised to stick with one vendor and albumin manufacturer while
optimizing a cell culture process.

Albumins are substituted by other synthetic or natural alternatives in modern-day
cell culture media [142]. Hydrolysates, especially plant protein hydrolysates, are suc-
cessfully used to substitute albumins in embryo culture media [143]. Hyaluronic acid
is also used to replace albumin in the human embryo transfer medium [144]. Polyvinyl
alcohol combined with amino acids is used to substitute albumins in culture medium for



Int. J. Mol. Sci. 2021, 22, 8411 11 of 16

mouse pre-implantation embryos. Another popular approach is the protein-free cell cul-
ture media [145]. Proprietary formulations such as MEM and RPMI-1640 are protein-free.
Compared to albumin-containing media, protein-free media can promote superior cell
growth, higher protein expression, and facilitate simpler downstream purification for many
recombinant proteins [146]. However, these formulations are usually cell-line specific and
need to be verified or optimized for any given culture.

13. Conclusions

The inherent properties of the human serum albumin make it highly desirable for
biotechnological applications. It is commonly used in cell culture applications as a re-
placement for traditionally used serum. It is a crucial transporter of biologically active
components essential for the growth and survival of eukaryotic cells. With overgrowing
applications in hybridoma culture media, stem cell culture media, and tissue engineering
media, albumins are becoming more relevant to modern-day bioprocess development.
High-resolution structures of HSA have identified critical residues for ligand binding and
transport, which are essential for the growth and development of cells. This informa-
tion can now be exploited by the modern-day recombinant DNA technology to design
specific HSA variants in array-based experiments to test custom ligand transport, en-
hanced metal binding, or potent ROS scavenging activities, both in vivo and in vitro, in a
cost-effective manner.
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