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REVIEW

Clinical Trial Generalizability Assessment in the Big Data 
Era: A Review

Zhe He1,* , Xiang Tang2, Xi Yang3, Yi Guo3, Thomas J. George4 , Neil Charness5, Kelsa Bartley Quan Hem6 ,  
William Hogan3  and Jiang Bian3

Clinical studies, especially randomized, controlled trials, are essential for generating evidence for clinical practice. However, 
generalizability is a long-standing concern when applying trial results to real-world patients. Generalizability assessment is 
thus important, nevertheless, not consistently practiced. We performed a systematic review to understand the practice of 
generalizability assessment. We identified 187 relevant articles and systematically organized these studies in a taxonomy 
with three dimensions: (i) data availability (i.e., before or after trial (a priori vs. a posteriori generalizability)); (ii) result 
outputs (i.e., score vs. nonscore); and (iii) populations of interest. We further reported disease areas, underrepresented 
subgroups, and types of data used to profile target populations. We observed an increasing trend of generalizability assess-
ments, but < 30% of studies reported positive generalizability results. As a priori generalizability can be assessed using only 
study design information (primarily eligibility criteria), it gives investigators a golden opportunity to adjust the study design 
before the trial starts. Nevertheless, < 40% of the studies in our review assessed a priori generalizability. With the wide adop-
tion of electronic health records systems, rich real-world patient databases are increasingly available for generalizability 
assessment; however, informatics tools are lacking to support the adoption of generalizability assessment practice.

Appropriately designed clinical research studies, 
especially randomized, controlled trials (RCTs), provide “gold- 
standard” evidence for determining the efficacy and safety 
of medical interventions,1 allowing regulatory agencies to 
approve new therapies and care providers to make bet-
ter clinical decisions. Nevertheless, trial investigators and 
sponsors often overemphasize the internal validity (i.e., “the 
extent to which observed treatment effects can be ascribed 
to differences in treatment and not confounding, thereby 
allowing the inference of causality to be ascribed to a treat-
ment”2) of a study—rightfully to protect participants from 
undue harm and to collect sufficient efficacy information.3 
Typically excluded are pregnant women due to concern 
for fetal health4 and patients with concomitant diseases 
to avoid noise in safety data.5 However, overemphasis on 
internal validity can lead to exclusion of certain popula-
tion subgroups and, subsequently, poor generalizability.6 
Unjustified exclusion of diverse and complex participants in 
clinical trials may undermine safety for patients who will use 
the drug in real-world settings.5 Because of generalizability 
issues many approved drugs had been withdrawn from the 
market after severe adverse drug reactions (e.g., high toxic-
ity, organ damage, and fatalities) were observed.7

The notions of generalizability and population represen-
tativeness are distinct but closely related. In clinical trials, 
three essential populations of interest exist: (i) the target 
population (TP)—patients to whom the study results are 

intended to be applied in real-world patients; (ii) the study 
population (SP)—patients who are eligible for the study 
(based on study inclusion/exclusion criteria); and (iii) the 
study sample (SS)—participants who are enrolled in the clin-
ical study. Generalizability is the ultimate portability of the 
causal effects of an intervention (developed based on the 
SS) to the TP. Population representativeness—measuring 
the SP’s coverage of the TP—is a key determining factor for 
generalizability. Other factors, such as variation of patients in 
different clinical settings, discrepancies in conditions under 
which a trial is conducted,8 and incomplete reporting,9 may 
also affect study generalizability. Further, many real-world 
constraints, such as trial awareness10 and transportation,11 
can also affect participant enrollment. Thus, the SS may not 
adequately represent the SP and, subsequently, the TP.

In this review we focus on “population representativeness,” 
and thus use the terms “population representativeness,” 
“external validity,” and “generalizability” interchangeably, 
omitting other extrinsic factors. A commonly used simplistic 
approach to assess generalizability is to assess the differ-
ences in patient characteristics between the study sample 
and the target population (i.e., patients who received the 
same treatment in routine care). Increasingly, approaches 
that compare the outcomes of patients from observational 
cohorts with participants in the original trials12 were de-
veloped to evaluate study generalizability. However, these 
comparisons can only be made after trial completion. 
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More recently, another type of generalizability assessment 
method has emerged—making population comparisons 
based on data from study eligibility criteria and from obser-
vational cohorts generated through standard of care (e.g., 
electronic health records (EHRs)).13 For example, one can 
compare eligible patients from an observational cohort (e.g., 
trial patients with stage IV colorectal cancer) with the target 
population of the study (e.g., all patients with stage IV col-
orectal cancer).

Generalizability assessment methods can be organized 
into two major categories based on whether the assessment 
data are available before or after trial completion: (i) the a 
priori (also called eligibility-driven) generalizability—the rep-
resentativeness of eligible (study population) to the target 
population; and (ii) the a posteriori (or sample-driven) gen-
eralizability—the representativeness of enrolled participants 
(study sample) to the target population.

Although study generalizability is well-recognized, there 
is a significant knowledge gap between the methods and 
data available for generalizability assessment and their 
adoption in practice. To understand this gap, we performed 
a systematic review, identifying barriers and opportunities 
in clinical study generalizability assessment practice. To the 
best of our knowledge, only one previous review on gen-
eralizability was published―in 2015, before the emergence 
of quantitative, often informatics-based, a priori general-
izability studies.14 Further, our ultimate goal is to develop 
a decision tool to guide investigators on how to choose 
proper generalizability assessment methods for their clinical 
studies. Based on our review, we created a taxonomy that 
synthesizes existing generalizability assessment methods to 
inform the development of a decision guide. We also argue 
that, given the increasing availability of large-scale clinical 
data and advancements in informatics methods such as 
computable phenotypes, informaticians have an opportunity 
to develop novel generalizability assessment methods that 
could optimize patient selection in the study design phase.

IDENTIFICATION OF AVAILABLE INFORMATION

We performed a literature search over the following four 
databases: MEDLINE, Cochrane, PychINFO, and CINAHL. 
Following the Institute of Medicine’s standards for system-
atic review15 and Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA),16 we conducted 
the review in six steps: (i) gaining an initial understanding 
about generalizability assessment and related concepts; 
(ii) identifying relevant keywords; (iii) formulating four 
search queries (see Table S1 in Supplementary File I) to 
identify relevant articles; (iv) screening through titles and 
abstracts; (v) reviewing articles’ full text to further filter 
out irrelevant articles; and (vi) coding the articles for data 
extraction.

Study selection and screening process
We used an iterative process to identify and refine the 
search keywords and strategies. Using the search strat-
egies in Table S1, we identified 5,352 articles as of April 
2019. After removing duplicates, 3,568 records were as-
sessed for relevancy by two researchers (Z.H. and X.T.) 

through reviewing the titles and abstracts against the inclu-
sion and exclusion criteria. Conflicts were resolved with a 
third reviewer (J.B.). During the screening process, we also 
iteratively refined the criteria (Table 1). Of the 3,568 arti-
cles, 3,275 were excluded through the abstract screening 
process. Subsequently, we reviewed the full texts of 293 
articles, excluding 106 more articles based on the exclu-
sion criteria. The interrater reliability of the full-text review 
is 0.90 (Cohen’s kappa, P < 0.001).17 One hundred eighty-
seven articles were included in the final review. Figure 1 is 
the PRISMA flow diagram that depicts the number of arti-
cles identified, included, and excluded, and the reasons for 
exclusions.

Data extraction and reporting
We coded and extracted data from the 187 eligible articles 
according to the following aspects: (i) whether the study 
performed an a priori or a posteriori generalizability as-
sessment, or both; (ii) the compared populations and the 
conclusions of the assessment; (iii) the result outputs (e.g., 
generalizability scores, descriptive comparison); (iv) the fo-
cused disease; (v) the focused population subgroup (e.g., 
elderly); (vi) the types of the real-world data (RWD) used to 
profile the target population (i.e., trial data, hospital data, 
regional data, national data, and international data). Note 
that trial data can also be regional, national, or even inter-
national, depending on the scale of the trial. Regardless, we 
considered them in the category of “trial data” as the study 
population of a trial is typically small compared with obser-
vational cohorts or RWD. For observational cohorts or RWD 
(e.g., EHRs), we extracted the scale of the databases (i.e., 
single hospital, regional, national, and international). For 
studies that compared characteristics of different popula-
tions to indicate generalizability issues, we further coded 
the populations that were compared (e.g., enrolled patients, 
eligible patients, general population, ineligible patients), 
and the types of characteristics that were compared (i.e., 

Table 1 Inclusion and exclusion criteria for articles

Type Criteria

Inclusion 
criteria

Articles about generalizability assessment of clinical 
trial(s) on a specific treatment (e.g., medication, device, 

or medical procedure)

Articles must compare the study sample or eligible 
patients with the patients not in trials

Exclusion 
criteria

Conference abstracts or nonresearch articles

Articles about assessing the external validity of screening 
tools, rating scales, scores, prediction models, etc.

Articles about the recruitment process of a trial or multiple 
trials (including certain systematic review articles)

Articles about the use of eligibility criteria of a trial or 
multiple trials (including certain systematic review 

articles)

Articles about the setting of a trial or multiple trials  
(e.g., hospital size)

Articles that promised to consider external validity in 
future work

Articles that responded to another article

Articles that considered outcomes that are not 
health-related
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demographic information, clinical attributes and comorbidi-
ties, outcomes, and adverse events). We then used Fisher’s 
exact test to assess whether there is a difference in the 
types of characteristics between a priori and a posteriori 
generalizability assessment studies.

INTERPRETATION OF AVAILABLE INFORMATION
Categorization and characteristics of generalizability 
assessment studies
As shown in Figure 2, there was an increasing number of 
generalizability assessment studies from 1985 to April 2019.

Among the 187 articles, only 14 are methods articles, of 
which 12 studies have evaluated the proposed methods and 
applied them to specific clinical trials as examples, whereas 
the other 2 used simulated data to demonstrate their utility. 
See the tab “Methods Papers” in Data Set 1 for details.

Figure 3 shows a taxonomy that synthesizes existing 
generalizability assessment methods. We defined three 
major dimensions: (i) time perspective corresponding to 
data availability; (ii) output (i.e., score vs. nonscore) of the 
generalizability assessment results; and (iii) populations of 
interest. Figure 3a,b lists the different types of populations 
being compared in a priori and a posteriori generalizability 
assessments, respectively. Table 2 shows the number of 

articles along with references of representative articles for 
each type of the method. Note that “Post-hoc generaliza-
tion” should be considered as a subtype of the a posteriori 
method in which statistical methods were applied to gen-
eralize the results of a clinical trial to the broader target 
population. For example, Westreich et al.18 proposed a 
method that uses an inverse odds weighting approach to 
estimate the treatment effect of the trial results in the target 
population. Complete information about the 187 included 
articles is shown in Data Set 1.

Time perspective of generalizability assessment in 
terms of data availability
Of the 187 studies, 57 (30.5%) assessed a priori generaliz-
ability, 109 (58.3%) assessed a posteriori generalizability, 
and 17 (9.1%) assessed both a priori and a posteriori gen-
eralizability. Among the 109 a posteriori studies, 17 used 
propensity scores or other weighting methods to weight 
the study population while reducing the randomization bias, 
and then compared the characteristics of the weighted 
study population with the target population.19 Four studies 
fall into the post hoc generalization category that inves-
tigated how the results can be generalized to the target 
populations.18,20–22 Figure 4 shows the increasing trends 

Figure 1 The PRISMA flow diagram of the review. PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses.
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of both a priori and a posteriori generalizability assessment 
studies in the past 30 years. Before 2015, there were slightly 
more studies on assessing a posteriori generalizability than 
a priori generalizability and this difference became more 
significant after 2015.

Comparisons of populations in generalizability 
assessment studies
Among the 187 studies, 144 (77.0%) compared the enrolled 
or eligible patients with observational data collected in rou-
tine care. The a priori generalizability studies compared 
eligible patients (by applying the eligibility criteria on a 
patient database) with: (i) ineligible patients (N = 21); (ii) po-
tentially eligible patients (N = 1); (iii) the general population 
(N = 9); or (iv) eligible patients in other trials (N = 1). The a pos-
teriori generalizability studies compared trial participants 
with: (i) nonparticipants (those who do not meet exclusion 
criteria of a trial or those who were eligible for a trial but 

not randomized) (N = 46); (ii) the general population (N = 55); 
(iii) eligible patients (N = 17); (iv) ineligible patients (N = 4); 
or (v) participants in other trials (N = 12). One a posteriori 
generalizability study compared the different participant 
subgroups in a trial.23 In general, we excluded studies that 
merely compared the patients in different arms of a single 
trial; nevertheless, this study was included as it used broad 
inclusion and minimal exclusion criteria to evaluate whether 
phase III clinical trials can recruit representative depressed 
outpatients.23 Table 3 shows the number of generalizability 
studies by different combinations of compared study-
vs.-target population types as well as the types of patient 
information (e.g., demographics, clinical outcomes) that 
were compared. Among the 144 studies, 94.4% (N = 136) 
compared populations’ demographics; 81.3% (N  =  117) 
compared clinical characteristics; 44.4% (N = 64) compared 
treatment outcomes; and very few (4.9%, N  =  7) com-
pared adverse events. The result of Fisher’s exact test (see  

Figure 2 The numbers of generalizability assessment studies from 1985 to April 2019.

Figure 3 A taxonomy of generalizability assessment methods. Boxes (a) and (b) list the different types of populations compared in a 
priori and a posteriori generalizability assessment articles, respectively.
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Table S2 in Supplementary File I) shows that a posteriori 
generalizability studies were more likely to compare demo-
graphic information than a priori generalizability studies. 
With respect to the conclusions about the generalizability 
of the evaluated trials, 29.4% (N = 55) concluded that the 
trials are generalizable, 59.4% (N = 111) concluded that they 
are not generalizable, and 11.2% (N = 21) reported mixed or 
neutral results in which parts of the analysis indicated good 
generalizability, whereas the other parts did not.

Output of generalizability assessment results
Only nine studies used a score to quantify the generalizability 
of a trial or trial set. Among 74 a priori generalizability studies, 
only five analyzed generalizability with score-based meth-
ods. Most score-based a priori generalizability assessment 
methods were developed by informaticians.24 These infor-
matics-based a priori methods, such as the Generalizability 

Index for Study Trait (GIST),25 mGIST,26 and GIST 2.0,27 
aimed to quantify the population representativeness of trials 
using the trial’s eligibility criteria combined with the target 
population’s demographic and clinical characteristics cor-
responding to those criteria. For example, the GIST score 
quantifies the population representativeness of multiple 
studies with respect to a single study criterion.25 It is the 
sum across all consecutive non-overlapping value intervals 
of the percentage of studies that recruit patients in that in-
terval, multiplied by the percentage of patients observed in 
that interval. mGIST extended GIST to a multivariate setting 
by creating combinations of non-overlapping value intervals 
of multiple study criteria.26 However, mGIST did not consider 
the importance of each variable in terms of its restrictiveness 
for patient selection; thus, GIST 2.0 assigns weights corre-
sponding to variable importance to assess the population 
representativeness of a trial with respect to either a single 
study trait (sGIST) or multiple study traits (mGIST 2.0).27 
Previously, Sen et al. have demonstrated the correlation 
between GIST 2.0 and the adverse events of the patients en-
rolled in clinical trials28. Nevertheless, these methods could 
be further validated to show the strong correlation between 
generalizability scores with the outcomes of patients in the 
target population (e.g., treatment outcomes, adverse events).

Of 74 a priori generalizability studies, 69 are non‒  
score-based with two major types: (i) studies that applied 
a standard set of eligibility criteria representative of clinical 
trials on a disease and assess how many patients in a da-
tabase would fulfill typical eligibility criteria29; and (ii) studies 
that descriptively compared the demographic and/or clinical 
characteristics between eligible patients and a target popu-
lation (e.g., general population in routine care,30 and ineligible 
patients31).

There are 122 studies that utilized non‒score-based 
a posteriori methods,. For example, Susukida et al.32 

Table 2 Categorization of generalizability assessment methods

Axis Item

Number of 
publications 

(N = 187) Example article

Types of 
methods

A priori 57 Zimmerman et al.13

A posteriori 113a Cahan et al.34

Post hoc 
generalizationb

4 Cole et al.20

A priori/a 
posteriori

17 Lane et al.67

Output of 
results

Score 9 Weng et al.25

Nonscore 178 Westreich et al.18

aIncluding the four post hoc generalization studies. bPost hoc generali-
zation: studies that applied methods to generalize a trial’s results to the 
broader target population (e.g., estimate the treatment effect in the target 
population with the trial results without recruiting and collecting more par-
ticipant data).

Figure 4 The yearly trend of generalizability assessment publications by methods in terms of data availability.
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assessed the difference in the mean propensity scores to 
compare the differences between the study sample and 
the target population. Moore et al.33 compared the demo-
graphic, clinical, and laboratory characteristics between 
human immunodeficiency virus (HIV)‒infected partici-
pants in two antiretroviral trials and eligible patients. The 
non‒score-based a posteriori or a priori methods that 
only descriptively compare demographic data between 
different cohorts lack rigorous validation that associates 
the measured generalizability with outcomes in the target 
populations.

Very few (N  =  4) score-based a posteriori methods 
exist. Cahan et al.34 proposed a framework to produce a 
“generalizability score” that quantifies the relative differ-
ence of a demographic or clinical attribute between the 
enrolled patients in different trials (i.e., the difference of 
an attribute is the ratio between the attribute values in the 
two compared studies). Stuart et al.35 used a propensity- 
score‒based metric to quantify the similarity between the 
participants in a RCT and the target population. It weights 
the control group outcomes and assesses how well the 
propensity-score‒adjusted outcomes track the outcomes 
observed in the target population. Susukida et al.36 used 
the pooled difference in the mean propensity scores be-
tween the RCTs and the target population to quantify 
the population representativeness of RCTs. Table S3 in 
Supplementary File I shows these examples with more 
detailed information about their methods.

Disease areas of generalizability assessment
Generalizability assessments have been conducted on 
trials of various disease areas, including cancer (N = 35; 
e.g., Sam et al.37), cardiovascular diseases (N = 34; e.g., 
Patel et al.38), mental diseases (N = 33; e.g., Zimmerman 
et al.13), musculoskeletal diseases (N = 8; e.g., Becker et 
al.39), HIV/acquired immunodeficiency syndrome (N  = 6; 
e.g., Saeed et al.31), endocrine diseases (N  =  6; e.g., 
Wittbrodt et al.40), drug or alcohol abuse (N  =  6; e.g., 
Susukida et al.36), respiratory diseases (N = 5; e.g., Agweyu 
et al.41), and smoking (N  = 5; Susukida et al.12), surgery 
(N  =  3; e.g., Fischer et al.42), ear diseases (N  =  3; e.g., 
Rovers et al.43), digestive disease (N = 3; Millard et al.44),  
sleep disorders (N = 3; Huls et al.45), skin diseases (N = 3; 
Yiu et al.46), pain (N = 2; de C Williams et al.47), and other 
diseases (N = 11; e.g., Laskay et al.48). 21 articles did not 
specifically focus on a particular disease (e.g., Hong et 
al.49).

Data sources used to define target populations
Figure 5 depicts the trends of the different types of data 
used for profiling the target population in generalizabil-
ity studies. “Trial-data” are data from patients considered 
for trials (but not enrolled); “Hospital-data” indicate that 
the patient data were from small group (i.e., 1–3) of hos-
pitals; and “region-/national-/international-levels” refer to 
the scale of the hospital/registry/survey data. It is evident 
that hospital data, national (e.g., Epidemiology, and End 
Results (SEER) data,50 National Health and Nutritional 
Examination Survey,40 UK Clinical Practice Research 
Datalink49), and international data (e.g., Global Registry of Ta
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Acute Coronary Events51) have been used more frequently 
over time.

Focused population subgroups
Of the 187 studies, 28 (15%) studies focused on the under-
representation of specific population subgroups: children 
(N = 8); elderly (N = 12); gender (N = 9); and ethnic minorities 
(N = 6). The elderly population is the most studied under-
represented subgroup. Note that some studies discussed 
more than one subgroup. For example, Heiat et al.52 ana-
lyzed the enrolled patients in 59 heart failure clinical trials 
and found that older adults and female and nonwhite pa-
tients were underrepresented in these trials. 

IMPLICATIONS AND FUTURE DIRECTIONS

Over the past 2 decades, an increasing number of studies 
have assessed the generalizability of clinical trials, espe-
cially after 2015. Although the literature on generalizability 
assessment and associated methods is abundant, our re-
view has been shown that it is poorly organized and there is 
little agreement on analytic procedures.

Among the studies we reviewed, most generalizability 
assessments were conducted a posteriori rather than a pri-
ori, hence could only discover generalizability issues after 
the completion of a trial, missing the opportunity for early 
detection and correction of sampling procedures. In addi-
tion, we found that most generalizability assessments are 
shallow: (i) in a priori generalizability studies, researchers 
often apply the study eligibility criteria on a patient database 
(e.g., EHRs from a hospital) to identify the study population 
and compare patient demographics, clinical characteristics, 
and outcomes between the study population and a target 
population; and (ii) in a posteriori generalizability studies, 
researchers make comparisons of different types of patient 
characteristics between the enrolled patients and a target 
population. In a few studies,46 researchers first used the pro-
pensity score or other weighting mechanisms to reduce the 

bias of randomization of patients into intervention arms or 
control arms and then compared the weighted study pop-
ulation with the target population. We also observed that, 
for the 144 studies (see Table 3) that compared enrolled pa-
tients or eligible patients with observational data collected 
in routine care, only 7 (4.9%) compared the adverse events 
between these populations, leaving an important gap to fill 
in future generalizability assessments.

Score-based generalizability assessment methods are 
scarce in both a priori (N = 5) and a posteriori (N = 4) stud-
ies, representing a lost opportunity to quantify a study’s 
generalizability. For example, a score-based a priori gen-
eralizability method can yield actionable knowledge to help 
investigators adjust the eligibility criteria toward improved 
population representativeness (i.e., a higher generalizability 
score), while balancing the trial’s internal validity, before the 
trial starts enrollment.

Not surprisingly, we observed that there is no univer-
sal definition of the “target population,” due in part to the 
evolving nature of treatment development (e.g., drug repur-
posing), but also to the lack of consensus on the applicability 
of a trial. In fact, specifying the target population is difficult 
not only in generalizability assessment but also in clinical 
practice. Regulatory agencies (e.g., the US Food and Drug 
Administration  (FDA)) typically only approve a treatment 
agent with an indication that its use is restricted to the study 
population tested in the trials; nonetheless, “off-label” use 
of the agent is very common. Because it is virtually impossi-
ble to assess the data for all potential patients in the target 
population, generalizability assessment studies mostly use 
a convenience sample (e.g., patients with a specific condi-
tion in an observational database) to approximate the target 
population. Traditionally, researchers compare character-
istics between the enrolled patients with the eligible but 
nonrandomized patients,53 so they are limited to studying 
patients who are geographically close to the study site. In 
recent years, we observed an increasing trend toward using 
large-scale, national and international data sets to identify 

Figure 5 Trends of the data source types used for profiling the target populations.
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the target population when assessing study generalizabil-
ity. With the wide adoption of EHR systems, secondary 
use of hospital data has increased tremendously.54 With 
more observational real-world data (e.g., data from the 
Patient-Centered Clinical Research Network (PCORnet)55) 
becoming readily available, we anticipate that both a priori 
and a posteriori generalizability assessment will become de 
facto processes in trial design and conduct.

In this review we also found that no study has investi-
gated the trade-off between clinical trial generalizability 
(external validity) and internal validity. As this is a critical 
problem in clinical research, we hope that this work can 
encourage the research community to design novel ap-
proaches to afford balance to this issue. Such work may 
need to account for study-specific methodology as well as 
the primary end point of the trial. Internal validity may be a 
higher priority than generalizability in early-phase studies 
where determination of dose-limiting toxicities is the pri-
mary objective.

Importance of a priori generalizability assessment in 
eligibility criteria design process
Conventionally, the eligibility criteria design of a trial de-
pends on investigators’ empirical knowledge of the disease, 
drug, and the trial. Frequently, criteria are adopted from 
previous similar protocols without due consideration of 
the differing drug effects or patient populations,3 leading 
to propagation of difficult-to-justify criteria.56 Van Spall et 
al.57 reviewed 283 RCTs between 1994 and 2006 and re-
ported that 37% of the trials’ eligibility criteria were poorly 
justified, and 84% of the trials had at least one poorly jus-
tified exclusion criterion. Poorly justified and unnecessarily 
restrictive criteria limit patients’ access to trials and lead to 
low study accrual rates,58 resulting in studies that fail to be 
completed59 or fail to capture the heterogeneity of the tar-
get population (e.g., leading to unintended serious adverse 
events after the approval of the treatments3). In particular, 
people aged ≥ 65  years are still significantly underrepre-
sented in drug trials, especially cancer trials.60 Conducting 
a priori generalizability assessment during trial design can 
be beneficial because eligibility criteria can then be ap-
propriately and objectively adjusted (i.e., with the a priori 
generalizability score) to include a diverse population in the 
trial before it is conducted.

Nevertheless, there are a number of barriers to adopting 
a priori generalizability assessments, such as: (i) although 
some informatics-based methods such as GIST 2.0,27 have 
been validated against adverse events extracted from results 
of clinical trial enrolled patients28, we think it is important to 
further validate them against real-world patient outcomes 
and adverse events in the target populations; (ii) the lack 
of readily available, well-vetted statistical and informatics 
tools; and (iii) the knowledge gap in best practice for gen-
eralizability assessment. Further, there is a tacit belief that 
traditional standards—making eligibility criteria unnecessar-
ily restrictive—need to be maintained for fear of exposing 
trial patients to harm and rejection by regulatory and safety 
monitoring bodies.5 Thus, trial investigators do not neces-
sarily feel empowered to modify these criteria in the absence 
of data or a directive to do so.

Informatics’ opportunities for a priori generalizability 
assessments
Streamlining a priori generalizability assessment requires 
automated cohort discovery from RWD, such as EHRs. 
Recently, significant national efforts have started building 
tools and algorithms to support cohort discovery for clini-
cal trials. For example, the i2b2 (Informatics for Integrating 
Biology and the Bedside)61 cohort discovery tool is widely 
deployed and used, and the CALYPSO62 tool based on 
the OMOP (Observational Medical Outcome Partnership) 
Common Data Model (CDM) is also emerging. Nevertheless, 
these tools require investigators to manually translate eligibil-
ity criteria into cohort discovery queries, posing a significant 
barrier. Automated generalizability assessment requires 
computable phenotypes.63 With a computable eligibility cri-
teria (CEC) infrastructure,64 the study population of a trial can 
be readily identified and compared with the target population.

Making eligibility criteria computable is nontrivial. One 
approach is to parse free-text eligibility criteria using ad-
vanced natural language processing (NLP) methods and 
then transforming them into executable database queries. 
For example, Critera2Query was developed to transform 
free-text criteria into OMOP CDM-based database que-
ries.65 However, the complexity of eligibility criteria makes 
it difficult for NLP to achieve optimal results. The perfor-
mance of two important NLP tasks—entity recognition and 
relation extraction—in Criteria2Query is suboptimal (i.e., 
an F1 score of 0.795 and 0.805, respectively).65 A second 
approach, including our own prior work,64 has connected eli-
gibility criteria to underlying clinical databases via ontologies 
and made them computable through ontology-based data 
access frameworks. Use of ontology creates a shared, con-
trolled vocabulary of eligibility criteria and standardizes the 
definitions of data elements, making data understandable 
to both humans and computers. Although parsing eligibility 
criteria and standardizing study traits is still largely a manual 
process in this exploratory phase, it yields much better qual-
ity in terms of accuracy in representing eligibility criteria as 
well as better performance in terms of precision and recall in 
retrieving cohorts accurately. Nevertheless, as NLP methods 
advance, there are opportunities to adapt NLP techniques 
to automate the process to make it more scalable or em-
ploy a hybrid approach that increases both accuracy and 
scalability.

Rather than parsing free-text eligibility criteria after the 
fact, adopting a CEC-based criteria authoring tool during 
the trial design phase may be more efficient. Equipped 
with CEC and readily accessible large, real-world data 
sets, the tool could be developed to assist trial designs by 
providing real-time cohort discovery and a priori generaliz-
ability assessment services. As such, eligibility criteria can 
be fine-tuned and adequately adjusted to improve trial gen-
eralizability during the design phase.

In this review, we have found that existing informat-
ics-based generalizability assessment methods such as 
GIST,25 mGIST,26 and GIST 2.027 should be further validated. 
Their correlations with patient outcomes in  real-world popu-
lations should be systematically evaluated by informaticians. 
In addition, an open-source, publicly available toolbox with 
clear documentation and a guideline should be developed to 
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aid researchers in choosing appropriate methods to assess 
their studies’ generalizability.

In conclusion, we have systematically organized gener-  
alizability assessment methods in a taxonomy consist-
ing of three dimensions: (i) data availability (a priori vs. 
a posteriori); (ii) results output (score vs. nonscore); and 
(iii) populations (e.g., enrolled patients, eligible patients). 
We observed an increasing trend of generalizability as-
sessment of clinical trials over the past 3 decades. With 
the wide adoption of EHR systems in the past few years, 
large-scale, real-world patient data are becoming increas-
ingly promoted (e.g., the FDA’s recent effort on the use 
of real-word data66) and available, making generalizabil-
ity assessment of trials more feasible than ever. However, 
software tools and packages are still lacking and are not 
readily available for generalizability assessment. Further, 
as a priori generalizability can be assessed using only 
study design information (primarily eligibility criteria), 
it gives investigators a golden opportunity to adjust the 
study design before the trial starts. Nevertheless, < 40% 
of studies in our review assessed a priori generalizabil-
ity. Research culture and regulatory policy adaptation are 
also needed to change the practice of trial design (e.g., 
relaxing restrictive eligibility criteria) toward better trial 
generalizability.
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