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ABSTRACT

More than a quarter of lung, uterine, and ovarian adenocarcinoma (LUAD, USEC, and OV) tumors are resistant to platinum drugs. Only
recently and only in OV, patterns of copy-number alterations that predict survival in response to platinum were discovered, and only by
using the tensor GSVD to compare Agilent microarray platform-matched profiles of patient-matched normal and primary tumor DNA.
Here, we use the GSVD to compare whole-genome sequencing (WGS) and Affymetrix microarray profiles of patient-matched normal and
primary LUAD, USEC, and OV tumor DNA. First, the GSVD uncovers patterns similar to one Agilent OV pattern, where a loss of most of
the chromosome arm 6p combined with a gain of 12p encode for transformation. Like the Agilent OV pattern, the WGS LUAD and
Affymetrix LUAD, USEC, and OV patterns are correlated with shorter survival, in general and in response to platinum. Like the tensor
GSVD, the GSVD separates these tumor-exclusive genotypes from experimental inconsistencies. Second, by identifying the shorter survival
phenotypes among the WGS- and Affymetrix-profiled tumors, the Agilent pattern proves to be a technology-independent predictor of sur-
vival, independent also of the best other indicator at diagnosis, i.e., stage. Third, like no other indicator, the pattern predicts the overall sur-
vival of OV patients experiencing progression-free survival, in general and in response to platinum. We conclude that comparative spectral
decompositions, such as the GSVD and tensor GSVD, underlie a mathematically universal description of the relationships between a primary
tumor’s genotype and a patient’s overall survival phenotype, which other methods miss.

VC 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5099268

INTRODUCTION

LUAD, USEC, and OV tumors account for � 12%; �0:5%, and
� 2% of cancer deaths in the US, respectively. More than a quarter of
the primary tumors are resistant to platinum-based chemotherapy, i.e.,
the first-line systemic treatment to accompany surgery for over three
decades.1–3 Most primary tumors are followed by new tumor events,
e.g., metastasis, recurrence, or progression, even in patients experienc-
ing complete remission and months of progression-free survival (PFS)

from the end of the treatment of the primary tumor. Over successive
new tumor events, most tumors develop resistance to platinum,
defined by PFS shorter than six months. Yet, no indicator exists which
predicts—past the end of the primary treatment and during, e.g., the
first PFS interval—the benefit of platinum in terms of overall survival
of LUAD, USEC, and adenocarcinomas in general.

LUAD, USEC, and OV tumor cells are thought to derive selective
advantages from a prevalence of DNA copy-number alterations
(CNAs) rather than from recurrent point mutations.4,5 Even in the

APL Bioeng. 3, 036104 (2019); doi: 10.1063/1.5099268 3, 036104-1

VC Author(s) 2019

APL Bioengineering ARTICLE scitation.org/journal/apb

https://doi.org/10.1063/1.5099268
https://doi.org/10.1063/1.5099268
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5099268
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5099268&domain=pdf&date_stamp=2019-08-20
https://orcid.org/0000-0002-0418-1078
mailto:orly@sci.utah.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/1.5099268
https://scitation.org/journal/apb


normal human genome, copy-number variations (CNVs) are 102–104

times more frequent than point mutations.6,7 Yet, despite advances in
genomic profiling technologies and the growing number of publicly
available genomic data, e.g., in the Cancer Genome Atlas (TCGA)8–10

recurrent CNAs were not identified in adenocarcinomas that were
translated into clinical use.

Only recently and only in OV, patterns of DNA CNAs were dis-
covered which predict the overall survival of patients, in general as
well as following the platinum-based treatment of the primary tumor
and throughout the course of the disease.11,12 The patterns, across the
chromosome arms 7p and, separately, Xq and across the combination
of the two arms 6pþ 12p together but not separately, were discovered
by using the tensor GSVD, a “comparative spectral decomposition,” to
compare Agilent microarray platform-matched profiles of patient-
matched normal and primary OV tumor DNA. Like other profiling
technologies, these Agilent comparative genomic hybridization (CGH)
microarrays rely on a specific experimental design and a specialized
computational protocol, which is sensitive to perturbations to the data,
e.g., due to the changes in the experimental batch or the computational
preprocessing. This has contributed to a low reproducibility, <70%
between technical replicates of the same sample and <50% between
computational assessments of the same raw data, in assigning CNVs
in normal DNA or CNAs in tumor DNA.13

Here, we show that one of these genotype-phenotype relations is
appropriate for adenocarcinomas other than OV, e.g., USEC, which
like OV is a gynecological disease, and LUAD, which is the most com-
mon form of lung cancer, the leading cause of cancer death in the US
and worldwide among both women and men (Methods and Fig. S1 in
the supplementary material and Datasets S1–S4). We also show that
these relations are suitable for profiling technologies other than
Agilent CGH microarrays, i.e., whole-genome sequencing (WGS),14

and Affymetrix single nucleotide polymorphism (SNP) microarrays,
which together with the Agilent CGH microarrays represent the main
technologies.

COMPARATIVE SPECTRAL DECOMPOSITIONS

We formulated the GSVD and defined a tensor GSVD to be a
comparative spectral decomposition, i.e., to simultaneously identify
the similarities and dissimilarities between two column-matched but
row-independent matrices and tensors, respectively, and thus create a
single coherent model from two datasets recording different aspects of
interrelated phenomena.15–18 Any two datasets that record patient-
matched tumor and normal genomes or, more than that, technology-
matched profiles of patient-matched tumor and normal genomes are
of such matrix or tensor structures, respectively. The column axes
correspond to the patients and the genomic profiling technologies,
respectively, and are shared. The row axes correspond to the regions
covered by the microarray probes or WGS bins across the tumor and,
separately, normal genomes, and are independent.

The unsupervised, data-driven GSVD and tensor GSVD separate
the two datasets, of shared column axes but independent row axes,
into pairs of combinations of patterns. Each pair includes one combi-
nation of patterns from each dataset, where the patterns across the
shared column axes are identical, but the patterns across the indepen-
dent row axes are, in general, different between the two combinations.
The two sets of patterns across the two independent row axes are
uncorrelated, i.e., orthogonal. Each pair of combinations of patterns

corresponds to a pair of generalized singular values or “tensor general-
ized singular values,” respectively, which are the superposition coeffi-
cients of the first combination in the first dataset and the second
combination in the second dataset. When the second coefficient is
negligible, i.e., insignificant, relative to the first, the first combination
of patterns is interpreted to represent the phenomena exclusive to the
first dataset. When the first coefficient in one pair is large in magni-
tude, i.e., significance, among all the first coefficients in all pairs, the
corresponding first combination of patterns is interpreted to represent
the phenomena that are significant to the first dataset.

In a comparison of patient-matched tumor and normal genomes,
therefore, the GSVD can uncover the unique combinations of patterns
of variations across the patients and the tumor and normal genomic
regions, which mathematically are significant in and exclusive to the
tumor genomes. In a comparison of technology-matched profiles of
patient-matched tumor and normal genomes, the tensor GSVD can
uncover the combinations of patterns that mathematically additionally
are consistent across the technologies. Biologically and medically, such
combinations of patterns can be expected to describe disease mecha-
nisms and predict patient outcomes, respectively.

The GSVD formulated as a comparative spectral
decomposition

A mathematical building block of computational algorithms and
physical theories, the GSVD of the two matrices Di 2 RKi�L, both
with full column rank L � Ki, exists and simultaneously factorizes
both Di into two sets of basis vectors each, a Di-specific column-wise
orthonormal, i.e., orthogonal and normalized, Ui 2 RKi�L and a
shared invertible row-normalized VT 2 RL�L,19,20

Di ¼ UiRiV
T ¼

XL

a¼1
ri;aðui;a � vTa Þ; i ¼ 1; 2: (1)

The positive diagonal core matrices Ri ¼ diagðri;lÞ 2 RL�L list the
generalized singular values in a decreasing order of the ratio r1,a/r2,a.
The GSVD is unique up to the phase factors of 61 of each triplet of
basis vectors ui,a and va, except in degenerate subspaces defined by the
subsets of equal r1,a/r2,a.

To formulate the GSVD as a comparative spectral decomposi-
tion, we defined the “GSVD angular distance,” i.e., the significance of
the combination of u1,a and va in D1 relative to that of u2,a and va in
D2, to be a function of r1,a/r2,a that, from the cosine-sine decomposi-
tion, is related to an angle (Figs. 1 and S2)

�p=4 < ha ¼ arctanðr1;a=r2;aÞ � p=4 < p=4: (2)

A unique combination of u1,a and va with a GSVD angular distance of
ha � p/4, i.e., a ratio of r1,a/r2,a � 1, is, therefore, mathematically
approximately exclusive to D1, and for consistency should be inter-
preted to represent the phenomena exclusive to the first dataset.

The tensor GSVD is a comparative spectral
decomposition

To extend the GSVD, we defined a tensor GSVD of two, e.g.,
third-order, tensors Di 2 RKi�L�M , which with LM � Ki unfold into
three pairs of full column-rank matrices Di, Dix, and Diy. The tensor
GSVD simultaneously factorizes both Di into three sets of basis
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vectors each, a Di-specific column-wise orthonormal Ui 2 RKi�LM

and shared invertible row-normalized VT
x 2 RL�L and VT

y 2 R;M�M

Di ¼ Ri�aUi�bVx�cVy

¼
XLM

a¼1

XL

b¼1

XM

c¼1
ri;abcðui;a � vTx;b � vTy;cÞ; (3)

where �aUi, �bVx, and �cVy denote multiplications of the matrices
with the core tensorRi 2 RLM�L�M and� denotes an outer product.

The basis vectors of the tensor GSVD are computed from the
GSVDs of the tensors unfolded into three pairs of full column-rank
matrices

UiRiV
T ¼ Di ¼ � � � ;Di;:lm;…½ 	 2 RKi�LM;

VxRixU
T
ix ¼ DT

ix ¼ � � � ;Di;k:m;…½ 	 2 RL�MKi ;

VyRiyU
T
iy ¼ DT

iy ¼ � � � ;Di;kl:;…½ 	 2 RM�KiL; (4)

where Di;:lm is the vector in Di, which spans the Ki-row dimension, in
the lth position along the L-x-column dimension and themth position
along the M-y-column dimension. The full core tensors Ri are com-
puted by contracting Di with UT

i ; V
�T
x , and V�Ty , e.g., by unfolding

the core tensors into the matrices

Ri ¼ � � � ;Ri;:bc;…½ 	 2 RLM�LM ;

Ri ¼ UT
i DiðV�Ty � V�Tx Þ ¼ RiV

TðV�Ty � V�Tx Þ; (5)

where UT
i Di ¼ RiVT from the GSVD of Di and � denotes a

Kronecker product. The ratios of the tensor generalized singular values

ri,abc, therefore, equal the ratios of the corresponding row mode gener-
alized singular values ri,a, i.e.,

jr1;abc=r2;abcj ¼ r1;abc=r2;abc ¼ r1;a=r2;a
¼ r1;a=r2;a > 0: (6)

It follows that the “tensor GSVD angular distance,” i.e., the signifi-
cance of the basis vectors u1,a, vx,b, and vy,c in D1 relative to that of
u2,a, vx,b, and vy,c inD2, equals the row mode GSVD angular distance

Habc ¼ arctanðjr1;abc=r2;abcjÞ � p=4 ¼ ha: (7)

A unique combination of basis vectors u1,a, vx,b, and vy,c with a tensor
GSVD angular distance of Habc¼ ha � p/4, therefore, is mathemati-
cally approximately exclusive to D1 and for consistency should be
interpreted in terms of the interrelations among the different aspects
of the phenomena which are exclusive to the first dataset. This inter-
pretation of the tensor GSVD as a comparative spectral decomposition
is possible because, like the GSVD, the tensor GSVD is exact, exists,
and has unique properties that directly generalize those of the
SVD21,22 (Theorem S1).

AN ADENOCARCINOMA GENOTYPE-PHENOTYPE
RELATION

Consider, e.g., one combination of basis vectors previously
uncovered by a tensor GSVD comparison of patient-matched normal
and primary OV tumor profiles across the two chromosome arms 6p
þ 12p. The profiles were measured twice, by a set of two Agilent CGH
microarray platforms. Mathematically, the combination is unique and

FIG. 1. The GSVD of the 6p þ 12p WGS
profiles of patient-matched LUAD tumor
and normal DNA. The GSVD of Eq. (1) is
depicted in a raster display with a relative
WGS read-count, i.e., DNA copy-number
amplification (red), no change (black), and
deletion (green). This GSVD depiction is
denoted as approximate, even though the
GSVD is exact, because only the first
through the 5th and the 134th through the
138th row and the corresponding tumor
and normal column basis vectors and
generalized singular values are explicitly
shown. The angular distances of Eq. (2)
are depicted in the bar chart in the inset.
The red and green contrasts for the data-
sets Di, the dataset-specific column basis
vectors Ui and generalized singular values
Ri, and the shared row basis vectors VT

are c¼ 1, 150 and 7.5� 10�4, and 10,
respectively.
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is the most significant in the tumor genomes, i.e., corresponds to the
largest tensor generalized singular value in the tumor dataset. It
includes the column basis vector across the tumor set of probes which
mathematically is the most exclusive to the tumor relative to the nor-
mal genomes, i.e., corresponds to the largest ratio of tensor generalized
singular values in the tumor relative to the normal dataset.
Biologically, the Agilent OV pattern that corresponds to this vector
describes co-occurring DNA CNAs that encode for transformation.
These include most of the CNAs that were known and several that
were unrecognized in OV prior to the discovery of the pattern.
Medically, the pattern predicts the overall survival by identifying the
patients of a shorter survival phenotype in the Agilent OV discovery
and, separately, also validation sets, of 249 and 148 patients, respec-
tively, indicating that the survival phenotype is related to the genotype.
Similarly, the x-row basis vector across the discovery set of patients
identifies a subset of patients of statistically significantly shorter sur-
vival times. The y-row basis vector across the set of platforms is
approximately constant, indicating that this genotype-phenotype rela-
tion is independent of the Agilent microarray platform.

Here, we find that the GSVD comparisons of patient-matched
normal and primary LUAD, USEC, and OV tumor profiles measured
by Affymetrix SNP microarrays and normal and primary LUAD
tumor profiles measured by WGS uncover similar combinations
across 6p þ 12p. Mathematically, these combinations are unique and
are significant in and exclusive to the tumor genomes (Fig. S3).
Biologically, the WGS LUAD and Affymetrix LUAD, USEC, and OV
patterns that correspond to the column basis vectors in these combi-
nations are similar to the Agilent OV pattern (Figs. 2 and S4) and
describe LUAD and USEC genotypes that are similar to the OV geno-
type. Medically, the corresponding row basis vectors identify the sub-
sets of patients of shorter LUAD, USEC, and OV survival phenotypes.

Genotypes of a loss of most of 6p combined with a
gain of 12p encode for transformation

To compare the genotypes, we classified the genomic segments
previously identified in the Agilent OV pattern by using circular binary
segmentation (CBS)23 as amplified, unaltered, or deleted in the WGS
LUAD and Affymetrix LUAD, USEC, and OV patterns (Dataset S5).
The classification is based upon the differences, in the median absolute
deviation (MAD), between the copy-number medians of the segments
and the chromosome arms 6p þ 12p. Of the 14 segments of >30
Agilent probes, 12 are classified the same in the five adenocarcinoma
patterns. These describe an adenocarcinoma-shared genotype of a loss
of a segment of�46M nucleotides, i.e.,>75% of 6p, and a gain of 12p.

Of the two remaining segments, one describes a LUAD-specific
loss of an additional segment of >11M nucleotides, i.e., 18% of 6p.
The second describes an OV-specific amplification at the centromeric
end of 6p. By filling in gaps in the genome which are not covered by
the microarray probes, the WGS LUAD pattern adds an amplification
of 33K nucleotides within the 46M-nucleotide deletion on 6p, which
may be LUAD specific.

We find the adenocarcinoma-shared deletions of the mitogen-
activated protein kinase p38-encoding MAPK14 and the cyclin-
dependent kinase (CDK) inhibitor p21-encoding CDKN1A on 6p and
amplifications of the Rad51 associated protein-encoding RAD51AP1
and the Kirsten rat sarcoma viral oncogene homolog-encoding KRAS
on the 12p encode—together but not separately—for transformation
via the Ras signaling pathway (Fig. 3). These naturally occurring alter-
ations are analogous to the genetic elements that artificially convert
human normal cells into tumor cells.24 While it is still an open ques-
tion how these alterations occur,25 the absence of CDK inhibitors
together with the presence of DNA damage was shown to lead to cells
with polyploid nuclei.26,27

FIG. 2. An adenocarcinoma genotype-
phenotype relation. The (a) Agilent OV,
(b) Affymetrix LUAD, and (c) WGS LUAD
patterns, which correspond to column
basis vectors that are significant in and
exclusive to the tumor genomes, are
depicted in plots of relative copy numbers,
ordered and colored based upon genomic
coordinates, with the medians of the
segments identified in the Agilent OV pat-
tern by CBS (black lines), including
OV-specific (blue), adenocarcinoma-
shared (black), and WGS technology-filled
in, possibly LUAD-specific (red) CNAs. (d)
The corresponding WGS LUAD row basis
vector is depicted in the plot showing the
classification of the 138 patients into low
(red) or high (blue) superposition coeffi-
cients. (e) The WGS LUAD tumor dataset
is depicted in a raster showing the
genotype-phenotype relation.
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Additional adenocarcinoma-shared CNAs involve the calcium
signaling pathway and the integrator complex in support of Ras-
mediated transformation. The amplification of the inositol 1,4,
5-trisphosphate receptor-encoding ITPR2 on 12p can activate Ras by
releasing calcium ions from the endoplasmic reticulum.28 The amplifi-
cation of ASUN/INTS13, a subunit of the integrator complex, which is
essential for the 30-end processing of small nuclear RNAs, can enhance
the expression of microRNAs (miRNAs), e.g., miR-200c and miR-141
on 12p,29,30 and regulate the mRNA expression in a length-dependent
manner in tumor vs normal cells.31,32 The oncogenic herpesvirus sai-
miri, e.g., expresses its viral miRNAs by using the integrator complex
of its host.33

We also find that CNAs that are specific to any one of the
adenocarcinomas additionally promote transformation. The WGS
technology filled-in, possibly LUAD-specific, amplified segment on 6p
encompasses the major histocompatibility complex (MHC) class II
human leukocyte antigen (HLA) alpha and beta chain-encodingHLA-
DQA1 and HLA-DQB1. Upon detecting an antigen, MHC II induces
the Ras and calcium pathways by binding to the T-lymphocyte cell
receptor complex.34 MHC II ligands also activate the Ras pathway by
stimulating the expression of the tumor necrosis factor-encoding
TNF.35,36 Note that HLA-DQA1 and HLA-DQB1 are highly expressed
in Epstein-Barr virus-transformed B-lymphocytes, where they mediate
the viral entry.37 The OV-specific amplified segment on 6p includes
the 30-end of the largest transcript variant of the gene PRIM2 that enc-
odes the human DNA primase large subunit, i.e., p58, and is essential
for DNA replication initiation. The amplification starts at the seventh
intron of PRIM2, which is also the second intron of the conserved
eukaryotic and archaeal primase domain within PRIM2. Insertions of
murine leukemia viruses (MLVs) that do not contain oncogenes into
different sites within the same intron were observed to induce tumori-
genesis in mice.38 The OV-specific amplification, like the MLV inser-
tions, may lead to overexpression of the 30-end of PRIM2 and most of

the conserved primase subunit and, therefore, support transformation.
Note that PRIM2 is overexpressed in mouse models of human epithe-
lial breast, lung, and prostate cancers that are induced by the expres-
sion of the oncoproteins of simian virus 40, i.e., the large and small
tumor antigens.39

Phenotypes of shorter survival, in general and in
response to platinum

Like the 6p þ 12p Agilent OV pattern, the WGS LUAD and
Affymetrix LUAD, USEC, and OV patterns predict the overall survival
by identifying subsets of patients of shorter survival phenotypes, which
are of median survival times of roughly one and a half years in LUAD
and USEC and three years in OV (Tables S1–S4). Of the 470 LUAD
patients with matched Affymetrix tumor and normal profiles, e.g., 36
are classified as having high weights of the Affymetrix LUAD pattern
in their tumor profiles based upon the superposition coefficients listed
in the row basis vector that corresponds to the pattern. Of the same
470 patients, 34, including 30 of the 36, i.e., �88%, have high
Spearman correlations of their tumor profiles with the pattern.
Similarly, of the 140 platinum-treated patients among the 470, 14 have
high correlations with the pattern, including 13, i.e., �93% of 14 that
have high coefficients. We use the correlation cutoff of �0.35 and
compute the coefficient cutoff by scaling 0.35 by the Frobenius norm
of the vector that lists the correlations, as was previously established
and validated for the Agilent OV discovery and validation sets of
patients, respectively.

In Kaplan-Meier (KM) survival analyses of the set of 470 LUAD
patients and, separately, the subset of 140 platinum-treated patients,
the subsets of patients with high superposition coefficients and, sepa-
rately, Spearman correlations, are of a median survival time of an
approximately one and a half years, statistically significantly shorter
than that of the complement subsets of patients. In Cox proportional
hazards models, a high coefficient or, separately, correlation, confers,
in general, � 2:3 times the hazard and, in response to platinum,
� 3:5 times the hazard of a low coefficient or correlation, respectively.

Note that the sizes of the subsets of LUAD, USEC, and OV
patients of shorter survival differ from the complement subsets. The
subset of 36 of the 470 LUAD patients, e.g., corresponds to � 7:5% of
the patients. The 14 of the 140 platinum-treated patients correspond
to 10%. However, while the KM analyses and Cox models reflect the
subset sizes, these analyses and models do not assume subsets and
complement subsets of equal sizes.

Blind separation from experimental sources of the
copy-number variation

Both the GSVD and tensor GSVD separate the tumor and nor-
mal datasets into combinations of patterns across the tumor and nor-
mal genomic regions, which are uncorrelated, i.e., orthogonal, and
patterns across the patients, which, in general, are normalized. Only
the tensor GSVD additionally separates the datasets into patterns
across the platforms that can be constant, i.e., consistent across the
profiling technologies. We find, however, that like the tensor GSVD,
the GSVD blindly, i.e., in an unsupervised, data-driven manner, sepa-
rates the adenocarcinoma genotype-phenotype relation from
technology-specific experimental variations that affect the minimally
preprocessed WGS, Affymetrix, and Agilent profiles. These include

FIG. 3. The adenocarcinoma genotypes encode for transformation via the Ras
pathway supported by the calcium pathway and the integrator complex. The 6p þ
12p LUAD, USEC, and OV genotypes are depicted in a diagram of the WGS
technology-filled in, possibly LUAD-specific, multihistocompatibility complex (yellow)
in addition to the Agilent microarray-described Ras and calcium pathways and inte-
grator complex, which include CNAs unrecognized in adenocarcinomas prior to the
discovery of the Agilent OV pattern (violet). Explicitly shown are amplifications (red)
and deletions (green) of genes and transcript variants (rectangles), either
adenocarcinoma-shared (black) or specific (blue), and relationships that directly or
indirectly lead to increased (arrows) or decreased (bars) activities of the genes and
transcripts and the tumor suppressor proteins p53 and p16 (circles).
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the WGS-specific effects of the guanine-cytosine (GC) content varia-
tions across the tumor and normal genomes. The magnitude of these
effects varies between Illumina sequencers.

The first WGS LUAD tumor and 138th normal column basis
vectors, which are the most exclusive to the WGS LUAD tumor and
normal profiles, respectively, are also the most significant in the tumor
and normal profiles, and are correlated with the fractional GC content
across the tumor and normal genomes, respectively, with both correla-
tions � 0:72 and both Mann-Whitney-Wilcoxon (MWW) P-values
<10�10

3
(Figs. S5–S7). Both vectors roughly describe the frequent

spikes of increased copy numbers superimposed on an invariant base-
line in agreement with the polymerase chain reaction (PCR)
amplification-dependent WGS technology underestimating the abun-
dance of GC-poor sequences.40 The corresponding first and 138th row
basis vectors are correlated with experimental variations in the
Illumina sequencers of the tumor and normal DNA with both hyper-
geometric and MWW P-values <10�2 (Fig. S8). The GSVD mathe-
matically identifies the variations in the sequences to be exclusive to
the tumor and, separately, normal profiles, because the sequencers are
unmatched between the patient-matched tumor and normal DNA.

A PREDICTOR OF ADENOCARCINOMAS SURVIVAL
INDEPENDENT OF THE BEST OTHER INDICATOR AT
DIAGNOSIS, i.e., THE TUMOR STAGE

To compare the phenotypes, we additionally classified the adeno-
carcinoma patients based upon the correlations of the 6p þ 12p
Agilent OV pattern with the WGS LUAD and Affymetrix LUAD,
USEC, and OV tumor profiles. We find that the pattern predicts the
survival of the LUAD and USEC, as well as the OV patients, in general
and in response to platinum, and independent of the profiling technol-
ogy (Figs. 4, S9, and S10). Of the 488 LUAD patients with Affymetrix
tumor profiles, e.g., 36 have high correlations with the pattern, includ-
ing 31, i.e., �91% of 34 that have high correlations with the
Affymetrix LUAD pattern. Similarly, of the 144 platinum-treated
patients among the 488, 14 have high correlations with the Agilent
OV pattern, including 13, i.e., �93% of 14 that have high correlations
with the Affymetrix LUAD pattern. In KM analyses of the 488 and,
separately, 144 patients, the subsets of patients identified by the
Agilent OV and, separately, Affymetrix LUAD patterns are statistically
indistinguishable, with the corresponding log-rank P-values >0.05. In

Cox models of the 488 patients, the classifications based upon the pat-
terns are statistically consistent, where the corresponding hazard ratios
of �2.5 and 2.3 are within the 95% confidence interval of each other,
and the concordance indices, i.e., accuracies, of �76% and 77% are
similar.

The Agilent OV pattern is a predictor independent of the best
other indicator at diagnosis, i.e., the tumor stage. In the Cox models of
the 488 LUAD patients, e.g., the bivariate hazard ratios of the Agilent
OV and, separately, Affymetrix LUAD patterns and stage are within
the 95% confidence intervals of the corresponding univariate ratios,
and the bivariate concordance indices are similar to the univariate
ones.

The Agilent OV pattern is independent of intratumor heteroge-
neity as it is reflected in the TCGA parameters of the tumor sample’s
volume, the slide’s percent tumor cells and nuclei, the portion’s weight,
and the analyte’s and aliquot’s DNA concentrations, with the corre-
sponding MWW P-values>0.05. The effect of intratumor heterogene-
ity as it may be reflected in DNA extracted from different portions of
the primary tumor is limited to only two, i.e., <1.5%, of the 139
LUAD patients with both Affymetrix and WGS profiles, and 21, i.e.,
<6.5%, of the 331 OV patients with both Agilent and Affymetrix pro-
files, having classifications that are inconsistent between the profiles.

The Agilent OV pattern, of co-occurring CNAs, is consistent
with the differential expression of genes and miRNAs (Figs. S11–S13).
Of the 15 genes and miRNAs highlighted in the genotypes, 11 are
overexpressed or underexpressed in at least one of the subsets of ade-
nocarcinoma tumors that have high correlations with the Agilent OV
pattern, with the corresponding MWW P-values <0.05. These subsets
of tumors correspond to the subsets of patients that have shorter sur-
vival phenotypes. Of these 11 genes and miRNAs, 10, i.e., �90%, con-
sistently map to amplifications or deletions in the WGS LUAD and
Affymetrix LUAD, USEC, and OV patterns.

THE PRIMARY TUMOR’S GENOTYPE PREDICTS THE
PATIENT’S OVERALL SURVIVAL PHENOTYPE
THROUGHOUT THE DISEASE

The leading causes of death from adenocarcinomas in general,
and LUAD, USEC, and OV in particular, are new tumor events, e.g.,
metastasis, recurrence, or progression. Most patients experience some
PFS following the end of the primary treatment. Yet, among the

FIG. 4. The 6p þ 12p Agilent OV pattern is a technology-independent predictor of LUAD overall survival, independent also of the best other indicator at diagnosis, i.e., stage.
The classifications of (a) the 488 Affymetrix LUAD patients based upon the Agilent OV pattern and, in addition, (b) stage and of (c) the 144 platinum-treated patients among
the 488 based upon the Agilent OV pattern are depicted in KM curves, highlighting the median survival time differences (yellow) with the corresponding log-rank P-values and
Cox hazard ratios.

APL Bioengineering ARTICLE scitation.org/journal/apb

APL Bioeng. 3, 036104 (2019); doi: 10.1063/1.5099268 3, 036104-6

VC Author(s) 2019

https://scitation.org/journal/apb


indicators of adenocarcinomas in clinical use, including the tumor
stage at diagnosis, the residual disease after surgery, and the therapy
outcome and neoplasm status after chemotherapy, none predicts the
overall survival of patients experiencing PFS. Similarly, no indicator
predicts—past the end of the primary treatment and during the first
PFS interval—the benefit of platinum-based chemotherapy as a first-
line systemic treatment in terms of overall survival.

We find that, like no other indicator, the 6p þ 12p Agilent OV
pattern is a technology-independent predictor of the overall survival of
patients experiencing PFS, in general and in response to platinum,
which may be OV specific (Fig. 5). Additional, OV-specific, predictors
are the 7p and Xq Agilent OV patterns (Fig. S14 and Tables S5–S7).

Consider, e.g., the KM analyses of the set of 479 OV patients, the
subset of 265 of the 479 OV patients who experienced PFS

 0months, and the subset of 177 of the 265 patients who experienced
PFS 
 11months. The median survival time of the shorter survival
phenotype identified by the Agilent OV pattern increases from
roughly three years for the 479 and 265 patients to four years for the
177 patients. The KM median survival time of the shorter survival
phenotype, therefore, correctly reflects the PFS period experienced by
the patients. However, the hazard ratios and concordance indices of
the corresponding Cox models remain statistically indistinguishable.
The corresponding hazard ratios of �1.6, 1.5, and 1.8 for the 479, 265,
and 177 patients are within the 95% confidence intervals of each other,
and the concordance indices of �56%, 58%, and 64% are similar. A
high correlation with the Agilent OV pattern, therefore, confers the
same hazard relative to a low correlation, regardless of the PFS period.

DISCUSSION

That the adenocarcinoma genotype-phenotype relation holds
past the end of the primary treatment, in general and in response to
platinum, implies that the information contained in the primary
tumor’s genome, even though it may be affected by the primary
tumor’s treatment, is relevant to the mechanisms of adenocarcinomas
throughout the disease.

That the genotype-phenotype relation is statistically independent
of the best other indicator of adenocarcinomas at diagnosis, i.e., the
primary tumor’s stage, implies that the information contained in the
relation is not currently being used in clinical practice. This

information includes, e.g., drug targets and combinations of drug tar-
gets that are predicted to be correlated with a patient’s outcome. Note
that there already exist drugs, some of which are FDA approved but
not necessarily for any one of the adenocarcinomas, that interact with,
e.g.,MAPK14, CDKN1A, and RAD51AP1.41 By using this information
in clinical practice, therefore, it can be expected to improve the prog-
nostics, diagnostics, and therapeutics of the disease.

That the adenocarcinoma genotype-phenotype relation is invari-
ably uncovered by, and only by, the GSVD and tensor GSVD, inde-
pendent of the adenocarcinoma type and the profiling technology,
highlights the role of mathematics in genomic data science and
machine learning. As comparative spectral decompositions, the GSVD
and tensor GSVD simultaneously identify the similarities and dissimi-
larities between the primary tumor and patient-matched normal
genomes. These unsupervised, data-driven decompositions use the
structure of the datasets, of two column-matched but row-
independent matrices and tensors, respectively, in the blind source
separation (BSS) of the tumor-exclusive genotypes and phenotypes
from experimental batch effects. This makes the decompositions sensi-
tive to robust genotype-phenotype relations in small discovery sets of
as few as 138 WGS LUAD, 109 Affymetrix USEC, and 249 Agilent
OV patients and possibly imbalanced validation sets of, e.g., 148
Agilent OV patients, with large genomic profiles of, e.g., >86K WGS
bins, 51K Affymetrix, and 13K Agilent probes, respectively.

Only recently, a copy-number genotype predictive of a brain
astrocytoma survival phenotype was discovered only by using the
GSVD.42 In comparisons of astrocytoma tumor and patient-matched
normal genomes, the GSVD invariably separated the tumor-exclusive
genotype and phenotype from those that occur in the normal genomes
and from experimental batch effects, independent of the astrocytoma
type and the profiling technology. The tumor-exclusive genotype
invariably predicted the survival phenotype statistically better than any
other indicator of astrocytoma. For decades prior to this discovery,
recurring DNA alterations have been observed in astrocytoma without
being translated into clinical use because attempts to associate the
tumor copy-number genotypes with patient outcome phenotypes were
unsuccessful.43–45

We conclude that by using the complex structure of the data
rather than simplifying them as is commonly done, comparative

FIG. 5. The 6p þ 12p Agilent OV pattern
predicts the overall survival of OV patients
experiencing PFS. The classifications of
(a) 265 of the 479 Affymetrix OV patients
who experienced PFS 
 0months and
(b) 177 of the 265 patients who experi-
enced PFS 
 11 months, based upon the
6p þ 12p Agilent OV pattern.
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spectral decompositions, such as the GSVD and tensor GSVD, under-
lie a mathematically universal description of the relationships between
a primary tumor’s genotype and a patient’s overall survival phenotype,
which other methods miss.
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See the supplementary material for the Methods section, Figs.
S1–S14, and Tables S1–S7, and Datasets S1–S5, which are also avail-
able at https://alterlab.org/adenocarcinomas_genotype-phenotype/.
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