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Abstract: This review aims to show case recent regenerative medicine based on biomaterial tech-
nologies. Regenerative medicine has arousing substantial interest throughout the world, with “The
enhancement of cell activity” one of the essential concepts for the development of regenerative
medicine. For example, drug research on drug screening is an important field of regenerative
medicine, with the purpose of efficient evaluation of drug effects. It is crucial to enhance cell activity
in the body for drug research because the difference in cell condition between in vitro and in vivo
leads to a gap in drug evaluation. Biomaterial technology is essential for the further development of
regenerative medicine because biomaterials effectively support cell culture or cell transplantation
with high cell viability or activity. For example, biomaterial-based cell culture and drug screening
could obtain information similar to preclinical or clinical studies. In the case of in vivo studies,
biomaterials can assist cell activity, such as natural healing potential, leading to efficient tissue repair
of damaged tissue. Therefore, regenerative medicine combined with biomaterials has been noted.
For the research of biomaterial-based regenerative medicine, the research objective of regenerative
medicine should link to the properties of the biomaterial used in the study. This review introduces
regenerative medicine with biomaterial.

Keywords: regenerative medicine; biomaterials; cell transplantation; tissue engineering; drug research

1. Introduction

Regenerative medicine is one of the most attractive fields in recent biomedical en-
gineering. For the development of regenerative medicine, it is essential to enhance cell
activity. For example, in the damaged or injured tissues, the natural healing potential
is too low for cells to migrate, proliferate, and differentiate. If damaged cells’ natural
healing potential can be enhanced by using scientific technology, “patient-friendly” tissue
regeneration could be achieved. For in vitro research, living cells should be used with
satisfying functions and viability [1]. Cells are usually cultured in a dish that is mainly
composed of polystyrene—this culture condition is artificial, and the environmental situa-
tion is quite different from the original tissues. The difference in the cell condition leads to
low cell activity compared to in vivo, as cells in the body interact well with other cells or
extracellular matrix (ECM), resulting in enhanced cell activity in their differentiation [2],
proliferation [3], metabolism [4], or cytokine secretion [5,6]. The drug effect found in vitro
drug screening conditions is not always the same as in a preclinical or clinical study because
of the difference in the cell condition or activity [7–9]. If the cells with high activity are
used in drug screening, the efficient evaluation of drug effects could be achieved. Thus, for
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the advancement of regenerative medicine, it is essential to enhance the function or activity
of cells both in vivo and in vitro (Figure 1).
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Figure 1. Biomaterials are promising methods to enhance the biological function of cells in vivo and in vitro, leading to the
realization of regenerative medicine. In vivo, tissue regeneration can be achieved when the activity of cells in the damaged
tissues enhances. Furthermore, if the cell activity is high enough in cell culture, similar to in vivo, it is possible to effectively
predict the drug effect in a preclinical or clinical study. Thus, biomaterial-assisted regenerative medicine has been recently
identified as a promising approach.

The use of biomaterials is one of the most effective methods to enhance cell activity
(Figure 1). The American National Institute for Health (NIH) standard definition of
biomaterials is “any substance or combination of substances, other than drugs, synthetic or
natural in origin, which can be used for any period of time, which augments or replaces
partially or totally any tissue, organ of function of the body, in order to maintain or improve
the quality of life of the individual” [10]. In particular, biomaterials composed of ECM
components can be useful to enhance cell activity [11,12], because it is well known that
ECM enables cells to enhance viability or function [13–15].

Polymeric biomaterials, one of the essential biomaterials, can be classified into natural
biomaterials and synthetic biomaterials. Natural biomaterials are composed of polysac-
charides (chitosan, alginate, or hyaluronic acid) or peptide (collagen or gelatin), while
polyethylene glycol, poly(lactic acid), or poly(lactic-co-glycolic acid) are well known syn-
thetic polymers. The advantage of natural biomaterials is their high biocompatibility, as the
endogenous enzymes can degrade the biomaterials. On the other hand, synthetic polymers
have flexibility in their structural design to modify cell functions easily [12]. Therefore,
it is essential to understand the properties of each biomaterial and select the appropriate
biomaterials considering the purpose of the studies.

The objective of this review is to show recent regenerative medicine approaches based
on biomaterial technologies, because it is essential to understand the properties of each
biomaterial and select the appropriate biomaterial for each potential regenerative medicine.
This review introduces recent representative studies of regenerative medicine, such as
tissue engineering or drug research, using several biomaterials.

2. Regenerative Medicine Combined with Biomaterials

The basic information of several biomaterials and biomaterials-assisted regenerative
medicine are introduced in Table 1, which summarizes recent regenerative medicine
combined with biomaterials. We collected the studies including three keywords: research
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using representative biomaterials, research to show the result of enhancing biological
function, and research reported in the last five years. As representative natural biomaterials,
collagen, gelatin, alginate, chitosan, silk fibroin, agarose, and Matrigel were selected. In
contrast, poly(lactic acid) and poly(lactic-co-glycolic acid) for synthetic biomaterials were
introduced in this review. Although there are other synthetic polymers, the two polymers
were selected because of the medical application, availability, and ease to handle.

Table 1. Recent reports on regenerative medicine combined with biomaterials.

Biomaterials Ref. Date Tissue
Targeted

In Vitro (Cell Type)/In Vivo
(Animal Type) Testing Results Featured

Collagen [16] 2018 Bone
In vitro (human mesenchymal

stem cells (MSC))/In vivo
(mouse)

The scaffold of collagen and biphasic calcium
phosphate nanoparticles with a controlled

release of dexamethasone enabled the
enhancement of osteogenesis from human
MSC. In addition, bone regeneration was

observed in nude mice.

[17] 2019 Bone
In vitro (human MSC and

human umbilical vein
endothelial cells)

MSC and umbilical vein endothelial cells
multicellular spheroids encapsulated in

collagen/fibrin hydrogel showed efficient
osteogenic differentiation.

[18] 2020 Cartilage
In vitro (rabbit

chondrocytes)/In vivo
(mouse)

Porous fish collagen scaffolds promoted
cartilage formation in vitro and in vivo.

[19] 2017 Muscle In vitro (rat skeletal
myoblasts)

The 3D microgroove collagen scaffolds
triggered cell assembly into anisotropic

muscle bundles.

[20] 2017 Cancer In vitro (human breast
cancer cells)

Anisotropic scaffolds supported the migration
of invasive cancer cells.

[21] 2018 Cancer In vitro (human breast cancer
cells and fibroblasts)

Tool of cancer cells and collagen gels
containing fibroblasts combination system

enabled the evaluation of desmoplasia, cancer
proliferation, or invasion.

[22] 2019 Cancer
In vitro (human pancreatic
cancer cells, human lung

cancer cells, and fibroblasts)

Cancer cells attached and migrated on the
collagen matrix containing fibroblasts.

[23] 2019 Cancer In vitro (human breast
cancer cells)

Collagen matrices with fibril bending stiffness
indicated the spreading and clustering of

invasive cancer cells.

Gelatin [24] 2015 Cardiac

In vitro (human
cardiovascular cell derived

from iPS cells)/In vivo
(mouse)

Multilayered thick cell sheets were viable by
stacked with gelatin gels between each

cell sheet.

[25] 2018 Cardiac In vivo (rat)
Basic fibroblast growth factor release from

gelatin gels enabled the cell sheets to improve
cardiac contractile function.

[26] 2017 Epithelial
In vitro (mouse mammary
epithelial cells and mouse

preadipocyte cells)

Epithelial and preadipocyte spheroids
incorporating gelatin gels promoted the

expression level of laminin.

[27] 2017 Epithelial In vitro (mouse mammary
epithelial cells)

β-casein expression was high for epithelial
spheroids incorporating gelatin gels.

[28] 2018 Pancreas In vitro (rat insulinoma cells)
The incorporation of gelatin gels into

insulinoma spheroids enabled
insulin secretion.
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Table 1. Cont.

Biomaterials Ref. Date Tissue
Targeted

In Vitro (Cell Type)/In Vivo
(Animal Type) Testing Results Featured

[29] 2018 Ovarian In vivo (mouse)

The transplantation of gelatin sheets capable of
basic fibroblast growth factor with ovarian

tissues significantly increased the proliferation
of stromal and endothelial cells.

[30] 2019 Wound
healing In vivo (mouse)

Gelatin sheets impregnated platelet-rich
plasma accelerated the capillary and

tissue formation.

[31] 2019 Cancer In vitro (human lung cancer
cells and fibroblasts)

A co-culture tool of cancer cells and fibroblast
spheroids incorporating gelatin gels containing
a p53 inhibitor can evaluate the invasion level

of cancer cells.

[6] 2020 Cancer In vitro (human lung cancer
cells and fibroblasts)

The fibroblasts spheroids incorporating gelatin
gels capable of transforming growth factor-β1

increased the invasion rate of cancer cells
similar to in vivo.

[32] 2020 Cancer
In vitro (human lung, breast,

and hepatic cancer cells,
fibroblasts, and macrophages)

The gelatin gel-based drug release system was
able to mimic the invasion ability of cancer

cells, responding to the tissue region.

Alginate [33] 2017 Germ cells In vitro (mouse embryonic
stem cells)

Alginate-collagen gels enhance primordial
germ cell differentiation of embryonic

stem cells.

[34] 2020 Bone In vitro (rat MSC)/In vivo
(rat)

The osteogenesis and mineralization were
observed when MSC were encapsulated into

alginate gels.

[35] 2019 Bone
In vitro (murine bone calvaria

pre-osteoblast)/in vivo
(mouse)

The osteoblast differentiation of pre-osteoblast
was high in vitro and in vivo by encapsulating

into alginate-gelatin injectable gels.

[36] 2017 Bone In vitro (human
adipose-derived MSC)

The crosslinked oxidized alginate-gelatin
hydrogel was prepared by changing the

mixing ratio of alginate/gelatin. The ratio
influenced osteogenic differentiation.

[37] 2018 None In vitro (human bone
marrow-derived MSC)

Preparation of dual crosslinking homogeneous
alginate microspheres combined with a

microfluidics system to encapsulate MSC.

[38] 2018 Pancreas In vitro (human pancreatic
islets)

The first trial to encapsulate human pancreatic
islets in a dynamic condition, such as an

organ-on-chip.

[39] 2018 Pancreas In vitro (mouse pancreatic β
cells)/In vivo (rat)

Dual cross-linked alginate microbeads were
stable under the inflammation condition

in vitro and in vivo.

[40] 2016 Cancer In vitro (human breast cancer
cells and human fibroblasts)

Alginate gels encapsulating human breast
cancer cells and fibroblasts replicated

phenotypic functions of cancer disease
progression in vitro.

[41] 2016 Cancer
In vitro (human umbilical

cord-derived MSC and human
hepatocellular carcinoma)

EMT induction or metastasis was observed
when the alginate gels encapsulating

hepatocellular carcinoma were co-cultured
with MSC.

Chitosan [42] 2017 Blood vessel In vitro (human dermal
fibroblast cells)

Chitosan-gelatin-based bi-layer was an
appropriate scaffold to mimic the biological

blood vessel, such as morphology and
mechanism.



Int. J. Mol. Sci. 2021, 22, 8657 5 of 18

Table 1. Cont.

Biomaterials Ref. Date Tissue
Targeted

In Vitro (Cell Type)/In Vivo
(Animal Type) Testing Results Featured

[43] 2018 Blood vessel In vitro (human lymphocyte
cell T)

The properties of the tube showed the range
value of native blood vessels (tensile strength:
2.13 MPa and burst pressure: 2593 mmHg). In

addition, the tube was of high
hemocompatibility and low cytotoxicity.

[44] 2019 Blood vessel

In vitro (endothelial
progenitor cells, red blood

cells, or platelet-rich
plasma)/In vivo (pig)

A heparin–chitosan multilayered vascular
patch was biocompatible, such as a low

hemolysis rate.

[45] 2016 Cartilage In vitro (mouse
pre-chondrocytes)

The membrane of chitosan and chondroitin
sulfate improved cell adhesion and enhance

the expression of cartilage markers.

[46] 2019 Cartilage In vitro (rabbit chondrocytes)

They evaluated the mechanical and biological
properties of the poly

3-hydroxybutyrate-chitosan/silk scaffold for
chondrocyte viability.

[47] 2019 Cartilage In vitro (human cartilage)

When the graphene oxide concentration in the
chitosan scaffold was high, physical and
mechanical properties were improved,
resulting in enhanced proliferation of

chondrocytes.

[48] 2017 Cartilage In vitro (mouse
pre-chondrocytes)

Preparation of chitosan/poly(vinyl
alcohol)/graphene oxide nanofiber for

cartilage tissue engineering.

[49] 2016 Bone In vitro (human bone
osteosarcoma cells)

Chitosan-montmorillonite-hydroxyapatite
composite scaffolds were non-cytotoxic, and
the properties, such as bioactivity or protein
absorption, were improved compared with

chitosan or chitosan-montmorillonite scaffolds.

[50] 2017 Bone In vitro (human bone
marrow-derived MSC)

Chitosan nanohybrid combined with
strontium hydroxyapatite enhanced

osteoconductivity.

[51] 2017 Intervertebral
disc

In vitro (rabbit nucleus
pulposus cells from

lumbar disc)

Chitosan-based injectable gels indicated
constant storage modulus similar to the

intervertebral disc ECM.

[52] 2019 Intervertebral
disc

In vitro (bovine nucleus
pulposus cells from coccygeal

intervertebral disc)

Thermosensitive chitosan hydrogels with high
strength and rheological properties

were prepared.

[53] 2019 Intervertebral
disc

In vitro (rabbit nucleus
pulposus cells and annulus

fibrosus cells)/In vivo (rabbit)

Preparation of chitosan hydrogel/poly
(butylene succinate-co-terephthalate)

copolyester electrospun fibers for
intervertebral disc therapy.

[54] 2017 Skin In vitro (mouse
fibroblast cells)

Electrospun multilayer chitosan scaffolds with
low cytotoxicity were prepared. The scaffolds

have high porosity, and the mechanical
properties of the scaffolds matched those of the

human skin.

[55] 2019 Skin In vitro (mouse
fibroblast cells)

The chitosan-vitamin C scaffolds with glycerol
and polyethylene glycol enhanced the activity

of skin cells.

Silk fibroin [56] 2020 Bone In vitro (rat bone
marrow-derived MSC)

They evaluated the appropriate mixing ratio of
silk fibroin/gelatin as a microcarrier for

efficient osteogenic differentiation.
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Table 1. Cont.

Biomaterials Ref. Date Tissue
Targeted

In Vitro (Cell Type)/In Vivo
(Animal Type) Testing Results Featured

[57] 2019 Bone In vitro (human bone
marrow-derived MSC)

Hydrogen sulfide-releasing silk fibroin
scaffolds induced osteogenesis.

[58] 2016 Cartilage In vitro (porcine
chondrocytes)/In vivo (rat)

When the chondrocytes were cultured on the
silk fibroin scaffolds of Antheraea assamensis,

sulfated glycosaminoglycans and type II
collagen production increased.

[59] 2017 Cartilage
In vitro (rat bone
marrow-derived

MSC)/In vivo (rabbit)

They optimized the mixing ratio of silk fibroin
to gelatin as scaffolds prepared using 3D

printing for cartilage repair.

[60] 2016 Cartilage In vitro (pig auricular
chondrocytes)

The combination of agarose and silk fibroin
enhanced the polymeric network, leading to
the up-regulation of cartilage-specific genes.

[61] 2016 Tympanic
membrane In vitro (pig cartilage)

The first report on the effect of silk fibroin
membranes on the acoustic energy transfer

and tensile strength to cartilage.

Agarose [62] 2021 Skin
In vitro (human normal

embryonic lung fibroblast
cells)/In vivo (mouse)

Agarose-polydopamine hydrogels were
biocompatible scaffolds capable of promoting
collagen deposition and angiogenesis, finally

skin defect healing.

[63] 2017 Cartilage
In vitro (human elastic

cartilage-derived
chondrocytes)

Nanostructured fibrin–agarose hydrogel
enabled chondrocytes encapsulation and

support of culture.

[64] 2019 Nerve In vitro (rat neuronal cells) Electrical stimulation facilitated
dexamethasone release from hydrogels.

[65] 2017 Nerve In vitro (rat adipose-derived
MSC)/In vivo (rat)

Collagen conduits filled with fibrin–agarose
hydrogels containing stem cells were prepared

for nerve regeneration.

[66] 2017 Nerve In vitro (human
adipose-derived MSC)

A nanostructured fibrin-agarose bioartificial
nerve substitute enabled stem cells

to proliferate.

Matrigel [67] 2018 Cancer In vitro (human breast cancer
cells)

The cancer cell-laden gels composed of the
appropriate mixing ratio of Matrigel and

alginate replicate the behavior of cancer cells.

[68] 2017 Cancer In vitro (human non-small
cell lung carcinoma)

Matrigel and collagen-based microfluidics
systems can control the migration of cancer

cells by changing the Matrigel concentration.

Poly(lactic
acid) (PLA) [69] 2019 Bone In vitro (mouse embryonic

osteoblast cells)

The attachment and proliferation of cells on
poly(lactic acid)-hydroxyapatite (HA) hybrid

scaffolds increased. The result is mainly
because of the interaction between cells and

scaffolds via HA.

[70] 2020 Bone
In vitro (cat bone
marrow-derived

MSC)/In vivo (mouse)

PLA-HA improved the adhesion of cells, and
widespread ingrowth of tissues into the

implant pores was observed.

[71] 2020 Bone None Microanalysis of PLA-HA scaffolds
was performed.

[72] 2021 Bone In vitro (human fetal
osteoblast cells)

PLA-based scaffolds provided porous
networks and gave cells good biological

functions, such as osteogenesis.
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Table 1. Cont.

Biomaterials Ref. Date Tissue
Targeted

In Vitro (Cell Type)/In Vivo
(Animal Type) Testing Results Featured

[73] 2021 Bone In vitro (rabbit MSC)/In vivo
(rabbit)

PLA scaffolds incorporating a high
concentration of HA showed efficient bone

regeneration.

Poly(lactic-co-
glycolic acid)

(PLGA)
[74] 2018 Bone In vitro (human osteosarcoma

cells)/In vivo (rabbit)

The amount of bone formation for TiO2
nanotube/PLGA scaffolds was much higher

than for PLGA scaffolds.

[75] 2021 Bone
In vitro (human adipose or

bone marrow-derived
MSC)/In vivo (rat)

PLGA-hydroxyapatite (HA) nanoparticles
promoted osteodifferentiation compared to the

PLGA scaffold.

[76] 2019 Cartilage
In vitro (rabbit

synovium-resident
MSC)/In vivo (rabbit)

Bone morphogenetic proteins-7 loaded fibrous
PLGA scaffolds combined with MSC showed a

cartilage formation.

[77] 2020 Cartilage
In vitro (rabbit bone

marrow-derived MSC and
rabbit chondrocytes)

When cells were cultured on insulin-like
growth factor-1 laden

PLGA/polydopamine/poly-ε-caprolactone
scaffolds, glycosaminoglycan content,

chondrogenic protein, and gene
expression increased.

[78] 2017 Nerve In vitro (rat bone
marrow-derived MSC)

PLGA microcarriers were promising scaffolds
to support the culture of

neurotrophin-3-overexpressing stem cells.

[79] 2018 Nerve
In vitro (rat bone

marrow-derived MSC and rat
cortical neurons)

Stem cells and neurons could grow and
migrate in the PLGA scaffolds.

2.1. Collagen

Collagen is the most abundant protein in the body and supports mechanical and
structural conditions [80]. Collagen is mainly composed of glycine, proline, or hydrox-
yproline. A hydrogen bond forms the collagen triple helix. The main types of collagen
are type I (skin, tendon, or bone), II (cartilage), III (skin vessel), and IV (basement mem-
brane) [81]. Due to the abundant existing ratio, collagen is an essential protein for cells
to enhance cell function [82]. For example, collagen crosslinking and stiffening promotes
the aggregates of breast cancer [83], therefore, collagen is widely used as a material for
the tissue engineering of skin [84], bone [16,17,85], cartilage [18,86], blood vessels [87],
muscle [19], or cancer [20–22]. For example, when mesenchymal stem cells (MSC) are cul-
tured on Type I collagen gels, the osteoblast marker, such as alkaline phosphatase activity,
collagen synthesis, or osteocalcin gene, is enhanced [85].

The composite of collagen and biphasic calcium phosphate nanoparticles with a
controlled release of dexamethasone has also been prepared. The material enables efficient
bone tissue regeneration from MSC in vitro. High bone regeneration is observed when
the materials are injected into the dorsal of athymic nude mice [16]. Heo et al. prepared
collagen hydrogel encapsulating multicellular spheroids of MSC and human umbilical
vein endothelial cells. The spheroid showed cell spreading, proliferation, osteogenic
differentiation, and pre-vascular network in the hydrogel because collagen gel provides
cells a suitable environment [17]. Collagen material is specially selected in the three-
dimensional culture of cancer cells to evaluate migration, invasion, or metastasis because
the cancer cells prefer to migrate into type I collagen in vivo [88]. There is a report that
the degree of collagen fiber alignment or the fibril bending stiffness of the collagen matrix
affects the behavior of breast cancer cells [23]. Moreover, when lung or pancreatic cells
were co-cultured with fibroblasts into collagen gels, cancer cells migrated efficiently [22].
Recently, to investigate the reaction of T cells under the tumor microenvironment, T
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cells are cultured with collagen gels of different densities [89]. Indeed, collagen is the
most representative biomaterial. Researchers will continue studying the effect of collagen
material on biological function in vitro and in vivo.

2.2. Gelatin

Collagen material is effective because collagen is a prominent ECM component. How-
ever, there is a limitation of collagen as a biomaterial due to its low solubility in water and
biological activities. Gelatin, a denatured form of collagen, as water-soluble material, is
often used in biomedical approaches [90]. Gelatin hydrogels can permeate the oxygen or
nutrient because of the high water content [91,92]—this permeability is effective in regener-
ative medicine. For example, cells present in the center of spheroids or the center layer of
the multilayer cell sheet are dead with hypoxia [93]. Tabata et al. have incorporated the
gelatin hydrogels into the spheroids or between each cell sheet to tackle this problem. This
method enables the culture of the spheroids or cell sheets for an extended period [24,26–28].
The gelatin hydrogels not only permeate oxygen but also contain growth factors [25,29,30].
As mentioned above, growth factors are essential to enhance cell activity. When the gelatin
hydrogels containing basic fibroblasts growth factors (bFGF) were injected into damaged
tissues, effective vascularization was observed, resulting in tissue regeneration [94,95].
There are two advantages of the gelatin hydrogel microspheres; one is the drug release
mechanism. The growth factors are released from the materials not by diffusion but by
the degradation of materials with degradation enzymes, which means the drug is released
sustainably when injecting the gelatin materials into damaged tissues. The other is the
eventual disappearance of the gelatin hydrogel microspheres. To repair the damaged or
injured tissues, cells near the damaged tissues should migrate, proliferate, and differenti-
ate. The material-remaining leads to the physical impairment of tissue regeneration [1].
Therefore, the materials injected must disappear during tissue regeneration. The gelatin
hydrogel microspheres disappear eventually, and the degradation speed can be changed
and modified by the chemical crosslinking condition, responding to the damage level [95].

The gelatin hydrogel microspheres are also effective in drug discovery. Cancer inva-
sion is one of the issues to be solved [96]. The cancer invasion model would be effective in
anti-cancer drug screening. It is well known that the interaction between cancer cells and
stromal cells, especially cancer-associated fibroblasts (CAF), promotes cancer invasion [97].
3D CAF aggregates incorporating gelatin hydrogel microspheres capable of drug release
are prepared to mimic the cancer invasion. The CAF aggregates increase the invasion rate
of cancer cells [6,31,32], herefore, the characteristics of gelatin hydrogel microspheres, such
as oxygen permeability, drug release mechanisms, or eventual disappearance, are desirable
for building a cancer tissue model for the screening of anti-cancer drugs.

In addition to hydrogels, gelatin hydrogel nonwoven fabrics have also been recently
reported. The mechanical properties of the gelatin hydrogel nonwoven fabrics are strong
enough to be handled in swollen conditions [98–100]. When multilayered cell sheets are
cultured with the gelatin hydrogel nonwoven fabric, the transfer time of the cell sheets is
improved. In addition, glucose consumption or adenosine triphosphate (ATP) production
of multilayered cell sheets enhances by formulating with the gelatin hydrogel nonwoven
fabrics between each cell sheet [99].

Moreover, cationized gelatin nanospheres incorporating imaging probes to detect
mRNA have been recently prepared [101]. For cell transplantation, the non-invasive
technology to detect the cellular localization and distribution or biological function after
transplantation is needed. The nanospheres aim to visualize cellular function, such as
apoptosis [102], macrophage phenotypes [103], or cell proliferation ability [104].

2.3. Alginate

Alginate, a copolymer of α-L-guluronic acid and β-D-mannuronic acid, is derived
from seaweed [105]. Alginate is one of the attractive biomaterials in biomedical engineering
because the molecular structure of alginate is similar to that of polysaccharides [106]. In
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addition, alginate gels are easily obtained by calcium or ferric ion at room temperature,
and cell encapsulation into alginate gels has been extensively studied [107,108]. These gels,
which incorporate cells, are effective for cell delivery to damaged tissues or in vitro cell re-
search. In particular, stem cells [33,34,36,37,109–111], pancreatic-associated cells [38,39,112],
or cancer cells [40,41] are often selected in the alginate encapsulation system. For example,
An et al. encapsulated MSC into alginate gels. The systems showed efficient differentiation
into osteoblast cells [34]. Mansouri et al. reported that alginate gels promote the differenti-
ation into primordial germ cells of mouse embryonic stem cells [33]. Somo et al. prepared
MIN6 of a pancreatic beta-cell line encapsulated into alginate gels to deliver to islets as a
type 1 diabetes treatment [39], while Estrada et al. prepared alginate gels encapsulating
breast cancer cells and fibroblasts cells to mimic the breast cancer microenvironment. As a
result, the reduction in estrogen receptors, the loss of cell polarity, the increase of cancer
cell migration, and enhanced angiogenesis potential were observed in this system [40].
Thus, a cell encapsulating system based on alginate gels is effective in tissue engineering or
drug research.

Injectable gels for cell transplantation, taking advantage of cell encapsulating, have
been reported. Injectable alginate and gelatin hydrogels containing cells are prepared
by mixing alginate/gelatin solution and FeCl3 solution based on the physico-chemical
interaction. They confirm the appropriate mixing ratio of alginate and gelatin for cell
cytotoxicity, cell proliferation, and differentiation in vitro and in vivo. The strength of these
injectable gels is to form gelation by not chemically or covalently crosslinking polymers
but by physicochemical interaction. This crosslinking allows the gel to disintegrate quickly.
It disappears a few days after the injection, while most injectable gels already reported
take more than three weeks to disappear or even remain in the body due to the stable
chemical crosslinking [35]. The disappearance characteristics of injectable alginate-based
gels are suitable for tissue regeneration because the material that may remain for a long
time sometimes causes the physical impairment of tissue regeneration.

2.4. Chitosan

Chitosan, a copolymer of β-(1→4)-2-acetamido-D-glucose and β-(1→4)-2-amino-D-
glucose units, is obtained by deacetylation of chitin [113]. The solubility of chitosan
is much higher than that of chitin, which means that it is easy to handle. Chitosan is
easily chemically modified because of the existence of β-(1,4) glycosidic bonds between
D-glucosamine and N-acetyl-D-glucosamine [114]. Such modifications are used for im-
parting stiffness or low inflammatory induction property to chitosan [115]. Chitosan can
also interact with negatively charged biomaterials [10,116]. Due to the low cost and versa-
tility, chitosan is effective biomaterial as food packaging films [113,117], preservation of
food [118] and drink [119], pharmaceutical science [120], cosmetics [121], or antibacterial
agents [115]. In regenerative medicine, chitosan is often selected for blood vessels [42–44],
cartilage [45–48,122–124], bone [49,50,125,126], the intervertebral disc [51–53,127,128], or
skin [54,55,129] regeneration. For example, glycosaminoglycan (GAG) is essential to stimu-
late the formation of cartilage. The electronic interaction between the negatively charged
GAG and chitosan is formed. GAG amount of cartilage cells with chitosan scaffold was
higher 14 or 21 days after the transplantation [122]. In addition to the interaction with
GAG, the structure of chitosan is close to that of GAG. Therefore, the chitosan scaffold can
support cell culture because GAG is one of the most critical ECM components [11]. Chi-
tosan scaffold enables human fibroblasts, endothelial cells, or keratinocytes to proliferate
in vitro and in vivo [130]. As one trial for blood vessel regeneration, heparin and chitosan
scaffold have been reported. Zhang et al. have prepared a multilayered vascular patch
by alternately depositing the heparin-chitosan onto a polyurethane-coated decellularized
platform via a layer-by-layer method. The vascular patch has a capacity for vascular tissue
regeneration in vitro and in vivo [44]. Due to the biocompatibility and positively charged
surface, chitosan is one of the most effective biomaterials for regenerative medicine.
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2.5. Silk Fibroin

Silk is composed of fibroin (75%) and sericin (25%) [131]. Silk fibroin is a semi-
crystalline structured protein and therefore has a role in load-bearing capacity, while sericin
is an amorphous structured polymer [132]. For the use of tissue engineering, sericin has
some unfavorable properties. First of all, sericin reduces the mechanical strength of silk
fibroin fiber. The modulus of silk without sericin has about twice mechanical strength as
sericin included [133]. Second, although it isn’t always necessary to be avoided, sericin
sometimes induces an inflammatory response [134–136]. For the reasons, sericin is often
removed by a degumming process under the boiling alkaline condition [137]. Silk fibroin is
composed of H-chain (Mw = 391.6 kDa) and L-chain (Mw = 25.2 kDa). The two chains inter-
act with each other by the disulfide bond, leading to the formation of the H-L complex [138].
Proteolytic enzymes, such as chymotrypsin, actinase, and carboxylase, degrade the silk
fibroin. In addition, the degraded fraction does not induce an immunogenic response [139].
Due to the biocompatibility or biodegradability, silk fibroin is a useful biomaterial for the
tissue engineering of bone [56,57,140], cartilage [58–60,141], tendon [142], skin [143,144],
tympanic membrane [61], or blood vessel [145]. For example, when MSC are cultured on
the silk fibroin scaffold, osteogenesis differentiation is enhanced [140]. In 2019, a silk fibroin
scaffold capable of hydrogen sulfide release was prepared. This material enhances the
osteogenesis of MSC, angiogenesis, or mineral matrix deposition [57]. The silk-gelatin mi-
crocarrier also achieves the osteogenic differentiation of MSC. The differentiation efficiency
is comparable to that on commercial microbeads, Cultispher-S gelatin microspheres [56].
Moreover, the combination of silk fibroin and gelatin can retain the MSC, act as a physical
barrier for blood clots, and provide mechanical protection of neocartilage formation [59].

2.6. Agarose

Agarose with a molecular weight of around 12 kDa is composed of the unit of D-
galactose and 3.6-anhydro-L-galactopyranose [146]. Agarose has a capacity for water
absorption, and therefore, it can permeate oxygen and nutrients to the encapsulated living
cells [147]. In addition, agarose gels are formed by hydrogen bonding and electronic
interaction without any harmful crosslinking agents [148]. Moreover, it has been reported
that agarose doesn’t show immunogenicity [149]. Besides, the tunable properties are
suitable for the application of tissue engineering because different stiffness is required
depending on where it’s used. [146]. Therefore, some researchers try to use an agarose gel
for the application of regenerative medicine. For example, agarose gel with the addition of
polydopamine increases the water content and cell adhesion. As a result, the deposition
of collagen and angiogenesis is enhanced [62]. Agarose gels containing cartilage cells
with various cell seeding densities can investigate the precipitation of proteoglycan and
GAG, which are the characteristics of cartilage [63]. Besides, regenerative medicine for
nerve [64–66] or cornea [150] has been studied based on agarose.

2.7. Matrigel

The basement membrane comprises type IV collagen, laminin, heparan sulfate, growth
factors, cytokines, or chemokines [151]. Cancer cells are attached to the basement mem-
brane as alternative epithelial cells. Due to the basement membrane integrity, the separation
between epithelial and stromal sites is achievable [152]. Cancer cells start to penetrate
through the basement membrane for cancer invasion, degraded by several secreted factors,
such as matrix metalloproteinase [31,153]. Therefore, the basement membrane is vital for
cancer cells to enhance their biological functions. Despite the importance, human complete
basement membrane can’t be constructed with current scientific technology. Therefore,
as an alternative material to the basement membrane, Matrigel is often used. Matrigel is
a complex protein mixture of mouse Engelbreth-Holm-Swarm tumor [32,154]. Matrigel
is effective in invasion assays of cancer cells, such as Boyden chamber or transwell [155].
In addition, Matrigel is also useful for the evaluation of the morphology of cancer cells.
It has been reported that there is a good relationship between the morphology of cancer
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cells and the profile of gene expression [156]. The combination with other biomaterials
has already been studied. For example, 3D alginate and Matrigel hydrogel keep human
high invasive breast cancer cells with high malignancy, spreading, migration, or invasion
activities similar to those observed in vivo [67]. Furthermore, when the hydrogels are
prepared by changing the mixing ratio of collagen and Matrigel, fiber diameter or pore
number could be modified. This enables the evaluation of cancer cell migration into the
biomimetic matrix [68]. Taken together, Matrigel is one of the most valuable biomaterials to
support the culture of cancer cells with characters similar to in vivo, and Matrigel-assisted
tissue engineering is also promising in cancer tissue engineering and anti-cancer drug
validation among regenerative medicine.

2.8. Poly(lactic acid)

The elastic modulus of poly(lactic acid) (PLA) is similar to that of bone, and PLA has
good thermal processability [157–160]. Therefore, PLA is used for bone tissue engineering.
Significantly, the combination of hydroxyapatite (HA) and PLA is often studied because
HA has an important role in ECM remodeling and homeostasis [161]. PLA-HA scaffolds,
which have a porosity of more than 85%, have been prepared. The scaffolds have been
used for the efficient culture of mouse embryonic osteoblasts cells because of the excellent
HA distribution on the surface [69]. Zimina et al. report that the adhesion of MSC is about
three times higher than that of the pure PLA sample mainly because the HA could increase
the wettability of the polymeric biomaterial [70]. To scientifically support the PLA-HA
scaffold, microanalysis [71] or 3D printing technology [72,73] has been recently studied.

2.9. Poly(lactic-co-glycolic acid)

Poly(lactic-co-glycolic acid) (PLGA) is a copolymer of polylactic acid and polyglycolic
acid. Due to this composition, it tends to degrade more quickly than PLA. It is easy to mod-
ify the PLGA property such as degradability because the ratio of lactic acid and glycolic
acid or molecular weight are the most critical factors to determine the properties [162]. In
addition, PLGA formulation is prepared by simple methods, such as the solvent evapo-
ration method or spray drying method [163]. For example, PLGA nanoparticles can be
prepared by the solvent evaporation method as follows; PLGA and a hydrophobic drug
are dissolved in an organic solvent, such as acetone or dichloromethane. The solution is
added to aqueous poly(vinyl alcohol) solution to obtain the O/W emulsion. Then, the O/W
emulsion is stirred overnight to evaporate organic solvent. The obtained particles can be
directly used for various researches. Due to its biodegradability, biocompatibility, or ease
of handle, PLGA is widely used in medical fields. For example, PLGA microparticles con-
taining leuprolide are used to treat breast or prostate cancer [164]. PLGA is often selected
for tissue engineering, especially for the brain or neuron [165]. Moradian et al. prepare
PLGA microspheres to support the culture of neurotrophin-3 (NT-3) overexpressing cells.
As a result, dopamine production and cell viability increased [78]. When MSC and nerve
cells are cultured on a PLGA scaffold, both two cells proliferate and migrate. This tool is
promising in the treatment of brain injury [79]. The conduit composed of PLGA promotes
the Schwann cells, which stimulate axonal growth, leading to reduced cyst formation or
damages [166]. In addition to the PLGA tube, the combination with salidroside promotes
peripheral nerve regeneration in vitro and in vivo [167].

3. Conclusions and Future Perspectives

Regenerative medicine consists of the following four fields; cell transplantation, tissue
engineering, drug research, and gene therapy. In each area, “utilization of cells with
high activity” is essential. Therefore, the scientific methodologies to enhance cell activity
contribute to regenerative medicine. In addition, although the interaction of biomaterials
and targeted cells is focused in this review, the interaction of biomaterials and immune cells
near the targeted cells (e.g., neutrophils or macrophages) is also an important factor because
this interaction leads to the immune response. For example, macrophages are polarized
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to M1 (pro-inflammatory) and M2 (anti-inflammatory) phenotypes, responding to the
environmental condition [168]. Therefore, when the biomaterials induce the modification
of M1 macrophages, tissue regeneration would not be achieved. Moreover, the relationship
between nanomaterials and immune cells has been recently investigated to understand
the production of bio-corona, immune sensing, immune evasion, or degradation [169,170].
Based on these prospective, to further develop biomaterials-based regenerative medicine,
the reaction of immune cells should be considered.
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