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ABSTRACT

microRNA-155 (miR-155) has been implicated as a
central regulator of the immune system, but its func-
tion during acute inflammatory responses is still
poorly understood. Here we show that exposure of
cultured macrophages and mice to lipopolysacchar-
ide (LPS) leads to up-regulation of miR-155 and that
the transcription factor c/ebp Beta is a direct target
of miR-155. Interestingly, expression profiling of
LPS-stimulated macrophages combined with over-
expression and silencing of miR-155 in murine
macrophages and human monocytic cells uncov-
ered marked changes in the expression of granulo-
cyte colony-stimulating factor (G-CSF), a central
regulator of granulopoiesis during inflammatory
responses. Consistent with these data, we show
that silencing of miR-155 in LPS-treated mice by
systemically administered LNA-antimiR results
in derepression of the c/ebp Beta isoforms and
down-regulation of G-CSF expression in mouse
splenocytes. Finally, we report for the first time on
miR-155 silencing in vivo in a mouse inflammation
model, which underscores the potential of miR-155
antagonists in the development of novel therapeu-
tics for treatment of chronic inflammatory diseases.

INTRODUCTION

MicroRNAs (miRNAs) are an abundant class of small
endogenous noncoding RNAs that post-transcriptionally
regulate gene expression by base-pairing to imperfect
complementary target sites in the 30 UTR of their target

mRNAs, thereby mediating mRNA cleavage or transla-
tional repression (1). miRNAs have emerged as key reg-
ulators of diverse biological processes, including
differentiation of hematopoeitic cells (2,3) and activation
of the innate immune response (4,5). miR-155 is expressed
in activated mature B and T lymphocytes (6,7) and in
activated monocytes (8,9), while studies using miR-155
knockout mice have directly linked this miRNA to the
functions of the immune system (6,7). In addition, miR-
155 has been shown to regulate the production of cyto-
kines, chemokines and transcription factors (6,7) and to be
induced by endotoxins, such as bacterial lipopolysacchar-
ide (LPS) (8–10). Recently, miR-155 was shown to direct
the generation of immunoglobulin class-switched plasma
cells (11) and to directly regulate the AID enzyme (activa-
tion-induced cytidine deaminase), which is responsible for
the generation of functionally diverse antibody repertoires
(12,13). Altogether, these observations strongly imply
miR-155 as a central regulator of the immune system.

With the goal of gaining further insights into the bio-
logical function of miR-155 during acute inflammatory
response, we have undertaken stimulation of cultured
murine macrophage Raw264.7 and human THP-1 mono-
cytic cells as well as treatment of mice by bacterial LPS.
Previous studies have shown that the transcription factor
CCAAT/enhancer binding protein Beta (c/ebp Beta) is
induced in monocytes and macrophages by LPS (14) and
that c/ebp Beta is involved in the regulation of proinflam-
matory cytokines as well as other genes associated with
macrophage activation and the acute phase response
(15,16). We report here that LPS treatment induces
miR-155 expression in cultured mouse macrophages and
in mouse splenocytes in vivo and that silencing of miR-155
leads to derepression of its direct target c/ebp Beta in vitro
and in vivo. Additionally, we find that antagonism of
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miR-155 leads to down-regulation of G-CSF, a regulator
of granulopoiesis, produced by activated macrophages
during acute inflammatory responses. G-CSF belongs
to the class of colony-stimulating factors (CSFs), which
comprise granulocyte/macrophage CSF (GM-CSF),
macrophage CSF (M-CSF) and granulocyte CSF
(G-CSF). During progression of inflammatory diseases
the CSFs have been suggested to constitute a pro-inflam-
matory CSF network, which at the site of inflammation
involves CSF-mediated communication between stimu-
lated macrophages and neighboring cell types (17). This
positive-feedback loop model predicts that CSF blocking
agents could be efficient anti-inflammatory drugs. Indeed,
data from animal models indicate that depletion of CSFs
has therapeutic value in inflammatory and autoimmune
diseases. While early-phase clinical trials targeting GM-
CSF and M-CSF have been initiated, no clinical trials
on depletion of G-CSF have yet been reported (18).

Our data show for the first time that c/ebp Beta is regu-
lated by miR-155 in vivo in mouse splenocytes during
inflammatory responses. Moreover, we report that miR-
155 mediates regulation of G-CSF expression, thereby
underscoring the role of miR-155 in fine-tuning important
regulatory networks during inflammation.

MATERIALS AND METHODS

Design and synthesis of LNA oligonucleotides

The LNA-antimiR oligonucleotides were synthesized as
unconjugated and fully phosphorothiolated oligonucleo-
tides. The perfectly matching LNA-antimiR oligonucleo-
tide 50-TcAcAATtaGmCAtTA-30 was complementary to
nucleotides 2–16 in the mature murine miR-155 sequence
and 50-TcAcGATtaGmCAtTA-30 was complementary to
nucleotides 2–16 in the mature human miR-155 sequence.
The mismatch LNA control oligonucleotide was synthe-
sized with the following sequence: 50-TcAamCATt
aGAmCtTA-30 (uppercase: LNA; lowercase: DNA; mC
denotes LNA methylcytosine).

Cell culture

Raw264.7 cells were grown in Dulbecco’s modified Eagle’s
medium (DMEM) (Invitrogen) supplemented with 10%
FBS, 4mM Glutamax I and 25 mg/ml Gentamicin
(Invitrogen). Lipopolysaccharide (LPS) was purchased
from Sigma and activation of Raw264.7 cells was induced
by treating cells with 1, 10 or 100 ng/ml LPS for indicated
time periods. THP-1 cells were grown in RPMI-1640
(Invitrogen) supplemented with 10% FBS, 4mM
Glutamax I and 25 mg/ml Gentamicin (Invitrogen).
Raw264.7 and THP-1 cells were transfected with the
Lipofectamine 2000 transfection reagent according to the
manufacturer’s protocol (Invitrogen) and the LNA-
antimiR oligonucleotides were used at a final concentra-
tion of 5 nM unless otherwise stated. Human miR-155
precursor (pre-miR-155, Ambion) was cotransfected at
a final concentration of 5 nM. HeLa cells were cultivated
in Eagles MEM (Invitrogen) with 10% FBS, 2mM
Glutamax I, non-essential amino acids and 25 mg/ml
Gentamicin (Invitrogen). HeLa cells were co-transfected

with human pre-miR-155 (Ambion) at a final concen-
tration of 50 nM and 0.1mg luciferase reporter con-
struct using Lipofectamine 2000. The transfections
and luciferase activity measurements were carried out
according to the manufacturer’s instructions (Invitrogen
Lipofectamine 2000/Promega Dual-luciferase kit).
Relative luciferase activity levels were expressed as
Renilla/firefly luciferase ratios.

Plasmids

The perfect match target sites for the human and the
murine miR-155, respectively, were cloned downstream
of the Renilla luciferase gene (XhoI/NotI sites) in the
psiCHECK2 vector (Promega) using 50 phosphorylated
oligos: murine miR-155 forward 50-tcgagcccctatcacaattag
cattaagc-30, and reverse 50-ggccgcttaatgctaattgtgatagg
ggc-30; human miR-155 forward 50-tcgagcccctatcacgattag
cattaagc-30 and reverse 50-ggccgcttaatgctaatcgtgatagggg-30.
The 30 UTR of human c/ebp Beta was cloned downstream
of the Renilla luciferase gene (XhoI/NotI sites) in the
psiCHECK2 vector. PCR primers used for amplification
of the human c/ebp Beta 30 UTR (basepairs 1328–1837
accession no. NM_005194) were: forward 50-aaaaaactcga
gaaaactttggcactggggca-30 (incl. a XhoI site), reverse 50-aaa
aaagcggccgcggctttgtaaccattctcaaa-30 (incl. a NotI site).
The miR-155 target site in the c/ebp Beta 30 UTR was
mutated by deleting the 8 nt miR-155 seed match sequence
(AGCAUUAA at nucleotide positions 554–561 in the
c/ebp Beta 30 UTR) using the QuikChange Site-Directed
Mutagenesis kit according to manufacturer’s instructions
(Stratagene). The pCDNA3.1 expression construct for
the truncated rat c/ebp Beta isoform LIP (amino acids
153–297) was kindly provided by Dr. M.A. Chidgey and
has been described elsewhere (19).

Western blot analysis

Raw264.7 and spleen proteins were extracted using RIPA
lysis buffer (50mM Tris–HCl pH 7.4, 150mM NaCl,
1mM EDTA, 1% Triton X-100, 0.1% SDS, 1% sodium
deoxycholate) and electrophoresed on NuPAGE Bis Tris
4–12% gels (Invitrogen) using 100 mg protein per sample.
The proteins were transferred to a nitrocellulose mem-
brane using iBlot (Invitrogen) according to manufac-
turer’s instructions. ECL advanced western kit (GE
Healthcare Life Sciences) was used for blocking, antibody
dilution and detection according to the manufacturer.
A primary monoclonal mouse-anti-c/ebp Beta antibody
(SC-7962, Santa Cruz Biotechnology), a primary
rabbit-anti-PU.1 (#2258, Cell signaling Technology),
a primary mouse-anti- Tubulin-alpha Ab-2 (MS-581-P,
Neomarkers) and HRP-conjugated secondary rabbit
anti-mouse (P0447, DAKO) or swine anti-rabbit antibo-
dies (P0399, DAKO) were used according to the manufac-
turer’s instructions.

Quantitative RT-PCR

The dissected mice spleens were immediately stored
in RNA later (Ambion). Total RNA from spleens or
Raw264.7 cells was extracted with Trizol reagent accord-
ing to the manufacturer’s instructions (Invitrogen), except
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that the precipitated RNA pellet was washed in 80% etha-
nol and not mixed. The miR-155 levels were quantified
using the mirVana real-time RT-PCR detection kit
(Ambion) following the manufacturer’s instructions,
except that 200 ng total RNA was used in the reverse tran-
scription (RT) reaction. A 2-fold total RNA dilution series
from LPS-treated mouse spleen RNA or LPS-treated
Raw264.7 RNA served as standard to ensure a linear
range (Ct versus relative copy number) of the amplifica-
tion. The RT reaction was diluted ten times in water and
10 ml aliquots were subsequently used for RT-PCR ampli-
fication according to the manufacturer’s instructions
(Ambion). mRNA quantification of selected genes
was done using standard TaqMan assays (Applied
Biosystems). The reverse transcription reaction was car-
ried out with random decamers, 0.5 mg total RNA and the
M-MLV RT enzyme from Ambion according to protocol.
First-strand cDNA was subsequently diluted 10 times in
nuclease-free water before addition to the RT-PCR reac-
tion mixture. The Applied Biosystems 7500 Real-Time
PCR instrument was used for amplification, except that
the Applied Biosystems 7900 Real-Time PCR instrument
was used for amplification of 96 transcripts included on
the low density mouse immune array from Applied
Biosystems.

In vivo experiments

C57BL/6J female mice (Taconic Europe A/S) kept on a
regular chow diet (Altromin no 1324, Brogaarden) and
with an average body weight of �20 g (�2 g) at the start
of the experiment were used in all studies. The experiments
were carried out following the Danish Committee for
Animal Experiments guidelines. The animal cages were
illuminated to give a 12-h light/dark cycle. The tempera-
ture was 218C � 28C and relative humidity 55� 10%.
The LNA compounds were formulated in physiological
saline (0.9% NaCl) to a final concentration allowing the
mice to receive a tail vein injection volume of 10ml/kg.
The animals were dosed for three consecutive days with
LNA-antimiR, LNA control or saline (vehicle control),
receiving daily doses of 25mg/kg and sacrificed 24 h
after last dose. Saline-formulated bacterial LPS was admi-
nistered by intraperitoneal injections at 0.5mg/kg and the
mice were sacrificed either 2 or 24 h post-LPS treatment.
Immediately after sacrificing the animals, spleen samples
were dissected.

Isolation of B cells and monocytic/macrophage
cell fractions from mice splenocytes

C57BL/6J female mice (Taconic Europe A/S) were
injected intravenously with a FAM-labeled LNA con-
trol for three consecutive days, receiving daily doses
of 25mg/kg and the animals were sacrificed 24 h after
last dose. Spleens were surgically removed and positive
selection of monocytes/macrophages was carried out by
MACS� Cell separation systems (Miltenyi Biotech)
using magnetic beads conjugated with CD11b antibodies
and the MACS� Cell separation columns according
to the manufacturer’s instructions (Miltenyi Biotec). B
cells were isolated using magnetic beads conjugated with

CD19 antibodies (Miltenyi Biotec). PE-conjugated CD11b
and CD19 antibodies were added to isolated fractions
to verify the identity of the isolated cells by FACS analy-
sis. Fixed isolated cells were DAPI stained and trans-
ferred to microscope slides. Cellular uptake of the
FAM-labeled LNA oligonucleotide was investigated by
confocal microscopy.

RESULTS

LPS-mediated induction of miR-155 in cultured mouse
Raw264.7 macrophages

Since miR-155 has previously been shown to be upregu-
lated during macrophage activation (8–10) we first inves-
tigated the expression of miR-155 in murine Raw264.7
macrophage cells upon LPS stimulation. Treatment of
cultured mouse macrophages with LPS showed dose-
dependent induction of miR-155 with more than 10-fold
increase in miR-155 expression levels at a concentration of
100 ng/ml LPS after 18 h (Figure 1A). Consistent with
these data, a luciferase reporter construct harbouring a
perfect match miR-155 target site in the 30 UTR of the
Renilla luciferase gene showed a concentration-dependent
repression of the luciferase reporter, which correlated with
the increased expression of miR-155 in LPS-treated mouse
Raw264.7 macrophages (Figure 1B). We have recently
reported on effective miRNA silencing using complemen-
tary LNA-antimiR oligonucleotides in combination with
transcriptome analysis as a useful approach to dissect the
biological roles of individual miRNAs in vitro and in vivo
(20,21). Hence, to enable further studies on miR-155 tar-
gets and miR-155 associated gene networks, we designed
an LNA-antimiR complementary to mature miR-155
alongside an LNA control oligonucleotide having four
mismatches in the miR-155 recognition sequence. The
LNA-antimiR-155 showed concentration-dependent
silencing of miR-155 in LPS-treated mouse Raw264.7
macrophages as shown by efficient derepression of the
miR-155 sensor, whereas the LNA control oligonucleo-
tide had no effect on the luciferase reporter activity at
the same concentrations (Figure 1C). Since the LNA-
antimiR resulted in potent and specific antagonism of
miR-155 in cultured Raw264.7 cells at 5-nM concentra-
tion, we chose these experimental conditions for further
studies in mouse macrophages.

Translational repression of c/ebp Beta isoforms by miR-155

LPS stimulation of cultured mouse Raw264.7 cells leads to
an inflammatory response in which miR-155 and more
than 700 genes are up-regulated (22), including the tran-
scription factor c/ebp Beta gene (14). Interestingly, the
c/ebp Beta transcript is predicted by several computer
algorithms (PicTar, miRanda, TargetScan) to be a miR-
155 target due to the presence of a miR-155 target site in
its 30 UTR, which is highly conserved among five verte-
brate species (Figure 2A). Indeed, we found that a lucifer-
ase reporter harbouring the c/ebp Beta 30 UTR showed
significant (P< 0.001, Student’s t-test, two-sided) miR-
155-dependent repression relative to a control reporter
plasmid (Figure 2B), implying that c/ebp Beta is a direct
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target of miR-155, which is also consistent with two recent
reports (23,24). Deletion of the highly conserved miR-155
seed match site (positions 554–561; AGCAUUAA) in the
c/ebp Beta 30 UTR abrogated the effect of miR-155. Com-
bined these data support the notion that c/ebp Beta is
post-transcriptionally regulated by miR-155 (Figure 2B
and Supplementary Figure 1).

The c/ebp Beta transcript encodes three isoforms,
designated as LAP�, LAP and LIP, that are generated
by differential translational initiation (Figure 2A). The
short LIP form lacks the transactivation domain (TAD),
but is still capable of binding to DNA and forms homo- or
heterodimers through the basic region leucine zipper
(bZIP) domain and therefore behaves as a dominant nega-
tive. The expression of the three isoforms is regulated in
a complex manner, and even differential activation of the
c/ebp Beta isoforms upon LPS stimulation has been
reported (25).

To assess miR-155-mediated regulation of the various
c/ebp Beta isoforms, we investigated protein extracts from

murine macrophages by Western blot analyses using a
C-terminal specific c/ebp Beta antibody that recognizes
all three isoforms. Transient transfection of a precursor
miR-155 (pre-miR-155) at 5-nM concentration into
mouse Raw264.7 macrophages resulted in significant
repression of the c/ebp Beta isoforms LIP and LAP,
whereas concomitant transfection with equimolar LNA-
antimiR into the cells effectively antagonized the miR-
155-mediated c/ebp Beta repression compared to the
LNA control transfected cells (Figure 2C). We also
observed repression of another direct miR-155 target,
the Ets family transcription factor Pu.1 in Raw264.7
cells (Figure 2C) (11), implying that both c/ebp Beta and
Pu.1 are targeted by miR-155 in the Raw264.7 macro-
phage model system. We obtained similar results with
undifferentiated human monocytic THP-1 cells, in which
transfection with pre-miR-155 resulted in repression of the
c/ebp Beta isoforms (Figure 2D). Taken together, our data
suggest that the levels of individual c/ebp Beta isoforms
are regulated by ectopically expressed miR-155.

Figure 1. LPS-mediated induction of miR-155 in cultured mouse Raw264.7 macrophages. (A) Quantitative RT-PCR analysis of miR-155 expression
in Raw264.7 cells stimulated with LPS for 18 h at the indicated concentrations. Values represent mean � SD (n=3). (B) Assessment of luciferase
reporter activity in Raw264.7 cells transfected with either the Renilla/firefly luciferase psiCHECK2 control or psiCHECK2 harbouring the miR-155
perfect match target site in the 30 UTR of the Renilla luciferase transcript (miR-155 sensor). After transfection, the Raw264.7 cells were stimulated
with the indicated concentrations of LPS for 18 h. Values represent mean � SD (n=3). (C) Assessment of luciferase reporter activity in Raw264.7
cells cotransfected with LNA-antimiR or LNA control in combination with either the Renilla/firefly luciferase psiCHECK2 control (data not shown)
or the miR-155 sensor. Raw264.7 cells were stimulated with 100 ng/ml LPS for 18 h. Values represent mean � SD (n=3).
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miR-155 regulates c/ebp Beta in Raw264.7 cells during
LPS stimulation

We next investigated the effect of endogenous miR-155 on
c/ebp Beta expression during LPS stimulation by treating
mouse macrophage Raw264.7 cells with LNA-antimiR
followed by exposure of the cells to LPS. Western blot
analysis using the C-terminal specific c/ebp Beta antibody
showed that the levels of both the LAP and LIP isoforms
of c/ebp Beta were increased after treatment with LPS,
in accordance with a previous report (14) (Figure 3). Trans-
fection of the LNA-antimiR (5 nM) into the Raw264.7
macrophages prior to LPS stimulation resulted in derepres-
sion of the c/ebp Beta isoforms (Figure 3), which
thereby provides additional evidence that the levels of indi-
vidual c/ebp Beta isoforms are regulated by endogenous
miR-155 in mouse macrophages during LPS stimulation.

miR-155 regulates c/ebp Beta in the splenocytes of
LPS-treated mice

The expression of c/ebp Beta is induced during macro-
phage activation, whereas Pu.1 is expressed both in resting

B cells and macrophages and in the spleen germinal center
B cells (14,26). Since spleen contains populations of mono-
cytes and macrophages together with B and T cells, we
investigated miR-155-mediated regulation of c/ebp Beta
in the splenocytes of LPS-treated mice in combination
with LNA-antimiR based miR-155 silencing. We first
asked whether these cells could be targeted by systemically
administered LNA oligonucleotides in vivo by isolating B
cells and monocytic cell populations from murine spleen
after intravenous dosing with a 6-carboxyfluorescein
(FAM)-labeled LNA oligonucleotide. Confocal micros-
copy of the murine B cells and monocytes/macrophages
showed that the FAM-labeled LNA was readily taken up
by these cells, indicating that miR-155 could be targeted in
both cell types by an LNA-antimiR compound
(Figure 4A). Intraperitoneal administration of LPS signif-
icantly induced the expression of miR-155 in splenocytes
2 h post-treatment, thereby corroborating our results
obtained with LPS-stimulated murine macrophages
(Figure 4B). The splenocytes of untreated mice showed
low levels of c/ebp Beta proteins, whereas the levels
of both the LAP and LIP isoform of c/ebp Beta were
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significantly increased 24 h after treatment with LPS
(Figure 4C), in accordance with a previous report (14).
Systemic administration of the LNA-antimiR in LPS-
treated mice effectively antagonized miR-155 compared
to the vehicle and LNA-mismatch-control-treated mice,
respectively (Figure 4B). This resulted in significant dere-
pression of both the LAP and LIP isoforms in comparison
to the vehicle-treated control mice (Figure 4C), which is
consistent with the notion that miR-155 negatively regu-
lates c/ebp Beta proteins in vivo in mouse splenocytes
during acute inflammatory response.

miR-155 mediates regulation of G-CSF

Recent studies using knockout mice have implicated
miR-155 in the regulation of cytokines and chemokines
in T and B cells (6,7). Thus, to identify immune response
genes whose expression could be modulated by miR-155 in
activated macrophages, we carried out expression profil-
ing of RNA samples extracted from LPS-stimulated
mouse Raw264.7 cells using mouse immune real-time
RT-PCR arrays (Supplementary table S1). To establish a
link between miR-155 and the expression of immune
response genes, the LPS-stimulated Raw264.7 cells were
transfected with either LNA-antimiR-155 or LNA con-
trol. Interestingly, among the immune response genes
induced by LPS treatment, expression of the Csf3 gene
encoding G-CSF was significantly down-regulated in
LNA-antimiR-treated cells compared to the untreated
and LNA controls (P=0.014 and P=0.008, respectively,
Student’s t-test, two-sided), implying that the regulation of
G-CSF expression is mediated by miR-155 (Figure 5A,
Supplementary table S1).

To validate this conclusion we assessed the effect of
miR-155 on G-CSF expression in human monocytic
THP-1 cells. Transient transfection of pre-miR-155
into LPS-stimulated THP-1 cells resulted in significant
up-regulation of the G-CSF mRNA (P< 0.01, Student’s

t-test, two-sided), that reverted to control levels upon
antagonism of miR-155 by LNA-antimiR (Figure 5B).
Consistent with our data on mouse macrophages and
human monocytes, we observed that the G-CSF mRNA
was significantly down-regulated in the splenocytes
of miR-155 antagonized LPS-treated mice (P=0.0007
and P=0.02, Student’s t-test, two-sided) compared to
saline and LNA-control-treated animals, respectively
(Figure 5C). The miR-155-mediated effect on G-CSF
mRNA in mouse splenocytes was robust as it was
observed in three independent in vivo experiments (data
not shown). Considered together, our data suggest that
miR-155 mediates regulation of G-CSF expression
during acute inflammatory response.

DISCUSSION

Inflammatory responses are initiated by monocytes that
upon recognition of pathogens differentiate into macro-
phages, which then become activated to produce cytokines
and chemokines. These inflammatory mediators help
recruit effector cells to the site of infection and induce
endothelial cell activation to increase vascular permeabil-
ity (22). Several transcription factors are important for
differentiation and activation of myeloid lineages, includ-
ing the CCAAT/enhancer binding protein Beta (c/ebp
Beta), which has been implicated in the regulation of
proinflammatory cytokines during macrophage activation
and the acute phase response (15,16). In this study, we
show that c/ebp Beta is a bona fide target of miR-155
and that LPS treatment of murine macrophages strongly
induces miR-155 expression, leading to translational
repression of c/ebp Beta. Our observations are in good
agreement with recent reports, showing that ectopically
expressed miR-155 can target c/ebp Beta in vitro (9,24).
Moreover we report here that functional inhibition
of endogenous miR-155 in vitro leads to derepression of
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Figure 3. Regulation of c/ebp Beta isoforms by endogenous miR-155 in Raw264.7 cells during LPS stimulation. Western blot analysis of c/ebp Beta
LAP�, LAP and LIP isoforms in Raw264.7 cell lysates. Protein extracts from Raw264.7 cells either mock (control) or LNA-antimiR (5 nM)
transfected before treatment with 100 ng/ml LPS for 18 h were subjected to western blot analysis. (Right) Quantification of the LIP, LAP and
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c/ebp Beta. Notably, we show for the first time that silenc-
ing of miR-155 by intravenously injected LNA-antimiR in
LPS-treated mice results in marked derepression of
the LAP and LIP isoforms of c/ebp Beta in mouse sple-
nocytes, indicating that miR-155 acts as an important neg-
ative regulator of c/ebp Beta in vivo during acute
inflammatory response.

A new discovery of this study is the finding that antag-
onism of miR-155 by LNA-antimiR leads to down-
regulation of the G-CSF mRNA in vitro and in vivo.
G-CSF is a master regulator of granulopoiesis produced
by activated macrophages during acute inflammatory
responses (27). Several studies have demonstrated that
G-CSF is involved in inflammation and that it aggravates
inflammatory diseases (28). G-CSF appears to play a
central role in arthritis, where administration of G-CSF
to mice has been shown to enhance collagen-induced
arthritis (29), while blocking of G-CSF, on the other
hand, markedly reduced disease manifestation in mice
(30). Furthermore, G-CSF-deficient mice are protected
from acute and chronic arthritis (30). In patients with
active rheumatoid arthritis, G-CSF is elevated in the
serum and synovial fluid and correlates with disease
severity (31). Hence, G-CSF is considered as a potential
therapeutic target for intervention of inflammatory joint
diseases, such as rheumatoid arthritis (28). However,
therapies that antagonize G-CSF may lead to neutrope-
nia. Thus, partial antagonism of endogenous G-CSF, as
described in this study for LNA-antimiR-mediated
G-CSF down-regulation, might provide a positive out-
come for arthritis patients without increased risk of
severe neutropenia. Indeed, our findings warrant further
investigations of the potential anti-inflammatory effect of
miR-155 antagonism in relevant animal models of inflam-
matory disease, such as collagen-induced arthritis.

Previous studies have reported on impaired induction of
G-CSF in LPS-stimulated macrophages derived from mice
expressing only the dominant-negative LIP form of c/ebp
Beta (33). Interestingly, we find that overexpression
of the LIP isoform of c/ebp Beta in mouse macrophages
results in down-regulation of the G-CSF transcript
(Supplementary Figure 2). Thus, it is possible that c/ebp
Beta, which is modulated by miR-155, acts in part by
fine-tuning G-CSF expression levels, consistent with a
c/ebp Beta binding motif in the promoter of G-CSF
(15,32). However, since a single vertebrate miRNA may
target up to �100–200 mRNAs, it is highly likely that
functional antagonism of miR-155 in vivo results in
more complex downstream effects that are associated
with miR-155-mediated gene regulatory networks.
Indeed, miR-155 was recently shown to regulate the
PI3K–AKT signaling pathway during LPS stimulation
of macrophages by targeting the inositol phosphatase
SHIP1 (34). Nevertheless, given the importance of
c/ebp Beta during macrophage activation and the role
of G-CSF in stimulating granulopoiesis in the bone
marrow, our data emphasize the potential of antagonizing
miR-155 for modulating activation of macrophages and
the number of circulating granulocytic cells with possible
implications for treatment of inflammatory diseases.
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Øverup, Diana Klüver, Jane Hinrichsen, Janni Juul
Jørgensen, Lisbeth Bang, Otto Olsen and Rikke Sølberg
for excellent technical assistance.

FUNDING

The Danish National Advanced Technology Foundation,
Danish Medical Research Council and the Lundbeck
Foundation (to S.K.); Wilhelm Johannsen Centre for
Functional Genome Research is established by the
Danish National Research Foundation. Funding for
open access charge: Santaris Pharma, Hørsholm,
Denmark.

Conflict of interest statement. J.W., J.S., A.P., S.O., J.E.,
M.H., E.M.S., J.B.H. and S.K. are employed at Santaris
Pharma. Santaris Pharma is a biopharmaceutical com-
pany engaged in the development of RNA based medicine.

REFERENCES

1. Kato,M. and Slack,F.J. (2008) microRNAs: small molecules with
big roles – C. elegans to human cancer. Biol. Cell, 100, 71–81.

2. Fabbri,M., Garzon,R., Andreeff,M., Kantarjian,H.M.,
Garcia-Manero,G. and Calin,G.A. (2008) MicroRNAs and
noncoding RNAs in hematological malignancies: molecular, clinical
and therapeutic implications. Leukemia, 22, 1095–1105.

3. Garzon,R. and Croce,C.M. (2008) MicroRNAs in normal and
malignant hematopoiesis. Curr. Opin. Hematol., 15, 352–358.

4. Lindsay,M.A. (2008) microRNAs and the immune response.
Trends Immunol., 29, 343–351.

5. Bi,Y., Liu,G. and Yang,R. (2008) MicroRNAs: novel regulators
during the immune response. J. Cell Physiol., 281, 467–472.

6. Rodriguez,A., Vigorito,E., Clare,S., Warren,M.V., Couttet,P.,
Soond,D.R., van,D.S., Grocock,R.J., Das,P.P., Miska,E.A. et al.
(2007) Requirement of bic/microRNA-155 for normal immune
function. Science, 316, 608–611.

7. Thai,T.H., Calado,D.P., Casola,S., Ansel,K.M., Xiao,C., Xue,Y.,
Murphy,A., Frendewey,D., Valenzuela,D., Kutok,J.L. et al. (2007)
Regulation of the germinal center response by microRNA-155.
Science, 316, 604–608.

8. Taganov,K.D., Boldin,M.P., Chang,K.J. and Baltimore,D. (2006)
NF-kappaB-dependent induction of microRNA miR-146, an
inhibitor targeted to signaling proteins of innate immune responses.
Proc. Natl Acad. Sci. USA, 103, 12481–12486.

9. O’Connell,R.M., Taganov,K.D., Boldin,M.P., Cheng,G. and
Baltimore,D. (2007) MicroRNA-155 is induced during the
macrophage inflammatory response. Proc. Natl Acad. Sci. USA,
104, 1604–1609.

10. Tili,E., Michaille,J.J., Cimino,A., Costinean,S., Dumitru,C.D.,
Adair,B., Fabbri,M., Alder,H., Liu,C.G., Calin,G.A. et al. (2007)
Modulation of miR-155 and miR-125b levels following
lipopolysaccharide/TNF-alpha stimulation and their possible roles
in regulating the response to endotoxin shock. J. Immunol., 179,
5082–5089.

11. Vigorito,E., Perks,K.L., breu-Goodger,C., Bunting,S., Xiang,Z.,
Kohlhaas,S., Das,P.P., Miska,E.A., Rodriguez,A., Bradley,A. et al.
(2007) microRNA-155 regulates the generation of immunoglobulin
class-switched plasma cells. Immunity., 27, 847–859.

12. Dorsett,Y., McBride,K.M., Jankovic,M., Gazumyan,A., Thai,T.H.,
Robbiani,D.F., Di,V.M., San-Martin,B.R., Heidkamp,G.,

Nucleic Acids Research, 2009, Vol. 37, No. 17 5791



Schwickert,T.A. et al. (2008) MicroRNA-155 suppresses
activation-induced cytidine deaminase-mediated Myc-Igh translo-
cation. Immunity, 28, 630–638.

13. Teng,G., Hakimpour,P., Landgraf,P., Rice,A., Tuschl,T.,
Casellas,R. and Papavasiliou,F.N. (2008) MicroRNA-155 is a
negative regulator of activation-induced cytidine deaminase.
Immunity, 28, 621–629.

14. Gorgoni,B., Maritano,D., Marthyn,P., Righi,M. and Poli,V. (2002)
C/EBP beta gene inactivation causes both impaired and enhanced
gene expression and inverse regulation of IL-12 p40 and p35
mRNAs in macrophages. J. Immunol., 168, 4055–4062.

15. Natsuka,S., Akira,S., Nishio,Y., Hashimoto,S., Sugita,T., Isshiki,H.
and Kishimoto,T. (1992) Macrophage differentiation-specific
expression of NF-IL6, a transcription factor for interleukin-6.
Blood, 79, 460–466.

16. Scott,L.M., Civin,C.I., Rorth,P. and Friedman,A.D. (1992) A novel
temporal expression pattern of three C/EBP family members in
differentiating myelomonocytic cells. Blood, 80, 1725–1735.

17. Hamilton,J.A. (1993) Rheumatoid arthritis: opposing actions of
haemopoietic growth factors and slow-acting anti-rheumatic drugs.
Lancet, 342, 536–539.

18. Hamilton,J.A. (2008) Colony-stimulating factors in inflammation
and autoimmunity. Nat. Rev. Immunol., 8, 533–544.

19. Smith,C., Zhu,K., Merritt,A., Picton,R., Youngs,D., Garrod,D. and
Chidgey,M. (2004) Regulation of desmocollin gene expression in the
epidermis: CCAAT/enhancer-binding proteins modulate early and
late events in keratinocyte differentiation. Biochem. J., 380, 757–765.

20. Elmen,J., Lindow,M., Schutz,S., Lawrence,M., Petri,A., Obad,S.,
Lindholm,M., Hedtjarn,M., Hansen,H.F., Berger,U. et al. (2008)
LNA-mediated microRNA silencing in non-human primates.
Nature, 452, 896–899.

21. Elmen,J., Lindow,M., Silahtaroglu,A., Bak,M., Christensen,M.,
Lind-Thomsen,A., Hedtjarn,M., Hansen,J.B., Hansen,H.F.,
Straarup,E.M. et al. (2008) Antagonism of microRNA-122 in mice
by systemically administered LNA-antimiR leads to up-regulation
of a large set of predicted target mRNAs in the liver. Nucleic Acids
Res., 36, 1153–1162.

22. Huang,H., Park,C.K., Ryu,J.Y., Chang,E.J., Lee,Y., Kang,S.S. and
Kim,H.H. (2006) Expression profiling of lipopolysaccharide target
genes in RAW264.7 cells by oligonucleotide microarray analyses.
Arch. Pharm. Res., 29, 890–897.

23. O’Connell,R.M., Rao,D.S., Chaudhuri,A.A., Boldin,M.P.,
Taganov,K.D., Nicoll,J., Paquette,R.L. and Baltimore,D. (2008)
Sustained expression of microRNA-155 in hematopoietic
stem cells causes a myeloproliferative disorder. J. Exp. Med., 205,
585–594.

24. Yin,Q., McBride,J., Fewell,C., Lacey,M., Wang,X., Lin,Z.,
Cameron,J. and Flemington,E.K. (2008) MicroRNA-155 is an
Epstein-Barr virus-induced gene that modulates Epstein-Barr virus-
regulated gene expression pathways. J. Virol., 82, 5295–5306.

25. Su,W.C., Chou,H.Y., Chang,C.J., Lee,Y.M., Chen,W.H.,
Huang,K.H., Lee,M.Y. and Lee,S.C. (2003) Differential activation
of a C/EBP beta isoform by a novel redox switch may confer the
lipopolysaccharide-inducible expression of interleukin-6 gene.
J. Biol. Chem., 278, 51150–51158.

26. Schebesta,M., Heavey,B. and Busslinger,M. (2002)
Transcriptional control of B-cell development. Curr. Opin.
Immunol., 14, 216–223.

27. Watari,K., Asano,S., Shirafuji,N., Kodo,H., Ozawa,K., Takaku,F.
and Kamachi,S. (1989) Serum granulocyte colony-stimulating factor
levels in healthy volunteers and patients with various disorders as
estimated by enzyme immunoassay. Blood, 73, 117–122.

28. Eyles,J.L., Roberts,A.W., Metcalf,D. and Wicks,I.P. (2006)
Granulocyte colony-stimulating factor and neutrophils–forgotten
mediators of inflammatory disease. Nat. Clin. Pract. Rheumatol., 2,
500–510.

29. Campbell,I.K., Rich,M.J., Bischof,R.J. and Hamilton,J.A. (2000)
The colony-stimulating factors and collagen-induced arthritis:
exacerbation of disease by M-CSF and G-CSF and requirement for
endogenous M-CSF. J. Leukoc. Biol., 68, 144–150.

30. Lawlor,K.E., Campbell,I.K., Metcalf,D., O’Donnell,K., van,N.A.,
Roberts,A.W. and Wicks,I.P. (2004) Critical role for granulocyte
colony-stimulating factor in inflammatory arthritis. Proc. Natl
Acad. Sci. USA, 101, 11398–11403.

31. Nakamura,H., Ueki,Y., Sakito,S., Matsumoto,K., Yano,M.,
Miyake,S., Tominaga,T., Tominaga,M. and Eguchi,K. (2000)
High serum and synovial fluid granulocyte colony stimulating factor
(G-CSF) concentrations in patients with rheumatoid arthritis. Clin.
Exp. Rheumatol., 18, 713–718.

32. Akira,S., Isshiki,H., Sugita,T., Tanabe,O., Kinoshita,S., Nishio,Y.,
Nakajima,T., Hirano,T. and Kishimoto,T. (1990) A nuclear factor
for IL-6 expression (NF-IL6) is a member of a C/EBP family.
EMBO J., 9, 1897–1906.

33. Uematsu,S., Kaisho,T., Tanaka,T., Matsumoto,M., Yamakami,M.,
Omori,H., Yamamoto,M., Yoshimori,T. and Akira,S. (2007) The
C/EBP beta isoform 34-kDa LAP is responsible for NF-IL-6-
mediated gene induction in activated macrophages, but is not
essential for intracellular bacteria killing. J. Immunol., 179,
5378–5386.

34. O’Connell,R.M., Chaudhuri,A.A., Rao,D.S. and Baltimore,D.
(2009) Inositol phosphatase SHIP1 is a primary target of miR-155.
Proc. Natl Acad. Sci. USA, 106, 7113–7118.

5792 Nucleic Acids Research, 2009, Vol. 37, No. 17


