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Angiogenesis in metastatic castration-resistant prostate cancer (mCRPC) has been
extensively investigated as a promising druggable biological process. Nonetheless,
targeting angiogenesis has failed to impact overall survival (OS) in patients with mCRPC
despite promising preclinical and early clinical data. This discrepancy prompted a literature
review highlighting the tumor heterogeneity and biological context of Prostate Cancer
(PCa). Narrowing the gap between the bench and bedside appears critical for developing
novel therapeutic strategies. Searching clinicaltrials.gov for studies examining
angiogenesis inhibition in patients with PCa resulted in n=20 trials with specific
angiogenesis inhibitors currently recruiting (as of September 2021). Moreover, several
other compounds with known anti-angiogenic properties – such as Metformin or
Curcumin – are currently investigated. In general, angiogenesis-targeting strategies in
PCa include biomarker-guided treatment stratification – as well as combinatorial
approaches. Beyond established angiogenesis inhibitors, PCa therapies aiming at
PSMA (Prostate Specific Membrane Antigen) hold the promise to have a substantial
anti-angiogenic effect – due to PSMA´s abundant expression in tumor vasculature.

Keywords: Prostate adenocarcinoma, PCa, angiogenesis inhibitors, TKI, immunotherapy, tumormicroenvironment,
clinical trials, PSMA
INTRODUCTION

The biological context of angiogenesis and prostate cancer (PCa) inspired a plethora of research,
specifically in metastatic PCa and more specifically in castration-resistant disease (CRPC), the clinical
stage in which the majority of clinical trials on angiogenesis inhibition was performed (1). Metastatic
PCa is an androgen-driven and -dependent cancer (2), with androgen deprivation therapy (ADT)
being the primary treatment. Despite high response rates – practically 90% of patients initially respond
to hormone therapy – the vast majority will end up relapsing (3) in a predictable and irreversible
manner. There has been a fair amount of research to try to analyze the mechanisms of progression to
CRPC, which is the lethal phenotype of metastatic PCa – and current evidence suggest a function of
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clonal selection and adaptation by androgen receptor (AR)-
dependent and independent mechanisms (4).

Indeed, ADT together with next generation hormonal agents
such as Abiraterone (5) and Enzalutamide (6) still represent the
foundation of systemic PCa treatment. Beyond hormone therapy,
approved chemotherapy regimens mainly consist of Docetaxel and
Cabazitaxel as microtubule inhibitors (7–9). Regarding bone as a
favorite localization of PCa metastasis (10–12), therapeutic
(combination) approaches include Radium-223 (13). In recent
years, PCa treatment has rapidly developed towards precision
oncology by addressing two novel target pathways: DNA repair
and Prostate-specific membrane antigen (PSMA)-related
signaling. Regarding DNA repair, cancers with mutations in
BRCA1/2 (Breast Cancer Associated Genes 1 and 2) can be
treated with PARP (Poly-ADP-Ribose-Polymerase) inhibitors
originally established in Ovarian Cancer (14, 15). For PSMA,
strategies include radioligand therapy as a theragnostic approach
performed by nuclear medicine specialists (16).

Beyond these established and approved cancer therapies, this
review aims to address an obvious treatment gap – given the
crucial role of angiogenesis for PCa development and
progression. Despite this fundamental promise reflected by in
vitro and preclinical evidence, phase III trials with angiogenesis
inhibitors failed to meet clinical endpoints.
PROSTATE CANCER AND VEGF-
MEDIATED ANGIOGENESIS – PROMISES
AND CHALLENGES

About 50 years ago, Folkman and colleagues highlighted the
importance of angiogenesis and neovascularization for tumor
growth – reasoning that targeting tumor blood vessels might
prove beneficial for patients with cancer (17). Meanwhile, state-
of-the-art techniques highlighted the crucial but not completely
understood link between angiogenesis (endothelial cells) and
tumor immunity (18). For PCa, histopathology pinpoints high
micro-vessel density and increased VEGF (Vascular Endothelial
Growth Factor) expression compared to non-neoplastic
conditions. Moreover, VEGF levels are associated with higher
tumor stages as well as advanced grading and plasma VEGF is
increased in metastatic PCa versus localized disease (19–21).
Higher VEGF expression evaluated by immunohistochemistry
has also been associated with reduced disease-specific survival in
patients with PCa (22). In addition, levels of urinary VEGF were
associated with worse survival (23) and elevated plasma VEGF/
sVCAM-1, a vascular cell adhesion molecule, correlated with
worse outcome (24).

In principle, many drugs and angiogenic target structures
known from other solid and hematological malignancies are
available for PCa (25–30). As a consequence, clinical trials
combined antiangiogenic agents with Taxanes in mCRPC (31);
however, not a single drug combined with Docetaxel showed a
statistically significant success in terms of outcome (32).
Therefore, clinicians started trials in less symptomatic patients,
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investigating compounds as single agents. Unfortunately, all of
these phase III trials with thousands of patients were collectively
negative for OS – despite promising biological preclinical as well
as promising phase II trials. Despite efforts studying more than
1,000 patients, the combination of Bevacizumab or Aflibercept
with chemotherapy showed no improvement compared to
chemotherapy alone (33, 34). Sunitinib as a single agent
compared to prednisone showed no improvement, either (35).

Making it even worse, Lenalidomide treatment resulted in a
sobering scenario (36): While effective in several hematologic
conditions (37–40), combination treatment of patients with PCa
(Lenalidomide+Docetaxel +Prednisone) led to a significantlyworse
OS compared to treatment with Docetaxel and Prednisone (36).
Another surprising and quite sobering example is Cabozantinib, an
oral inhibitor of Tyrosine Kinases includingMET andVEGFR2, two
major drivers of malignant progression in several neoplasia (41–47),
which did not guarantee an OS advantage in patients with PCa (48).
Indeed, Cabozantinib showed anti-angiogenic and antitumor effects
in a wide range of preclinical tumor models (49–51), also blocking
progression of PCa xenografts in soft tissue and bone (52–54).
Additionally, Cabozantinib affected key actors of the bone niche –
with reduction in osteoclasts and biphasic effects osteoblasts, while
altering bone remodeling with increased volume in mice (55). MET
andVEGFR2 cooperate to promote tumor survival, thereby boosting
angiogenesis via improved tumor blood flow and improved
oxygenation. Moreover, MET promotes migration and invasion,
also facilitating the escape from hypoxic areas. Consequently, bone
metastases are associated with high levels of MET expression. In
specific, MET expression increased with androgen deprivation in
preclinical models and with progression and metastasis in bone and
lymph nodes (56). Promising early phase II trial results from bone
scans upon combined Docetaxel and Cabozantinib treatment
showed activity in 300 patients (48, 57). Soft tissue effects were also
present, with objective response and significant progression-free
survival (PFS) benefit (48). Improvement in pain and reduction of
narcotics corroborated these initial results (58). These data were
paralleledbya reductionof circulating tumorcells (57),while keeping
activity in subjects heavily pretreated with Docetaxel, Abiraterone
and/or Enzalutamide (48, 57). The lowest effective dose of these
studies was 40 mg/day (59). Nevertheless, within phase III trial,
Cabozantinib did not perform better than Prednisone (60). The dose
and the stage of disease could have been the cause for this failure.
CURRENT CLINICAL TRIALS ON ANTI-
ANGIOGENESIS IN PROSTATE CANCER

To determine the status quo of clinical trials investigating anti-
angiogenesis in PCa, we performed a database research on
clinicaltrials.gov. As of September 2021, a total sum of 866
actively recruiting interventional trials were registered for
patients suffering from PCa. As outlined in Table 1, only a
minority of clinical trials investigated the effects of angiogenesis
inhibitors/Tyrosine kinase inhibitors. Specifically, we identified
20 clinical trials addressing angiogenesis inhibition. While some
February 2022 | Volume 13 | Article 842038

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Solimando et al. Challenges of Angiogenesis Inhibition in Prostate Cancer
studies aim to identify predictive biomarkers for future clinical
stratification in entity-independent trials (NCT02465060,
NCT03878524), others combine angiogenesis inhibition with
immune checkpoint blockade – e. g. CONTACT-02 trial
investigating Cabozantinib in combination with Atezolizumab
in patients with mCRPC (NCT04446117). Of note, other studies
Frontiers in Immunology | www.frontiersin.org 3
include patients in different stages, such as metastatic castration
sensitive disease (CABIOS phase I trial, NCT04477512) and even
localized disease in a neoadjuvant setting before Radical
Prostatectomy (SPARC phase II trial, NCT03964337).

Beyond this relatively small number of trials directly aiming
at tumor vessels, we found several studies investigating
TABLE 1 | Recruiting interventional trials examining anti-angiogenesis in prostate cancer (PCa) registered within clinicaltrials.gov database (December 2021).

Trial
Identifier

Stage/Entity Title/characteristics Treatment Comment

NCT01567800 PCa Prostate Hypoxia FAZA 18F-FAZA Hypoxia-specific PET tracer
NCT02465060 Advanced Cancer MATCH screening trial;

Phase II
(…), Sunitinib, (…) Biomarker-driven Basket trial for

various compounds
NCT02484404 Advanced solid tumors Phase I/II Combinations of Cediranib, Durvalumab and

Olaparib
Cediranib: pan-VEGFR inhibitor

NCT02643667 Localized PCa Phase I/II Ibrutinib before Radical Prostatectomy Ibrutinib: BTK inhibitor; Neoadjuvant
setting

NCT03170960 Advanced solid tumors Phase I/II Cabozantinib ± Atezolizumab
NCT03385655 PCa Phase II (…), Savolitinib, (…) Biomarker-driven therapy

stratification
NCT03556228 PCa and other malignancies Phase I VMD-928 VMD-928: TrkA inhibitor
NCT03845166 Advanced solid tumors Phase I XL092 AND Atezolizumab OR XL092 AND

Avelumab
XL092: Tyrosine Kinase inhibitor
(incl. VEGFR2)

NCT03866382 Rare genitourinary tumors Phase II Cabozantinib AND Nivolumab AND
Ipilimumab

Metastatic Prostate Small Cell
Neuroendocrine CA

NCT03878524 Advanced Cancer SMMART; Phase I (…), Bevacizumab, Cabozantinib, Sorafenib,
Sunitinib, (…)

Biomarker-driven Basket trial for
various compounds

NCT03964337 PCa before surgery SPARC; Phase II Neoadjuvant Cabozantinib
NCT04159896 mCRPC Phase II ESK981 AND Nivolumab ESK981: Pan-VEGFR/TIE2 inhibitor
NCT04446117 mCRPC CONTACT-02; Phase III Cabozantinib AND Atezolizumab
NCT04477512 mCSPC CABIOS; Phase I Cabozantinib AND Abiraterone/Prednisone

AND Nivolumab
NCT04514484 Advanced Cancer AND HIV infection Phase I Cabozantinib AND Nivolumab
NCT04521686 Advanced solid tumors with IDH1

mutations
Phase I LY3410738 LY3410738: IDH1 inhibitor

NCT04631744 mCRPC Phase II Cabozantinib
NCT04635059 PCa: biochemical recurrence BLAST; Phase II Pacritinib Pacritinib: JAK/FLT3 inhibitor
NCT04742959 Advanced solid tumors Phase I/II TT-00420 ± Nab-Paclitaxel TT-00420: Tyrosine Kinase inhibitor

(incl. VEGFRs)
NCT04848337 Advanced/metastatic neuroendocrine

PCa
PLANE-PC; Phase II Lenvatinib AND Pembrolizumab Lenvatinib: VEGFR inhibitor

Further compounds with known anti-angiogenic properties
NCT02935205 CRPC Phase I/II Indomethacin AND Enzalutamide
NCT00268476 mCSPC STAMPEDE; Phase II/III (…), Metformin, (…)
NCT01864096 low-risk PCa under Active Surveillance MAST; Phase III Metformin
NCT02064673 PCa after Radical Prostatectomy Phase III Curcumin
NCT02176161 PCa after therapy and a high-risk

setting
Phase II Metformin

NCT02804815 PCa and other malignancies after
curative therapy

Phase III Aspirin

NCT03031821 PCa with indication for ADT PRIME; Phase III Metformin AND ADT
NCT03535675 PCa: PSA recurrence after definitive

treatment
Phase III Muscadine Grape extract Patient pre-selection according to

genotype
NCT03769766 low-risk PC under Active Surveillance Phase III Curcumin
NCT03819101 CRPC PEACE-4; Phase III Acetylsalicylic acid ± Atorvastatin
NCT03899987 PCa before Radical Prostatectomy Phase II Aspirin AND Rintatolimod ± interferon-alpha

2b
NCT04300855 PCa under Active Surveillance Phase II Green Tea Catechins (Sunphenon)
NCT04519879 PCa: recurrent/therapy-naive Phase III White Button Mushroom extract
NCT04536805 PCa: relapse in previously irradiated

Prostate bed
REPAIRGETUGP16;
Phase I/II

Metformin AND Radiation

NCT04597359 PCa under Active Surveillance Phase II Green Tea Catechins
February
Ctr, Control; CRPC, castration-resistant Prostate Cancer; CSPC, castration-sensitive Prostate Cancer; mCRPC, metastatic castration-resistant Prostate Cancer; mCSPC, metastatic
castration-sensitive Prostate Cancer; ADT, Androgen deprivation therapy.
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compounds known to have additional anti-angiogenic effects
(bottom part of Table 1). Curcumin, Green Tea Catechins and
Metformin were among the substances identified. For
Metformin, a tumor suppressive role was shown in several
cancer entities (61). Moreover, adjuvant Metformin intake was
associated with improved outcome in Clear Cell Renal Cell
Carcinoma patients treated with Tyrosine Kinase inhibitors in
two independent cohorts (62, 63). One reason for this protective
effect could be the role of Metformin as a mitochondrial
inhibitor. Interestingly, recent evidence implies a prominent
role for mitochondrial signaling not only in Clear Cell Renal
Cell Carcinoma (64), but also in high-grade PCa (65).
Potentially, angiogenesis inhibition could be more effective in
patients suffering from PC when combined with adjuvants such
as Metformin.
Frontiers in Immunology | www.frontiersin.org 4
DISCUSSION

From a histopathological and preclinical perspective, there is
convincing evidence for a significant role of angiogenesis in PCa
development andprogression. For example,VEGFR2was shown to
mark PCa caseswith a high risk of progression (30, 66). In addition,
angiogenesis-related microRNAs such as let-7, miR-195 and miR-
205 (67) are also deregulated and play prominent roles in PCa (68–
70).However, no angiogenesis-specific inhibitor hasmet its clinical
endpoint in phase III trials (see Figure 1A). Consequently,
angiogenesis inhibitors currently do not play a role in PCa
treatment guidelines. As shown by our database search on
clinicaltrials.gov, several clinical trials are currently recruiting
patients with PCa to address the discrepancy between promising
preclinical findings and sobering clinical trial results.
A

B

D

C

FIGURE 1 | The clinical challenge of angiogenesis inhibition in Prostate Cancer (PCa). (A) Despite promising preclinical evidence from histopathological and in vitro
analyses, phase III clinical trials with angiogenesis inhibitors failed to meet clinical endpoints. (B, C) Main strategies aiming to leverage the impact of angiogenesis
inhibition are biomarker-aided identification of PC patient subgroups most susceptible towards anti-angiogenesis (B) and combinatorial approaches (C). Moreover,
several established PCa therapies partly exhibit anti-angiogenic effects as mode of action (D).
February 2022 | Volume 13 | Article 842038
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Current Therapeutic Strategies to Narrow
the Gap Between Bench and Bedside
As illustrated in Figure 1, two main strategies aim to establish
therapeutic anti-angiogenesis in patients with PCa. Within the
first strategic approach, clinicians are searching for PCa
subgroups most susceptible towards angiogenesis inhibition
(Figure 1B). It is tempting to assume that targeting tumor
neovascularization could be more efficient when used early in
the course of disease (71) in order to prevent metastases (44, 72).
In line with this assumption, clinicians examine effects in PCa
subgroups other than mCRPC. Specifically, SPARC investigates
Cabozantinib in a neoadjuvant setting. PCa patients suffering
from biochemical recurrence are currently recruited for the
BLAST trial, which investigates the JAK/FLT3 inhibitor
Pacritinib. Moreover, the CABIOS trial recruits CSPC patients
receiving Cabozantinib, Abiraterone and Nivolumab (thereby
also representing the second strategic approach of combinatorial
therapies). Up to now, neither predictive nor response
biomarkers have been established to stratify PCa patients
regarding anti-angiogenic therapy (18, 26). Of note, most
biomarker-driven trials trying to meet the needs are not PCa-
specific. Recruiting patients suffering from advanced cancer, the
MATCH screening trial constitutes a biomarker-driven basket
study for various compounds including Sunitinib. In a similar
setting, SMMART investigates compounds such as Bevacizumab,
Cabozantinib, Sorafenib and Sunitinib.

As a second strategic approach to narrow the gap between
bench and bedside (Figure 1C), clinicians and researchers
combine angiogenesis inhibitors with other established cancer
compounds. Most of the respective trials identified by our search
teamed angiogenesis inhibitors with immune checkpoint
inhibitors (ICI) – e. g. Cabozantinib and Atezolizumab
(CONTACT-02 trial). However, the primary rationale of these
approaches is not to establish anti-angiogenesis as a treatment
option for PCa, but to break therapy resistance towards ICI
(73–75).
Frontiers in Immunology | www.frontiersin.org 5
BRCA in Metastatic Prostate Cancer -
Recommendations and Perspectives
As a second bullet point to envision next steps narrowing the gap
between the bench and bedside, it is important to highlight that
genetic alterations of BRCA2 and BRCA1 occur in metastatic PCa
with a frequency of 13% and 5.3% for the somatic component, and
0.3% and 0.9% for the germline component, respectively (76, 77).
Germline mutations in BRCA2 are associated with pathways also
related to VEGF signaling (78). Thus, phase II and III studies
investigating effect on PFS and ORR in mCRPC hold promise to
further elucidate the complex relationship of disease biology, since
genomic alterations and several genes are screened (Table 2).
TRITON2 and GALAHAD studies showed objectives and PSA
responses in patients with BRCA1/2 alterations employing
Rucaparib and Niraparib, respectively (79, 80). Nonetheless, the
Profound trial testing Olaparib, confirmed that BRCA2 is the most
frequently altered gene and with BRCA1 and ATM genes allowed to
reach a radiographic PFS improvement of Olaparib treated over
control (HR.34 P<.0001, CI.25-.47). Those results are remarkable
since checkpoint inhibitorsmay have limited efficacy in PCa as single
agents; thus, combination approaches are being examined to
potentially improve their efficacy in this as in other urological
diseases (30, 44). The hypothetical synergism between PARP
inhibitors and ICI is centered on evidence that DNA damage
resulting from PARP inhibition triggers the cGAS-STING pathway
(81), which consequently boosts the interferon signaling, leading to
enhanced immunogenicity (82).There is also rationale for anadditive
effect in cancers with highmicrosatellite instability (MSI) and BRCA
mutations (83). Moreover, cancers with CDK12mutations are often
sensitive toPARPinhibitors - andpreclinical andbiologicaldata from
patients with PCa showed that CDK12 inactivation is related to
increased burden of neoantigens, which can in turn enhance the
immunogenicity (84). ICIholdanti-mCRPCactivitypotential inhigh
degree of MSI. Indeed, the KEYNOTE-365 trial comparing
Pembrolizumab plus Olaparib in biomarker-unstratified mCRPC
subjects after prior taxane-based regimen uncovered that 36.6% of
TABLE 2 | Trials screening genes involved in prostate cancer (PCa) registered within clinicaltrials.gov database (December 2021). See text for details.

PROFOUND TRITON 2 GALAHAD

Drug Olaparib 300 mg bid Rucaparib 600 mg bid Niraparib 300 mg qd
Study
design

Phase III Phase II Phase II

Population mCRPC progression to ARSI mCRPC progression to ARSI and taxane mCRPC progression to
ARSI and taxane

Primary
objective

rPFS in pts with alterations in ATM, BRCA1, BRCA2 ORR and PSA response (≥50% decline) in pts with DDR
alterations

ORR in patients with bi-
allelic BRCA1/2 alterations

Specimen
tested

Tumor tissue central Plasma or tumor tissue central/local Plasma central

Test used FoundationOne® FoundationOne®

FoundationACT®

Local

Resolution-HRD®

Genes
screened

ATM, BARD1, BRCA1, BRCA2, BRIP1, CDK12, CHEK1,
CHEK2, FANCL, PALB2, PPP2RA, RAD51B, RAD51C,
RAD51D, RAD54L

ATM, BARD1, BRCA1, BRCA2, BRIP1, CDK12, CHEK2,
FANCA, NBN, PALB2, RAD51, RAD51B, RAD51C,
RAD51D, RAD54L

ATM, BRCA1, BRCA2,
BRIP1, CHEK2, FANCA,
HDAC2, PALB2

Genomic
alteration
required

Mono- and Bi- allelic alterations in DDR genes Mono- and Bi- allelic alterations in DDR genes Bi- allelic alterations in
DDR genes
February 2022 | V
olume 13 | Article 842038

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Solimando et al. Challenges of Angiogenesis Inhibition in Prostate Cancer
individuals obtained a PSA response (85). TheKEYLYNK-010 phase
III study has been designed to deeper elucidate the combination of
Pembrolizumab plus Olaparib in patients with mCRPC in a
biomarker-unselected population after progression on androgen-
deprivation therapy and androgen receptor signaling inhibitor (86).
In line with this, Nivolumab plus Rucaparib in the phase II
CheckMate 9KD trial focusing on mCRPC revealed that best
response rates were among BRCA2 mutated cases and that the
combination was not efficient in individuals without homologous
recombination mutations (87). Statistically powered studies aiming
to corroborate these hypothesis-generating results are needed.
Nonetheless, based on the available data, the FDA approved both
Niraparib and Rucaparib as well as Olaparib in May 2020 (88).
Nonetheless, EMA approved Olaparib for the treatment of patients
with mCRPC and BRCA1/2 mutations, either germline or somatic
after progression following a prior line including a hormonal agent,
based on the results published byHussainM. et al. (89). Collectively,
the BRCA mutational status assessment in mCRPC is not merely a
predictor of response toPARP inhibition, but is rather a biomarker of
aggressiveness and therefore can sketch a disease phenotype for
whom additional biomarker might be added (90). Indeed, BRCA
status might also predict a decreased taxane sensitivity compared to
Abiraterone and Enzalutamide, nonetheless confirmatory trials are
also needed.

Targeting Angiogenesis Without
Specific Inhibitors – Established
and Evolving Therapies
While our database search on clinicaltrials.gov revealed a limited
number of studies with specific inhibitors of angiogenesis, a plethora
of trials investigated compounds such as antiandrogens, PARP
inhibitors and PSMA-directed agents. At first sight, these
approaches might not appear tightly related to tumor angiogenesis.
Yet, recent findings imply that all these strategies obtain a significant
anti-angiogenic component. Regarding AR-related signaling, a
growing amount of literature investigates the complex crosstalk
with VEGF-mediated pathways in cancer (91). As mentioned, for
PARP inhibitors such as Olaparib, an anti-angiogenic effect besides an
anti-mCRPC is widely accepted (14, 92, 93). Moreover, FGF
(Fibroblast Growth Factor) and its receptors (FGFRs) play
prominent pro-angiogenic roles in several malignancies, including
PCa (94, 95). Consequently, the FGFR inhibitor Erdafitinib is
currently investigated in patients with CRPC as a single drug
(NCT04754425) and combined with Abiraterone or Enzalutamide
in patients with CRPC (NCT03999515).

Metronomic (low-dose) chemotherapy is another well-
described therapeutic strategy to target tumor-associated neo-
vasculature in various cancer entities. Frequent and regular
administration of chemotherapeutic agents at doses constituting a
fraction of theMTD (maximum tolerated dose) was shown to have
substantial therapeutic effects – especially on tumor endothelium.
Moreover, these regimens frequently exhibited favorable toxicity
profiles (96, 97). For PCa, clinical evidence highlights the potential
ofmetronomic therapies especially inmCRPC: studies investigated
metronomic Cyclophosphamide in combination with Docetaxel
(98) or in heavily pretreated patients after Docetaxel or
Abiraterone/Enzalutamide (99–102) – showing effectiveness and
Frontiers in Immunology | www.frontiersin.org 6
good tolerability. In addition, researchers examined the efficacy of
metronomic application of Vinorelbine (103) and metronomic
Cyclophosphamide, Celecoxib and Dexamethasone in patients
suffering from mCRPC (104). Interestingly, metronomic
Cyclophosphamide application also induced an immune reaction
(in terms of T cell reactivation) in patients with biochemical
recurrence (105). Although the mode of action of metronomic
therapies is not completely understood, a recent study identifiedkey
genes which were associated with (metronomic) Topotecan dosing
in PCa cell lines (106).

Regarding PSMA, receptor expression not only exists on the
surface of PCa cells. Instead, tumor-associated endothelium
frequently displays robust levels of PSMA in various cancer
entities (107–109). Future research must show the impact of
targeting PSMA in terms of anti-angiogenic activity – for PCa but
also for other entities with PSMA-positive tumor endothelium.
Given the rationale of adding angiogenesis inhibitors to ICI in order
to break resistance towards immune-based approaches (73–75), it
also appears tempting to assume that targetingPSMAcouldhave an
impact on the immunogenicity of PCa.

In a nutshell:While specific angiogenesis inhibitors currently do
not have an established role in PCa, targeting tumor angiogenesis
and tumor-associated blood vessels probably is part of established
PCa therapies – especially regarding PSMA-directed approaches.

CONCLUSION

Targeting angiogenesis with specific inhibitors unfortunately has
failed to impactOS inpatientswithmCRPCdespite promisingearly
data – and despite convincing clinical activity in several other
malignancies. This discrepancy highlights the importance of the
microenvironment niche, as PCa is characterized by substantial
inter- and intra-patient heterogeneity and adaptive biology.
Therapeutic strategies to overcome this challenge include
biomarker-guided screening for patient subgroups most likely to
benefit from anti-angiogenesis. Moreover, several trials investigate
combinatorial approaches. Beyond specific angiogenesis inhibitors,
approved compounds such as antiandrogens, PARP inhibitors and
PSMA-targeting approaches probably also have a substantial anti-
angiogenic impact in PCa biology.
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