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Symmetrized persistency of Bell 
correlations for Dicke states 
and GHZ‑based mixtures
Marcin Wieśniak

Quantum correlations, in particular those, which enable to violate a Bell inequality, open a way to 
advantage in certain communication tasks. However, the main difficulty in harnessing quantumness 
is its fragility to, e.g, noise or loss of particles. We study the persistency of Bell correlations of GHZ 
based mixtures and Dicke states. For the former, we consider quantum communication complexity 
reduction (QCCR) scheme, and propose new Bell inequalities (BIs), which can be used in that scheme 
for higher persistency in the limit of large number of particles N. In case of Dicke states, we show that 
persistency can reach 0.482N, significantly more than reported in previous studies.

State‑of‑art and motivation.  Harnessing quantum correlations1 can bring us unprecedented possibili-
ties in communication and computation schemes. Core examples are quantum cryptographic key generatifn 
schemes2, which allow an unbreakable message encryption. Their security is guaranteed by an impossibility of 
cloning of a quantum state, which follows directly from linearity of quantum mechanics. If Eve is trying to inter-
cept a state sent between legitimate users, Alice and Bob, she must destroy quantum coherence, which draws the 
key generation impossible. In case of distributing entanglement, the same effect occurs by monogamy of entan-
glement, and in particular, monogamy of violation of CHSH inequality3. Simply put, one user (Alice) can violate 
inequality only with one other partner (Bob or Eve). Security of entanglement-based quantum cryptography was 
elegantly demonstrated in Ekert’s E91 protocol4 .

It is then natural to extend the schemes of quantum cryptographic key distribution to more users, which col-
laborate to encrypt a message, so that it can be decrypted only by all of them. Such a scenario is called quantum 
secret sharing5, and its security was again linked with violation of multipartite BIs. It is known that, for example, 
violation of Werner-Wolf-Weinfurter-Żukowski-Brukner (WWWŻB) inequalities6–8 is monogamous in a weak 
sense that only one of the inequalities among overlapping groups of observers can be violated maximally at the 
time, but not in a stronger sense, where only one can be violated at all. This potentially opens a loophole for an 
eavesdropper. A further generalization can be based on a subgroup of users, who must collaborate as a qualified 
majority to unlock a secret.

A relevant protocol is quantum communication complexity reduction (QCCR) in distributed comput-
ing. Here, the task is to jointly compute a certain sign function under communication restrictions. Initially, it 
was shown that GHZ correlations9 can reduce one bit of a necessary classical information exchange in certain 
situations10. Subsequently, it was reformulated as a quantum game, in which the goal is to optimize a guess of 
a 2N-bit function, where each user receives two bits and can broadcast only one. It has been shown that there 
is an advantage in this task once the function expresses a BI and the partners share a corresponding entangled 
state violating it11.

Another concept that we consider here is persistency of quantum correlations. This quantity tells us how 
many parties must be traced out for a given state to loose its property, e.g. entanglement (denoted as (PE(ρ)) , 
steerability (PS(ρ)) (historically first Ref.12 gives a slightly different definition), or ability to violate a BI, somewhat 
misleadingly called “nonlocality” (PNL(ρ))13. Hereafter, we will call the last kind persistency of Bell correlations 
and will be denoted as PBell(ρ).

We will consider a stronger, symmetric version of persistency of Bell correlations, PBellsym(ρ) . In other words, 
we will be interested in a number of observers (regardless of their identity) that need to be traced out in order for 
the observed statistics to have a local realistic description. We take two-fold context for this consideration. For 
mixtures based on GHZ states, we are mainly interested in the symmetrized quantum communication complexity 
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reduction (sQCCR) game. We will ask what fraction of the total number of players, within an arbitrary ensemble, 
can achieve an advantage. Thus subsets of a certain cardinally can beat the classical game simultaneously. This 
consideration could be relevant in environments with significant particle losses or inefficient detectors.

In case of Dicke states14, we are more focused on fundamental aspects. In contrast to GHZ states, quantum 
correlations are present in all their reduced states of more than one qubit. Dicke states are hence strong candidates 
to show extremely high persistency of Bell correlations.

Monogamy of Bell correlations.  BIs distinguish between quantum-mechanical statistics and those, 
which permit a local realistic description. Thus, they are essential to recognize advantage Probably the simplest, 
but very useful one is the CHSH inequality. Consider two users, Alice and Bob, which have a pair of alternative 
observables, A1,A

′
1 for Alice, and A2,A

′
2 for Bob. Each of these observables can yield outcomes +1 or −1 . The 

CHSH inequality then reads

where ≤LR means that the inequality holds for local realistic theories. The quantum mechanical mean value may 
reach 2

√
2 ≈ 2.82.

Now, consider a third observer, Eve, which also can has a choice of two local observables A3,A
′
3 . It has been 

shown in Ref.15 that when Bob performs a CHSH experiment simultaneously with Alice and Eve, only one of 
respective inequalities can be violated:

or in a weaker form16,17

This result is crucial for the security of quantum cryptographic key distribution. When Eve entangles with 
legitimate users Alice and Bob, she must decrease quantum correlations between them. At the point Eve knows 
as much about the generated key as Alice and Bob, the CHSH inequality between the latter becomes satisfied.

The core of the proof lies in the necessary and sufficient condition for violating the inequality. Since we use 
only two observables per side, we can choose them to be strictly real,

(hereafter, the second component is omitted). This choice of observables allows us to consider the reduced state 
to be strictly real, since the introduction of the nontrivial imaginary part would give the effect of state mixing. 
As observables of, say, Bob, are shared in both BIs, without a loss of generality strict realness can apply also to 
observable the third observer and reduced state between the Alice and Eve.

Consider two observers. Notice that A1 + A′
1 = 2 cosβ1(σx , σz)�d1 and A1 − A′

1 = 2 sin β1(σx , σz)�d′1 , where 
�d1 ⊥ �d′1 and |�d1| = |�d′1| = 1 . Thus, introducing Tij =

〈

σi ⊗ σj
〉

 , we get that

where �c2(�c′2) = cosα2�d2 + (−) sin α2�d2 . We now employ the Cauchy-Schwartz inequality, 
∣

∣�A · �B
∣

∣ ≤
√

|�A|2|�B|2 , 
where �A = (Txx ,Txz ,Tzx ,Tzz)

T and �B = cosα2 �d1 ⊗ �c2 + sin α2 �d′1 ⊗ �c′2 . Obviously |�B|2 = 1 , thus

In this case, the equality can be attained, as we have enough free parameters to conduct the Schmidt decomposi-
tion of the used sector of the correlation tensor. Going back to the three-user scenario we get

where Txx0 = �σx ⊗ σx ⊗ σ0� , etc. Let us now use the methods presented in Refs.18,19. We create a graph with 
8 vertices associated with the operators, means of which enter Eq. (7), and connect them if they anticommute. 
We get a cuboid, in which two opposite faces have vertices connected on diagonals, as depicted in Fig. 1. Next, 
we assign 0s and 1s to the vertices in such a way that no pair of 1s can be connected with an edge. Assigning 1 

(1)�B12� =
〈

A1 ⊗ (A2 + A′
2)
〉

+
〈

A′
1 ⊗ (A2 − A′

2)
〉

≤LR 2,

(2)�B12�2 + �B23�2 ≤ 8

(3)|�B12�| + |�B23�| ≤ 4

(4)
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A′
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0
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)

,

�c′i =
(− sin βi

0
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)

(5)
�B12�

= 2
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Txx Txz

Tzx TTzz

)

(
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)

,
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to any vertex eliminates four connected with it, and the remaing three are in a clique, so only one other 1 can be 
distributed among them. We thus get

meaning that once |�B12�| goes above 2, |�B23�| ≤ 2 cannot be violated and vice versa. In this fashion, we can 
investigate if the strong monogamy relations hold for other inequalities, in particular, WWWŻB BIs. A rule of 
thumb is that if all subsets of observers have non-zero overlap, the bound of the sum is 2N0 , N0 being the cardi-
nality of the largest of these subsets. This happens when parties from this subset share a GHZ state, and hence 
other parties must be uncorrelated.

Now, consider the case of five parties labelled as A, B, C, D, and E. A, and E measure 1√
2
(σx ± σy) , while B, 

C, and D measure σx or σy . In one half of the runs, A,B,C, and D receive a GHZ state, and E receives the white 
noise, in the other half the roles of A and E are interchanged. If the first four observers shared a pure GHZ state, 
they would get the violation of a Mermin-Ardehali-Belinskii-Klyshko (MAKB) inequality20–22 by factor 2

√
2 , 

but the state has effectively 50% of noise. Thus, both ensembles, { A, B, C, D } and { B, C, D, E } , can simultaneously 
violate a MAKB inequality. Hence we have

where

In general we shall use “greater than” sign, rather than “equal to” for persistency of Bell correlations, as we cannot 
claim that we use the best inequalities. In this case, we clearly use the optimal inequality.

We will investigate a symmetrization of this scenario.

Quantum communication complexity reduction.  Here we briefly recall the idea behind the quantum 
advantage in communication complexity reduction problems in distributed computing related to BIs. This link 
was established in Ref.11, but it is only one-way23. Originally, it was shown that when using a GHZ state, a certain 
function can be computed if users exchange one bit less in total10, but Ref.11 introduced the following probabil-
istic interpretation. Imagine N users, whose task is to jointly calculate a certain dichotomic function. Each user 
receives two random variables from a dealer: a random bit yi = ±1 , with promise of P(yi = +1) = 1/2 , and xi , 
which can be from any set, and the joint distribution of xi s is promised,

(or with integrals in the denominators). Now, a user can perform an arbitrary local action, but must return 
(broadcast) one bit. From these bits they guess the value of function

(8)T2
xx0 + T2

xz0 + T2
zx0 + T2

zz0 + T2
0xx + T2

0xz + T2
0zx + T2

0zz ≤ 2,

(9)PBell(1/4(|GHZ4��GHZ4| ⊗ �2×2 + �2×2 ⊗ |GHZ4��GHZ4|)) = 2,

(10)|GHZl� =
1√
2

(

|0�⊗l + |1�⊗l
)

.

(11)P(x1, . . . , xN ) =
|g(x1, . . . , xN )|

∑

x1,...,xN
|g(x1, . . . , xN )|

Figure 1.   Anticommutativity graph for two CHSH inequalities with one common observer. We can assign 
value “1” to one of the vertices (red), which forces four other to take value “0” (blue). This will leave three 
vertices with unassigned value (green).
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The ultimate task is to yield the correct value of F(x1, . . . , xN , y1, . . . , yN ) in as many cases as possible.
Obviously, broadcasted bits must be contain information about yi s, since omitting any one of them com-

pletely destroy the correlation between the actual and the anticipated value. Then, if all g(x1, . . . , xN ) s are of 
the same sign, or 0, the task trivializes. If the sign varies, in the classical case the users are limited to broadcast 
yifi(xi) = ±1 . Thus they are restricted to local deterministic predictions. When entangled state |�� of N qubits is 
distributed among them, they can, however, make a measurement on a qubit they hold dependent on xi , obtain 
result mi , and broadcast yimi . Then, if g(x1, . . . , xN ) s are coefficient of a BI violated by |�� , the users take benefit 
from quantum correlations, and get a more efficient estimation of F(x1, . . . , xN , y1, . . . , yN ) . Thus, this variant 
is will be hereafter QCCR game.

We will be interested in a bit modified variant of this scheme, the sQCCR game. We will still have N users, 
but we demand that only k is trying to estimate the function. Our restriction, though, is that this could be any 
subset of k users, or, equivalently, each such group tries to estimate the function independently. For the sQCCR 
game, we additionally require that the marginal probabilities are symmetric under permutations of parties, i.e.,

where (π1, . . . ,πN ) is an arbitrary permutation of (1, . . . ,N).
We will also consider violation of a BI under such restrictions. The difference between a mere BI violation 

and QCCR scheme lies in the demand that in latter case, the measurements settings are distributed with a known 
probability distribution. It might be impossible to find a distribution that has a desired one as all marginals of 
kth order. In case of BIs, user draw the measurements settings locally and independently to close the common 
cause loophole, so frequency of their appearance only affects the trust level of average values. Most optimally, a 
flat distribution is used.

Results
Symmetrized persistency of Bell correlations for GHZ‑based mixtures.  First, let us discuss the 
case of GHZ states. Obviously, any quantum advantage for N − L < N of N users is not possible for pure states, 
as any reduced state is fully separable. We thus need to use a symmetrized mixture,

where 
∑

� �(·) denotes the sum over all permutations of parties. We refer to these states as GHZ based mixtures.
Let us start with MAKB inequalities, which are obtained in an iterative way. Each observer has choice two 

observables, Ai and A′
i . The Bell expressions are

The maximal local realistic values of BN  are 2
N−1
2  for odd N and 2

N
2  for even. If we take 

Ai = cos(2παi)σx + sin(2παi)σy and likewise for A′
i s, we get

For odd N we have 2N−1 average values, and with choice of observables Ai = σx , A′
i = σy all of them have modulo 

1 and a sign corresponding to the respective terms in the Bell expression. Thus the maximal quantum mechanical 
value is 2N−1 , and the quantum-to-classical ratio (QCR), the ratio between the maximal quantum and classical 
values, is 2(N−1)/2 . For even N, again, all signs are matched, but the optimal modulo is 1/

√
2 an QCR is still 

2(N−1)/2 . A symmetrized optimal choice of observables is αi = 1
8N  and α′

i = 2N+1
8N .

In case of GHZ states, even stronger inequalities were found. They utilize a continuum of local observables, 
i.e. αi will take an arbitrary value. Naturally, any feasible implementation of these inequalities will utilize a finite 
number of uniformly distributed vales of αi24. The coefficiens are given by the values of the quantum correlation 
function and the QCR is 12

(

π
2

)N.

Symmetrized persitency of Bell correlations in QCCR protocols.  As we have seen, for GHZ-based 
mixtures, QCR grows exponentially with the number of parties, while the symmetrization causes only a polyno-
mial decay of correlation. Thus for any value L there is some value of N, above which any L users can be traced 
out.

(12)F(x1, . . . , xN , y1, . . . , yN ) = y1 . . . yN
g(x1, . . . , xN )

|g(x1, . . . , xN )|
= ±1.

(13)P(xπ1 , xπ2 , . . . , xπk ) =
∑

xπk+1
,...,xπN

P(xπ1 , xπ2 , . . . , xπN ),

(14)ρ = 1

2LN !
∑

�

�
(

|GHZN−L��GHZN−L| ⊗ �2L×2L
)

,

(15)

B2(A1,A
′
1,A2,A

′
2) =

1

2
(A1 ⊗ (A2 + A′

2)+ A′
1 ⊗ (A2 − A′

2)),

Bi+1(A1,A
′
1, . . . ,Ai+1,A

′
i+1)

= 1

2
((Ai+1 + A′

i+1)⊗ Bi(A1,A
′
1, . . . .,Ai ,A

′
i)

+ (Ai+1 − A′
i+1)⊗ Bi(A

′
1,A1, . . . ,A

′
i ,Ai)

(16)�GHZN |A1 ⊗ · · · ⊗ AN |GHZN � = cos

(

2π
∑

i

αi

)

.
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For MAKB inequalities and geometrical BIs (GBIs)25,26 QCR and (N − L)-partite GHZ states behaves like

where a =
√
2 , b = 1/

√
2 for MAKB inequalities and a = π/2 , b = 1/2 for GBIs. Let us now extend and sym-

metrize the state so that any N − L users can violate a BI,

which is the condition for PBellsym > L . PBellsym ≥ 2 occurs for N = 9 in case of MAKB inequalities and N = 7 for 
GBIs. Let us now study the asymptotic behavior with N → ∞ by referring to the Stirling approximation and 
introducing γ = L/N.

Note that log2 bN  is neglible for large N. We are thus left with

We can now find the ratio of parties that must be preserved. This cannot be done analytically, but is guaranteed 
to happen for any a: H(0) = 0,∂H(x)/∂x|x=0 = +∞ , H(1− x) = H(x) , and H(x) ≤ 1 . For a =

√
2 Eq. (20) is 

satisfied for γ < γCRIT = 0.905118 , whereas a = π/2 gives γCRIT = 0.867227.
Thus, in the limit of large N up to 13.2% of users can be replaced by others in the protocol. However, gaining 

an advantage in communication complexity reduction scheme requires an extra discussion. As we have men-
tioned above, in case of a mere Bell test distribution of measurement settings is largely irrelevant, and it is even 
desired to be uniform, in the QCCR scheme this distribution encodes the BI. For example, for an even number 
of parties with MAKB inequalities, we use all combinations of observables with equal weights, but only a half 
of them for odd. To enjoy the benefit in QCCR we need to have even k. Otherwise, after replacing one of the 
partners with another one we would not be able to recreate the distribution.

A similar problem arises with GBIs. However, this can be easily fixed by introducing new GBIs, in which 
observables from the x–y plane (with eigenvalues ±1 ). Thus the quantum mechanical part reads

The optimal classical part is equal to

and {C2, C3, C4, C5, C6, C7, . . .} = {1/2, 1/3, 5/24, 2/15, 61/720, 17/315 . . .} . We have

and the convergence is exponential. The first instance of persistency of PBellsym ≥ 2 occurs for N = 7 , 
Q6/(7C6) = 1440/(427π) ≈ 1.07346.

Symmetrized persistency of Bell correlations for Dicke states.  Dicke state family is exemplary for 
studying persistency of Bell correlations,

where �(·) denotes the sum over all permutations of parties. In particular, Refs.14,27–30 studied PBellsym for W states 
( |WN � =

∣

∣DN ,1

〉

 ). In particular, the Authors of Ref.30 considered BIs involving correlation between subsets of 
observers.

To set a context of this section, let us remind the findings from Ref.30. The Authors have given the upper 
bound for persistency for all states symmetric with respect to permutation of particles of N/2. The lower bound 
was given by

(17)QCR(N − L) = b× aN−L,

(18)
(

N
N − L

)−1

b× aN−L > 1,

(19)
0 <H(γ )− γ log2 a−

log2 b

N
,

H(x) =− x log2 x − (1− x) log2(1− x).

(20)H(γ ) > γ log2 a.

(21)

QN =
∫ 1

0
dα1 . . .

∫ 1

0
dαN sign

(

cos

(

2π
∑

i

αi

))

cos

(

2π
∑

i

αi

)

=
∫ 1

0
dα1 . . .

∫ 1

0
dαN

∣

∣

∣

∣

∣

cos

(

2π
∑

i

αi

)∣

∣

∣

∣

∣

= 2

π
.

(22)CN = 2N
∫ (−N+1)/4

−N/4
dα1

∫ 1/2

0
dα2 . . .

∫ 1/2

0
dαN sign

(

cos

(

2π
∑

i

αi

))

(23)lim
N→∞

CN−1

CN
= π

2
.

(24)
∣

∣DN ,M

〉

=
(

N
M

)− 1
2

�(|0�⊗M |1�⊗N−M),
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where N ′ =
⌊

N/(1− pCRIT )
⌋

 , ⌊·⌋ is the floor function and pCRIT is the critical probability below which state

violates a Bell inequality with m settings per side. Ref.30 shows this bound for m = 2, . . . , 6 and N up to 16. As 
a result, they find two-setting-per-side Bell inequalities, for which the persistency of Bell correlations reaches 
0.4N in the limit of large N.

In this work we limit ourselves to WWWŻB inequalities. The respective Bell operators read

We thus have a choice of 22N different operators, one for each sign function S(s1, . . . , sN ) (naturally, they can be 
either trivial, or trivially related amongst them).

The necessary condition for violation of WWWŻB inequalities is that there exists such a choice of local 
directions x and z, that

The problem with violation of WWWŻB inequalities with Dicke states is that there is a violation gap. That is to 
say, there is a certain range of white noise admixture, for which the state satisfies condition (28), but still does 
not violate any inequality from this family. However, this gap is relatively small [typically less than 1% of the sum 
in Eq. (28)], hence the sum is hence a good and fast indicator of potency for violation. Additionally, the same 
condition becomes necessary and sufficient for violation of inequalities with more settings per side under the 
restriction that the observables lie in the x–y plane31.

The partial trace of the Dicke state over L parties is

In the next step we calculate

Note that this is a straight-forward generalization of states given by Eq. (26).
These data are then interpolated to function �M,L(N) and equation �M,L(N0) = 1 is solved for N0 . The values 

of N0 are given in Table 1.

(25)P > N ′ − N + 1,

(26)ρ(N , p) = (1− p)|WN ��W ,N | + p|0�⊗N �0|⊗N

(27)

B′N = 1

2N

∑

s1,...,sN=±1

S(s1, . . . , sN )

× (A1 + s1A
′
1)⊗ · · · ⊗ (AN + sNA

′
N )

≤ 1,

S(s1, . . . , sN ) = ± 1.

(28)
∑

i1=x,z

. . .
∑

iN=x,z

T2
i1iN

> 1.

(29)

ρN ,M,L

= TrL(
∣

∣DN ,M

〉〈

DN ,M

∣

∣)

=
(

N
M

)−1 L
∑

l=0

(

L
l

)(

N − L
M − l

)

∣

∣DN−L,M−l

〉〈

DN−L,M−l

∣

∣.

(30)

�(N ,M, L) =
�

i1=x,z

. . .
�

iN−L=x,z

T2
i1...iN−L

(N ,M, L)

=
�

i1=x,z

· · ·
�

iN−L=x,z

TrρN ,M,L(σi1 ⊗ · · · ⊗ σiN−L )

=
�

a=0,2,...,2L

�

N −M
a

�





�

b=0,2,...,a

�

N −M
b

��

M
L− b

��

b
b/2

��

N − b
M − b/2

�

(−1)M−b/2





2

.

Table 1.   Values for estimating N0 = aL+ b , above which a WWWŻB inequality can be violated. 1/a is a ratio 
between asymptotic PBellsym and N.

M a b

1 3 1

2 2.5776 2.8083

3 2.4043 3.6349

4 2.3325 6.4408
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If the results hold the pattern for larger M, we shall have a ≈ 2.09251+ 1/M . We thus have PBellsym ≥ 2 for 
(N ,M) ∈ {(5, 1), (6, 2), (8, 3), (9, 4)} . As we can see, in the limit of both large N and large L we estimate that 
PBellsym ≥ 0.482N for M → N/2

Eq. (30) allows us to further investigate the estimates of the persistency for Dicke states with M = N/2 . For 
very large N we have

We have considered the values of c(L/N) with N = 600 up to L = 0.39N , N = 1000 up to 0.4N ≤ L ≤ 0.47N , 
and N = 3000 for L = 0.48N . It turned out that 

√
c(L/N) in the interval of [0.01, 0.48] can be well approximated 

as 
√
c(L/N) ≈

√
10(1.0855− 2.2686L/N) , which becomes negative for L/N = 0.478 , but the approximation 

breaks down a bit for large γ . However, we have also studied the value of �(N ,N/2, 0.48) , which reads 1.00265 
for N = 8500 , 1.4097 for N = 9000 and 2.8139 for N = 10000.

In case of W states we have studied some particular inequalities. None of them satisfied condition (13). Thus 
we assume that they are not useful for the sQCCR game.

Conclusions
We have studied symmetrized Bell correlations persistency for mixtures of GHZ states and Dicke states, especially 
in the context of their link to quantum communication schemes. We found that mixtures based on GHZ states 
asymptotically allow for loss of about 9.5% to MAKB inequalities and 13.2% for GBIs.

We have characterized the persistency of Bell correlations of Dicke states with respect to WWWŻB inequali-
ties. We have observed that already for three excitations we have asymptotic persistency higher than 2/5N, and 
in the limit of large number of excitations, we estimate it reach 0.482N. We have also demonstrated that Dicke 
states with half of the qubits excited can violate a Bell inequality even if 0.48 of all parties are traced out, though 
it would require more than 8000 qubits. Thus, contrary to the remarks in Ref.30, many-excitation Dicke states 
perform significantly better than the reported persistency of Bell correlations for W states, even though we have 
not tailored BIs for the former.

We have found that in a symmetrized situation described in the current paper users sharing the GHZ states-
based mixture can still enjoy the quantum advantage in the sQCCR game in subgroups of up to 0.89N users. 
They can achieve this using even-number-of-parties MAKB BIs, or a variant of GBIs, which asymptotically has 
quantum-to-classical ratio proportional to (π/2)
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