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A B S T R A C T

Background: Ferroptosis and disulfidptosis are regulatory forms of cell death that play an 
important role in tumorigenesis and progression. However, few biomarkers about disulfidptosis 
and ferroptosis related genes (DFRGs) have been developed to predict the prognosis of bladder 
cancer (BC).
Methods: We conducted a bioinformatics analysis using public BC datasets to examine the prog
nostic significance of differentially expressed DFRGs. A Lasso regression was employed to create a 
prognostic prediction model from these DFRGs. Hub DFRGs that play a role in immunotherapy 
response and immunoregulation were pinpointed. Immunohistochemistry (IHC) experiment was 
performed to assess NUBPL and c-MYC expression in BC patients who underwent surgery or 
received immune checkpoint inhibitor (ICI) immunotherapy at Peking University Cancer 
Hospital.
Results: We constructed a valid model to predict the prognosis of BC based on DFRGs and per
formed relevant validation, the results demonstrated that the model was an independent prog
nostic factor for BC. Further analysis indicated that the model score, combined with the 
expression of various immune factors and tumor mutation burden (TMB), could predict the 
prognosis for BC. In addition, we also found that NUBPL was strongly associated with prognosis 
and response to ICI treatment, and NUBPL may influence BC malignant progression through the c- 
MYC pathway.
Conclusions: Our research findings highlight the satisfactory predictive value of DFRGs in the 
immune microenvironment and suggest that NUBPL may be a highly promising biomarker for 
predicting the prognosis and efficacy of ICI treatment in BC patients.
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1. Introduction

According to the latest data from the American Cancer Society (ACS) in 2023, the incidence of BC is the 4th highest among male 
patients, with approximately 62,420 new cases along with 12,160 new deaths [1]. The high incidence and mortality of BC directly 
threaten human health and survival. In the last 30 years, immunotherapy, represented by immune checkpoint inhibitor (ICI), has 
prolonged the survival and brought new hope to patients with advanced BC. However, immunotherapy is still facing many difficulties, 
such as low overall response rate, lack of more accurate predictive indicators, and inability to accurately screen the potential bene
ficiary population, which limits the wide application of immunotherapy [2]. Therefore, further exploration of effective biomarkers for 
predicting survival prognosis and response to immunotherapy for clinical application is a very urgent task in the field of BC treatment.

Regulated cell death (RCD) plays an important role in the growth, invasion and apoptosis of tumor cells and also provides new 
strategies for tumor treatment [3,4]. Among the various forms of RCD, ferroptosis stands out as a unique type characterized by its 
dependence on iron and reactive oxygen species (ROS), which distinguishes it biochemically, genetically, and morphologically from 
other types of cell death, including necroptosis, pyroptosis, autophagy, and apoptosis [5,6]. In a noteworthy advancement, recent 
research has revealed that cells with high SLC7A11 expression undergoing glucose deprivation can accumulate intracellular disulfides, 
leading to a novel and distinct form of cell death. This process, which differs from both ferroptosis and apoptosis, has been termed 
disulfidptosis by the investigators [7]. However, disulfidptosis and ferroptosis related genes (DFRGs) and the therapeutic value of their 
interconnectivity had never been explored in BC patients.

Therefore, in this research we focused on discovering the DFRGs and its prognostic value in BC and established a signature based on 
DFRGs. This study stands out for its innovative approach in bladder cancer modeling by integrating the processes of ferroptosis and 
disulfidptosis to construct a novel model based on DFRGs, which exhibits notable predictive capabilities. In addition, we collected 
clinical data from BC patients in the Peking University Cancer Hospital (PUCH) and confirmed for the first time that NUBPL was 
strongly associated with the prognosis and the response to ICI immunotherapy in BC. Furthermore, NUBPL may influence BC ma
lignant progression through the c-MYC pathway.

2. Materials and methods

2.1. Data collection and acquisition of DFRGs

We obtained RNA-seq expression profiles and clinical data of BC patients from two sources: The Cancer Genome Atlas (TCGA) BC 
cohort (TCGA-BLCA) and the Gene Expression Omnibus (GEO) BC cohort (GSE13507), accessible via their respective websites. The 
TCGA dataset provided comprehensive patient details, including gender, age, cancer stage, TNM classification, overall survival (OS), 
and current survival status. Our study included 600 BC samples (TCGA:412; GSE13507:188) and 87 non-tumorous bladder tissues from 
BC patients (TCGA:19; GSE13507:68).

We identified 484 genes associated with ferroptosis by exploring the FerrDb database (http://www.zhounan.org/ferrdb/) and 
collated a list of 10 genes linked to disulfidptosis from the existing scientific literature [7]. Additionally, we sourced immune cell 
composition data from the Tumor Immune Estimation Resource (TIMER) platform.

The IMvigor210 trial, a phase II clinical study, evaluated the efficacy of the programmed death-ligand 1 (PD-L1) inhibitor ate
zolizumab in patients with locally advanced or metastatic urothelial carcinoma who had not responded to prior platinum-based 
chemotherapy [8]. The inclusion criteria for this cohort of patients were: (1) patients with pathologically confirmed BC; (2) pa
tients with complete immunotherapy response information. Exclusion criteria: (1) patients with pathology of non-BC; (2) imperfect 
information on immunotherapy efficacy and gene expression. Eventually our study included 195 BC samples in IMvigor210 cohort.

2.2. Identification of differentially expressed DFRGs

We employed the "limma" package in R to identify DFRGs that were differentially expressed between BC and normal tissue in the 
TCGA-BLCA cohort, using an FDR <0.05 and |log2FC| > 1 as thresholds. Heatmaps illustrated the most significantly altered genes, 
while volcano plots visualized the overall differential expression landscape.

2.3. Identification of prognosis-related DFRGs

To validate the association between the expression of DFRGs and BC patient outcomes, we analyzed two cohorts: the TCGA BC 
(TCGA-BLCA) and the GEO BC (GSE13507). Using the "survival" package in R, univariate Cox regression analysis determined the 
DFRGs with prognostic significance. A network plot visualized the connections among the expression levels of these key prognostic 
DFRGs. For TCGA BC, gene-level copy number datasets were sourced from the Genomic Data Commons (GDC) through UCSC XENA 
(https://xena.ucsc.edu/). We used the "RCircos" package in R to examine the frequency of copy number variations (CNV.frequency%) 
and the genomic alterations in prognosis-related DFRGs.

2.4. Consensus clustering analysis of DFRGs

BC patients were stratified into distinct groups through consensus clustering analysis performed with the "ConsensusClusterPlus" 
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package in R. Kaplan-Meier analysis then compared survival outcomes across these different clusters. To verify the clustering’s 
robustness, we applied principal component analysis (PCA), uniform manifold approximation and projection (UMAP), and t-distrib
uted stochastic neighbor embedding (tSNE).

We analyzed expression patterns of prognosis-associated DFRGs and their clinical correlations, presenting the findings in heatmaps 
and boxplots. We also explored immune infiltration differences across BC subtypes. R packages "GSVA" and "GSEABase" facilitated 
Gene Set Variation Analysis (GSVA) and Gene Set Enrichment Analysis (GSEA), respectively, highlighting KEGG pathway differences 
among clusters [9]. We also compared the expression of immune checkpoint genes programmed death-ligand 1 (PD-L1), cytotoxic 
T-lymphocyte associated protein 4 (CTLA4) and programmed death 1 (PD-1) across clusters.

2.5. Construction of DFRGs-based prognostic prediction model

R software package "survival" was used to perform univariate Cox regression analysis to determine the prognosis-related DFRGs. 
Incorporating these genes into a Lasso-Cox model, we conducted cross-validation to establish a DFRGs-based prognostic index for BC 
prognosis using the "glmnet" package in R. The formula for the DFRG-based signature risk score was Ʃ(βi × Expi), where i represents 
the DFRGs count. Lasso regression, ideal for genomic feature-rich datasets, shrinks some coefficients to improve model 
generalizability.

The cohort was split into training and testing groups, further divided into high- and low-risk categories based on median risk scores. 
Kaplan-Meier analysis compared overall survival (OS) in both high- and low-risk groups within the training and testing sets. We 
quantified the predictive accuracy of our prognostic signature using ROC curve AUC values. Multivariate Cox regression determined 
the model’s significance, and a heatmap correlated risk scores with signature genes.

2.6. Identification and evaluation of a predictive nomogram

We constructed a nomogram incorporating clinicopathological features and risk scores to predict outcomes in BC patients. Cali
bration curves were generated to compare the predicted versus actual survival rates, and decision curve analysis (DCA) was utilized to 
determine the clinical utility of the nomogram. DCA was widely used in clinical medicine as a tool for evaluating the effectiveness of 
medical decision-making. With the horizontal axis as the threshold and the vertical axis as the net benefit, the DCA curves can visualize 
the performance of different strategies in the balance of avoiding over-treatment and under-diagnosis [10].

2.7. Relationship between risk score and immune cell infiltration

To quantify the composition of immune cells within the tumor, CIBERSORT was conducted [11]. CIBERSORT estimated the relative 
proportions of different immune cell types, ensuring the sum of proportions in each sample equaled one. Spearman rank correlation 
was used to investigate the association between risk scores and the levels of immune infiltration. Additionally, we calculated the 
estimate score for the expression profiles of high- and low-risk groups in R.

2.8. Single cell data and drug sensitivity analysis

The Tumor Immune Single-Cell Hub (TISCH) database, a large-scale online database of single-cell RNA-seq, was accessed to 
examine the heterogeneity of the tumor microenvironment (TME) across various cell types and datasets [12]. Drug sensitivity, a 
critical factor for predicting treatment response, was predicted for BC samples in the high- and low-risk groups using the "oncoPredict" 
and "ggplot2″ R packages, referencing the Genomics of Drug Sensitivity in Cancer (GDSC) database [13].

2.9. Relationship between risk score and immunotherapy response

Kaplan-Meier analysis was used to compare the survival outcomes difference between high- and low-risk score groups in 
IMvigor210-BC cohort. Subsequently, we analyzed clinicopathological features, immune factors and their relationships with the risk 
score. We further analyzed whether the risk score integrated with various immune factors including PD-L1, CTLA4 and TMB expression 
could predict the prognosis in BC patients. We further investigated the relationship between DFRGs and immunotherapy responses in 
the IMvigor210-BC cohort.

2.10. RNA Isolation and reverse Transcription-Quantitative Polymerase chain Reaction (RT-qPCR)

To further validate the expression levels of DFRGs that were utilized to develop the signature in BC tissues and normal tissues, RT- 
qPCR was performed. The Total RNA Extraction Kit (Cat:R1200, Solarbio Life Sciences, Beijing, China) was used to extract total RNA 
from tissue specimens based on the manufacturer’s instructions. For the detection of mRNA levels, the total RNA (500 ng) was 
transcribed into cDNA using a PrimeScript™ RT reagent kit (Perfect Real Time). Primer sequences were as follows: NUBPL, forward 
primer 5′-GCCTGGCCCGTTGTTATGAA-3′ and reverse primer 5′-GCCTCATTAGGTTGCTCTGTGA-3’; GAPDH, forward primer 5′- 
GAAAGCCTGCCGGTGACTAA-3′ and reverse primer 5′- GCCCAATACGACCAAATCAGAG-3’. The relative expression levels of NUBPL 
were determined by the comparative threshold (Ct) cycle method using Formula 2− (ΔΔCt).
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2.11. Immunohistochemistry (IHC)

NUBPL is a disulfidptosis related gene and previous study has shown that NUBPL plays an important role in colorectal cancer 
invasion and migration [14], while the role of NUBPL in BC has not been reported. In addition, c-MYC is the most common human 
oncogene. Therefore, we would like to preliminarily explore the expression of NUBPL and its relationship with c-MYC by IHC in BC. 
Tissue samples were collected from 78 BC patients who underwent surgery from October 2014 to December 2021 in the Peking 
University Cancer Hospital (PUCH). In the PUCH-BC cohort, no patients received radiotherapy, immunotherapy or adjuvant 
chemotherapy before surgery and follow-up was performed every 3 months. Informed consent was acquired from all patients and the 
study was approved by the ethics committee (Institutional Review Board approval number: 2020KT143-GZ01) and conducted in 
accordance with Good Clinical Practice and the Declaration of Helsinki and its latest amendments. All clinical characteristics were 
compiled in Table 1. We further validated the association between NUBPL expression and BC prognosis using the TCGA-BLCA cohort, 
GSE13507 cohort, and PUCH-BC cohort.

In a subset of 30 patients undergoing immunotherapy at PUCH from November 2019 to August 2021, treatments were administered 
every three weeks, either as monotherapy or in combination with platinum-based chemotherapy. Treatment efficacy was evaluated 
using the immune-modified Response Evaluation Criteria in Solid Tumors (iRECIST) version 1.1, with outcomes including complete 
response (CR), partial response (PR), stable disease (SD), and progressive disease (PD). All clinical information and efficacy evaluation 
was summarized in Table 2.

For histological analysis, consecutive tissue sections were prepared and subjected to immunohistochemical staining. After 
deparaffinization and antigen retrieval, sections were incubated with NUBPL polyclonal (No:17393-1-AP, Proteintech Company) and 
c-MYC monoclonal antibodies (No:67447-1-Ig, Proteintech Company). Staining was executed using the avidin-biotin peroxidase 
method and counterstained with hematoxylin. Positive control is human colorectal cancer tissue. Immunohistochemical staining of the 
samples was scored and analyzed by a senior pathologist. Five randomly selected fields of view were categorized according to the 
percentage of staining (0: 0 %, 1: 1–25 %, 2: 26–50 %, 3: 51–75 %, 4: 76–100 %) and the degree of staining (0: negative staining, 1: 
yellowish, 2: light brown, 3: dark brown). The final score was the multiplication of the two scores and score ≥8 was considered 
positive.

2.12. Statistical analysis

Statistical analyses were performed using R software (version 4.0.2), with p < 0.05 denoting significance. Student’s t-test was used 
to compare two experimental groups and one-way analysis of variance (ANOVA) was used to compare several treatments groups. To 
ensure the integrity and dependability of our statistical findings, we applied multiple test corrections for differential expression 
analysis and batch effects were considered and removed when combining TCGA and GEO data.

3. Results

3.1. Identification of differentially expressed DFRGs related to prognosis in BC

Fig. 1 outlines our study’s workflow, where we identified 492 DFRGs, excluding shared genes (Supplementary Table 1). To validate 
the association between the expression of DFRGs and BC patient outcomes, we then pinpointed 75 differentially expressed DFRGs 
(Fig. 2A) using the "limma" package with our predefined criteria (Supplementary Table 2). The differential gene volcano plot is 
depicted in Fig. 2B.

We conducted survival analysis on the 75 genes, and univariate Cox regression revealed 25 DFRGs with significant prognostic value 
in BC (p < 0.05) (Supplementary Fig. 1). A network plot illustrated the interactions among these 25 DFRGs (Fig. 2C). Fig. 2D provides a 

Table 1 
Correlation between clinicopathological features and NUBPL expression in PUCH-BC cohort.

Clinical features Total:78(%) NUBPL expression P-valuea

negative positive

Age <60 19(24.36 %) 5 14 ​
≥60 59(75.64 %) 13 46 0.7575

Gender Male 50(64.10 %) 13 37 ​
Female 28(35.90 %) 5 23 0.5768

T T1-T2 49(62.82 %) 10 39 ​
T3-T4 29(37.18 %) 8 21 0.5799(T1-2 vs. T3-4)

N N0-N1 59(75.64 %) 12 47 ​
N2-N3 19(24.36 %) 6 13 0.3542(N0-1 vs. N2-3)

M M0 69(88.46 %) 17 52 ​
M1 9(11.54 %) 1 8 0.6759

c-MYC Low 19(24.36 %) 8 11 ​
High 59(75.64 %) 10 49 0.0319

a Fisher’s exact test. PUCH: Peking University Cancer Hospital, BC: bladder cancer.
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detailed display of the frequency of copy number variations (CNV.frequency%) for the aforementioned genes. Genes such as TFAP2A 
and SLC3A2 exhibit a notably higher frequency of "gain" compared to "loss". Conversely, genes like NT5DC2 and CDC25A show a 
significantly higher frequency of "loss" compared to "gain". Fig. 2E further illustrates the specific chromosomal locations of these 
variations for the genes mentioned. In this section, we identified differentially expressed DFRGs associated with BC prognosis.

3.2. BC molecular subgroups by using Consistent clustering

BC patients were stratified into distinct groups through consensus clustering analysis and Kaplan-Meier analysis then compared 
survival outcomes across these different clusters. We applied consensus clustering to the 25 prognostic DFRGs using the "Consensus 
Cluster Plus" package in R to better understand their impact on BC. The optimal number of clusters was determined to be two (k = 2), as 
depicted in Fig. 3A, which resulted in distinct prognostic outcomes as demonstrated by the OS analysis (p = 0.010), with cluster B 
exhibiting poorer survival (Fig. 3B). Multidimensional analyses including PCA, tSNE, and UMAP confirmed the distinct separation of 
the two subtypes (Fig. 3C–E). The expression of DFRGs across the subtypes was visualized using boxplots (Fig. 3F), and the immune cell 
infiltration patterns were outlined for each cluster (Fig. 3G). A heatmap detailed the expression of the 25 DFRGs and associated 
clinicopathological features for the two subtypes (Fig. 4A).

The distribution of the DFRGs in the clusters was assessed using the "GSVA" package in R, which identified differential KEGG 
pathway enrichment between clusters A and B (Fig. 4B). The top five pathways significantly associated with Cluster B were highlighted 
through GSEA (Fig. 4C), with full details provided in Supplementary Table 3. Expression levels of immune-checkpoint genes PD-L1, 
CTLA4, and PD-1 were significantly higher in cluster B (p < 0.001), which suggested that cluster B had a high immunoregulatory 
(Fig. 4D–F). In this section, we found that Cluster B, which is associated with poor prognosis, was characterized by enrichment in 
cancer-related pathways and extracellular matrix (ECM) receptor interactions.

3.3. Construction and validation of DFRGs-based prognostic model

We used COX regression analysis as well as Lasso-Cox methods in order to construct a prognostic model. Patients were divided into 
training and testing groups for prognostic model development and validation. Lasso regression (Supplementary Figs. 2A and B) yielded 
a model comprising 7 DFRGs (CAV1, MEG3, MIOX, NT5DC2, PVT1, SLC3A2, and SREBF1), detailed in Supplementary Table 4. Kaplan- 
Meier curves illustrated the model’s strong association with OS in all patient groups (p < 0.001) (Fig. 4G–I), with high-risk scores 
correlating with reduced 5-year survival. ROC analysis confirmed the model’s predictive accuracy (Supplementary Figs. 2C–E), and 
multivariate Cox regression verified its independence as a prognostic factor for BC (p < 0.001) (Supplementary Fig. 2F).

The heatmap in Fig. 4J displayed the expression of the 7 hub DFRGs, while Fig. 4K showed the risk score differences between the 
two subtypes. Alluvial diagrams are commonly utilized to categorize populations based on characteristics such as gender, age, and 
family history, illustrating the patterns of disease progression across different groups. Fig. 4L provides a detailed representation of the 
model risk scores and prognostic status assessments among patients with different clusters. Overall, cluster B is associated with poorer 
clinical outcomes compared to cluster A. In this section, we constructed and validated a prognostic model based on DFRGs.

Table 2 
Clinical information, efficacy evaluation and NUBPL expression of the 30 BC patients treated with ICI in PUCH cohort.

Clinical features Total:30(%) NUBPL expression P-valuea

low high

Age <60 8(26.67 %) 3 5 ​
≥60 22(73.33 %) 6 16 0.6662

Gender Male 17(56.67 %) 3 14 ​
Female 13(43.33 %) 6 7 0.1232

T T1 8(26.67 %) 4 4 ​
T2 5(16.67 %) 1 4 ​
T3 12(40.00 %) 2 10 ​
T4 3(10.00 %) 1 2 ​
Tx 2(6.67 %) 1 1 0.4097(T1-2 vs. T3-4)

N N0 7(23.33 %) 1 6 ​
N1 10(33.33 %) 5 5 ​
N2 10(33.33 %) 2 8 ​
N3 3(10.00 %) 1 2 0.6908(N0-1 vs. N2-3)

M M0 14(46.67 %) 5 9 ​
M1 15(50.00 %) 4 11 ​
Mx 1(3.33 %) 0 1 0.6999(M0 vs. M1)

Efficacy CR 2(6.67 %) 2 0 ​
PR 4(13.33 %) 2 2 ​
SD 14(46.67 %) 3 11 ​
PD 10(33.33 %) 2 8 0.0492(CR + PR vs. SD + PD)

a Fisher’s exact test. BC: bladder cancer, ICI: immune checkpoint inhibitor, PUCH: Peking University Cancer Hospital.
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Fig. 1. Flowchart of the study: Fig. 1 shows the flowchart of our study.

X. Zhang et al.                                                                                                                                                                                                          



Heliyon 10 (2024) e37638

7

(caption on next page)

X. Zhang et al.                                                                                                                                                                                                          



Heliyon 10 (2024) e37638

8

Fig. 2. Identification of prognosis-related DFRGs: (A) Seventy-five differentially expressed DFRGs between BC and normal samples (FDR< 0.05 and 
|log2FC| > 1); (B) The volcano map of all the differential DFRGs; (C) The network plot showed the relationship between the expression levels of the 
25 prognosis-related DFRGs of rank; (D,E) The copy number variation frequency (CNV.frequency%) and the chromosome region and alteration of 
the above 25 prognosis-related DFRGs were screened.

Fig. 3. BC molecular subgroups by using Consistent clustering: (A) The above 25 prognosis-related DFRGs were used for Consensus Clustering, 
when k = 2, the cohort could be well classified into two subtypes; (B) Overall survival analysis showed a significant difference in prognosis between 
the two subtypes (p = 0.010) and DFRGcluster B has a worse overall survival; (C–E) PCA, tSNE and UMAP analyses were used to test the accuracy of 
this clustering and the results showed that the two clustering subtypes could be well identified; (F) The boxplot of the expression patterns with 
DFRGs in the two subtypes (*p < 0.05; **p < 0.01; ***p < 0.001); (G) Immune infiltration patterns in the two subtype clusters (*p < 0.05; **p <
0.01; ***p < 0.001).
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3.4. Establishment of a prognostic nomogram for BC patients

A nomogram integrating the DFRG-based model and clinicopathological data was constructed (Fig. 5A), with calibration plots 
confirming its predictive reliability (Fig. 5B). The cumulative distribution curve indicated higher hazards for the nomoRisk high group 
(Fig. 5C). DCA demonstrated the nomogram’s utility in predicting 1-, 3-, and 5-year survival in BC patients(Fig. 5D–F).

3.5. Correlation analysis of risk score, DFRGs and tumor immune activity

The immune landscape’s role in tumorigenesis was explored through the analysis of immune cell content in the low- and high-risk 
groups (Fig. 6A). Differences in immune cell populations were significant, notably in plasma cells (p = 0.025), regulatory T cells (p =
0.026), resting NK cells (p = 0.021) and M0 Macrophages (p = 0.022) (Fig. 6B). Correlations between risk scores, DFRGs, and immune 

Fig. 4. Construction of DFRGs-based prognostic model: (A) Heat map of the above 25 DFRGs expression and corresponding clinicopathological 
features of two subtypes; (B) The GSVA analysis focus on the differential enrichment of KEGG pathways showed Cluster B, the poor prognostic 
group, is mainly involved in “pathways in cancer”, “ECM receptor interaction” pathways; (C) The GSEA enrichment analysis and the top 5 most 
significant pathways with Cluster B were displayed; (D–F) Immune-checkpoint gene PD-L1, CTLA4 and PD-1 were all highly expressed in the 
clusterB (***p < 0.001); K-M survival curve showed that the DFRGs-based model was closely related to the OS of BC patients in (G) all- (p < 0.001), 
(H) test- (p < 0.001) and (I) train- (p < 0.001) groups; (J) The heat map indicated the expression patterns of the 7 hub DFRGs; (K) The risk score was 
significantly different among the two previous subtypes (p = 1.6e-09); (L) Alluvial diagram showed the changes of DFRGs-cluster, DFRGs-based 
model risk and living status.

Fig. 5. Establishment of a prognostic nomogram: (A) The nomogram was constructed combined the DFRGs-based model with clinicopathological 
information; (B) The calibration plot showed the nomogram had a good predictive performance; (C) Cumulative distribution curve showed 
nomoRisk high group had a higher cumulative hazard; (D–F) Decision curve analysis (DCA) showed the above nomogram exhibited as a good 
method for predicting 1-, 3-, and 5- years survival in BC patients.
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cells were illustrated in Fig. 6C, with regulatory T cells (p = 0.014), plasma cells (p = 0.015), naïve B cells (p = 0.016) negatively 
correlated, and resting NK cells (p = 0.0066), activated mast cells (p = 0.046), M0 Macrophages (p = 0.017) positively correlated with 
risk scores (Fig. 6D–I).

3.6. Single-cell data analysis and drug sensitivity of DFRGs

Using single-cell (sc) RNA-seq data from the TISCH database (BLCA_GSE145281), we analyzed DFRG expression within the tumor 
microenvironment (TME). This data covered 5 medium cell types and 17 cell clusters (Supplementary Fig. 3A), with expression levels 
of 6 DFRGs evaluated (Supplementary Figs. 3B and C). The expression data for the MIOX gene are not included in the Results section, as 
they were unavailable in the single-cell dataset utilized for this study. We also investigated drug sensitivity in the two groups 
(Supplementary Fig. 4).

3.7. DFRGs score combined with immune factors could predict prognosis in BC

To explore the relationship between risk score and immunotherapy response, we performed survival analysis and the results 
showed that the high-risk group had a significant worse prognosis in BC patients received immunotherapy (p = 0.008) (Fig. 7A). ROC 
curve analysis for 1-, 3-, and 5-year overall survival (OS) demonstrated good predictive performance with the AUC values presented in 
Fig. 7B. Moreover, this score was associated with age (p = 0.0071), the grade (p < 0.001), the stage (p < 0.001), T stage (p = 0.0082), 
and metastasis status (p = 0.036) of BC, but not in gender (p = 0.15), N stage (p = 0.052), and immunescore(p = 0.25) (Supplementary 
Figs. 5A–H). Further analyses suggested that the DFRGs-based model risk score integrated with various immune factors including PD- 
L1(p < 0.001), CTLA4(p < 0.001) and TMB(p < 0.001) expression, could predict prognosis for BC patients (Fig. 7C–E).

The correlation between the DFRGs-based model’s risk score and immune factors in BC was examined, revealing higher expression 
of immune-checkpoint genes in the high-risk group (p < 0.001), suggesting the high-risk group maybe had a high immunoregulatory 
(Fig. 7F–H). Prognostic analysis indicated significant survival advantages associated with high expression of PD-L1(p = 0.042), CTLA4 
(p = 0.003) and TMB(p < 0.001) (Supplementary Figs. 5I–K). Among the 25 DFRGs, certain genes like EGR1(p = 0.026) and WWTR1 
(p = 0.049) were associated with poorer responses, while CDCA3(p = 0.015) and RRM2(p = 0.031) correlated with better responses in 
patients receiving immunotherapy (Fig. 7I–L), potentially serving as predictive markers for ICI response in BC.

3.8. NUBPL was correlated with prognosis and immunotherapy response in BC

We would like to preliminarily explore the expression of NUBPL and its relationship with c-MYC by RT-qPCR and IHC in BC. NUBPL 
expression and its prognostic correlation were validated in TCGA-BLCA and GSE13507 cohorts, with higher expression levels in BC 
tissues (p = 2.507e-16) (Fig. 8A).

RT-qPCR were performed to validate the expression levels of NUBPL in BC tissues and normal tissues. The results demonstrated 
significant differences in the expression levels of NUBPL between BC and normal tissues. Compared to normal tissues, NUBPL was 
upregulated in BC (Fig. 8B). High expression levels of NUBPL were associated with poorer prognosis in TCGA-BLCA and GSE13507 
cohorts (p = 0.002) (Fig. 8C). Similar findings were observed in the PUCH-BC cohort (p = 0.027) (Fig. 8D). IHC analysis in the PUCH- 
BC cohort showed high NUBPL expression in a majority of BC tissues (76.92 %, 60/78) (Fig. 8E). The predictive value of NUBPL for ICI 
response was assessed in 30 advanced or metastatic BC patients, with a significant difference observed between response groups (p =
0.0492), indicating that high NUBPL expression could predict poor ICI response (Table 2).

Then we preliminarily explored the expression of NUBPL and its relationship with c-MYC by IHC in BC (Fig. 8F). IHC results showed 
that c-MYC expression levels were generally increased in patients with high NUBPL expression. Fisher’s exact test showed that there 
was a positive correlation between the expression levels of NUBPL and c-MYC (p = 0.0319) (Table 1), suggesting that NUBPL may 
influence BC malignant progression through the c-MYC pathway.

4. Discussion

Bladder cancer (BC) is the most common malignant tumor of the urinary system with the 2nd highest incidence after prostate 
cancer, and also is the major disease that directly threaten human health and survival [15,16]. Recent years, immunotherapy based on 
PD-L1/PD-1 immune checkpoints had brought light to the treatment of BC patients [17,18]. However, the overall response rate to 
PD-L1/PD-1 ICIs in BC is currently low and there is a paucity of related biomarkers [19], the above problems are the current difficulties 
in BC treatment. Identifying new, reliable biomarkers for predicting disease prognosis and immunotherapy response is crucial for 
tailoring individual treatments in BC.

In recent years, studies have shown that ferroptosis is a form of RCD that plays an important role in tumor biology and therapy [20]. 
Ferroptosis, an iron-dependent form of regulated cell death (RCD) marked by lipid peroxidation, is increasingly recognized for its role 
in cancer biology and treatment. This process is intricately linked to the cellular metabolism of lipids, iron, and amino acids [21]. 
Genes related to ferroptosis have been proposed as prognostic markers in various cancers, including those of the prostate, colon, and 
breast [21–24]. Disulfidptosis, distinct from both apoptosis and ferroptosis, is characterized by an abnormal build-up of intracellular 
disulfides in cells with high SLC7A11 expression under glucose deprivation [7]. In our study, we innovatively integrated disulfidptosis 
with ferroptosis to create a prognostic model for BC, utilizing differentially expressed DFRGs. Our model demonstrated the significant 
prognostic potential of these biomarkers in BC.
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Two DFRGs-clusters were identified, with DFRGs-cluster B showing poorer overall survival and associations with critical pathways 
for tumor cell invasion and metastasis, such as “pathways in cancer” and “ECM receptor interaction” [25,26]. Furthermore, we 
observed enhanced immune infiltration of CD4 and CD8 T cells, as well as increased expression of immune checkpoints PD-L1, CTLA4, 
and PD-1 in cluster B, suggesting cluster B heightened immune regulatory activity. These results suggested that DFRGs may influence 
tumorigenesis, disease progression, and the immune landscape in BC.

To account for patient heterogeneity, we developed a DFRGs-based model assessing disulfidptosis and ferroptosis patterns in BC, 
focusing on genes CAV1, MEG3, MIOX, NT5DC2, PVT1, SLC3A2, and SREBF1. The model’s risk score was significantly associated with 
patient prognosis, expression of immune checkpoints, and the degree of immune cell infiltration. Prior research has established PD-L1 
and TMB as key predictors for the efficacy of ICI therapy in BC [27,28]. Our findings suggest a strong link between DFRGs, ICI 
effectiveness, and the immune microenvironment in BC.

An intriguing discovery from our research is that high expression levels of EGR1 and WWTR1 correlate with poorer ICI responses, 
while increased expression of CDCA3 and RRM2 is associated with better outcomes. It’s been shown that CD8+ T cells activated by 
immunotherapy can promote ferroptosis-driven lipid peroxidation in cancer cells, enhancing the anti-tumor effects of ICI therapy [29]. 
Furthermore, recent studies have connected ferroptosis with the immune microenvironment in cancers such as liver cancer, head and 
neck squamous cell carcinoma, and lung adenocarcinoma [30–32]. Thus, our research underscores the potential of DFRGs biomarkers 
in predicting responses to immunotherapy in BC patients.

NUBPL is involved in the assembly of the respiratory chain dehydrogenase complex in the inner membrane of assembled mito
chondria, which is associated with mitochondrial metabolism but whose role in cancer has not been systematically studied [33]. 
Previous study has shown that NUBPL expression levels were increased in colorectal cancer and high expression of NUBPL could 
promote epithelial-mesenchymal transition (EMT) and metastatic phenotype in colorectal cancer cells [14]. Here in this research, we 
confirmed that NUBPL was highly expressed in BC and it was closely related to the prognosis and PD-L1 immunotherapy treatment of 
BC. Meanwhile, IHC results showed that c-MYC expression levels were generally increased in patients with high NUBPL expression, 
suggesting that NUBPL may promote the progression of BC through the c-MYC pathway. However, further studies are needed to 
elucidate the specific role and mechanism of NUBPL in BC progression.

Our preliminary study does have some limitations. Firstly, the initial sample size was relatively small, which constrains the sta
tistical robustness and the broader applicability of our findings. To mitigate this issue, we are in the process of enlarging the sample size 
and aim to incorporate additional patient data in subsequent studies to enhance the study’s reliability and representativeness. We plan 
to gather a more extensive cohort of BC patients through partnerships with other medical centers across the country. To guarantee the 
representativeness of the sample, we will employ random sampling techniques and ensure that the sample encompasses diverse ages, 
genders, and geographic locations. Furthermore, the diversity and scope of the sample will be augmented through multi-center 
collaboration and we will verify the correlation between NUBPL expression and prognosis and immunotherapy response in a larger 
patient population. Additionally, while bioinformatics analyses of public databases provide valuable insights, experimental studies are 
essential to confirm the role of NUBPL in cancer progression and its interaction with PD-L1 targeted treatments in BC. In future studies, 
we plan to use cellular and animal models to validate NUBPL on relevant signaling pathways and their role in tumor development and 
drug response.

5. Conclusion

Despite these constraints, our research underscores the promising role of DFRGs within the immune landscape of BC and proposes 
NUBPL as a prospective marker for prognostication and immunotherapy response prediction in this disease context.
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Fig. 6. Correlation analysis of risk score, DFRGs and tumor immune activity: (A) The relative immune cell content of each sample from low- and 
high-groups were showed; (B) The content of immune cells between the high- and low-risk group and the results showed significant differences in 
plasma cells (p = 0.025), regulatory T cells (p = 0.026), resting NK cells (p = 0.021) and M0 Macrophages (p = 0.022); (C) Correlation between 
riskScore, DFRGs and immune cells were showed (*p < 0.05; **p < 0.01; ***p < 0.001); (D–I) There was a negative correlation between regulatory 
T cells (p = 0.014), plasma cells (p = 0.015), naïve B cells (p = 0.016) and riskScore, a positive correlation between resting NK cells (p = 0.0066), 
activated mast cells (p = 0.046), M0 Macrophages (p = 0.017) and riskScore.
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Fig. 7. DFRGs score combined with immune factors could predict prognosis in BC: (A) Survival analysis showed that the high-risk group had a 
significant worse prognosis in BC patients received immunotherapy (p = 0.008); (B) ROC curve analysis for OS at 1-, 3-, and 5- years showed the 
AUC values which indicated a good predictive performance (AUC at 1 years: 0.564; AUC at 3 years: 0.575; AUC at 5 years: 0.550); (C–E) Further 
analyses suggested that the DFRGs score integrated with various immune factors including PD-L1(p < 0.001), CTLA4(p < 0.001) and TMB(p <
0.001) expression could predict prognosis for BC patients; (F–H) The immune-checkpoint gene PD-L1, PD-1 and CTLA4 were all highly expressed in 
the high-risk group (p < 0.001); (I–L) High expression of EGR1(p = 0.026) and WWTR1(p = 0.049) had a significant worse response, while high 
expression of CDCA3(p = 0.015) and RRM2(p = 0.031) had a significant better response for BC patients who received immunotherapy(Non- 
response:PD/SD, Response:CR/PR, CR: complete response, PR: partial response, PD: progressive disease, SD: stable disease).
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