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Abstract: In a conventional electrically conductive adhesive (ECA) preparation process, typical ECAs
are made by adding an appropriate amount of electrically conductive fillers, such as silver, into a
polymer matrix, such as epoxy resin, to form a uniformly dispersed mixture by mixing and stirring
operations. However, during the preparation process, secondary pollution and mass loss are caused
by the vigorous mixture process. At the same time, the stirring operation introduces many small
and stable bubbles, which affect the electrical conductivity of the ECAs. In light of these problems
with the conventional preparation of ECAs, we developed a novel ECA preparation method that
employs a powder spraying process: silver flakes are sprayed into the epoxy resin with a certain mass
fraction to form formulated pastes. The as-prepared ECAs exhibited excellent properties compared
with those prepared by the conventional process. This proves that the powder spraying process is
feasible and superior to the conventional process.
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1. Introduction

The interconnected technology of electronics and photovoltaic manufacturing has been dominated by
tin–lead alloy solders since the very beginning [1–3]. Tin–lead alloy solders, which provide a conductive
path to complete the circuit, have desirable electrical, mechanical, and thermal properties [4–10] during
the connection process of circuit elements and solar cells [11,12]. However, with the rapid consumption of
electronic products and photovoltaic modules, the environmental pollution caused by the related wastes,
especially lead, is becoming increasingly serious. In response to concerns about the environment and
human health, a number of countries have launched a series of policies and legislations to ban the use of
lead. For example, the European Union introduced two draft proposals named the Waste Electrical and
Electronic Equipment (WEEE) and the Reduction of Hazardous Substances (RoHS) directives [13–15].
Japan required all new electronic/electrical products to be lead free. [16] The United States and the
Republic of Korea have also enacted relevant laws [17–19]. So far, an increasing number of countries have
made great efforts to look for lead-free alternatives to tin–lead alloy solders. Lead-free solders [20–22],
such as Sn–Cu, Sn–Zn, and so forth, have received considerable attention [23,24]. They are not only
environmentally friendly but have also proved to be attractive alternatives to some extent [25]. However,
lead-free solders cannot meet all standards, including wettability, low melting point, mechanical integrity,
and so forth [26,27]. Electrically conductive adhesives (ECAs) are regarded as the most promising
alternative to tin–lead alloy solders because they are more environmentally friendly than lead, easier
to fabricate, and have a lower processing temperature. Moreover, they can provide higher-resolution
printing compared with tin–lead alloy solders [28].
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ECAs mainly consist of an organic/polymer matrix and electrically conductive fillers, which
provide the mechanical and electrical properties for ECAs, respectively. Generally, both thermosetting
and thermoplastic materials can be used as the polymer matrix of ECAs, such as epoxy resin [29],
silicone [30], phenolic epoxy [31], and so forth. Possible electrically conductive fillers include
silver [32–43], gold [44–46], nickel [47–49], copper [50–52], graphene, and nanocarbon black [53–57].
Among the various electrically conductive fillers, Ag flakes are widely used in current commercial
ECAs because they show high electrical conductivity and are easily processible. Note that over 50 wt %
conductive fillers should be used generally in ECAs to achieve high electrical conductivity. Therefore,
an increasing number of researchers have devoted themselves to studying electrically conductive fillers,
in particular, reducing the mass fraction of Ag used in ECAs while ensuring electrical conductivity.
Ji et al. [58] developed an ECA with a low Ag content based on the ternary hybrid of Ag microflakes,
Ag nanospheres, and nanowires. Xu et al. fabricated a silver nanowire/graphene nanocomposite ECA
via a self-assembly method [59]. In summary, much progress has been achieved regarding electrically
conductive fillers in ECAs.

The conventional preparation process of ECAs consists of the following steps: preparing the
polymer matrix and electrically conductive fillers, respectively, and mixing these two materials by
stirring and rolling. Throughout the entire process, secondary pollution and mass loss are inevitably
caused. At the same time, the stirring operation introduces many small and stable bubbles, which
affect the electrical conductivity of the ECAs [60]. Therefore, the shortcomings of the conventional
preparation process of ECAs should be remedied.

Powder spraying technology, which is mostly applied in the mechanical engineering field, provides
an approach to fix the powder to substrates [61]. It can eliminate the vigorous mixing process of
different components during processing of the target material, thus causing little disturbance to
polymer matrix and avoiding secondary pollution and mass loss. Hence, in this study, we introduced
powder spraying technology into the preparation of ECAs, whereby silver flakes are sprayed into
epoxy resin to produce ECAs. This process results in excellent electrical conductivity and mechanical
properties compared with the conventional method.

2. Experiment

2.1. Raw Materials and Experimental Equipment

2.1.1. Raw Materials

The following raw materials were used as supplied: Ag flakes (FAg-8921) from Sino-Platinum
Metals Co., Ltd. (Kunming, China); bisphenol-F-based epoxy resin (EPON 862) with an epoxy
equivalent weight of 165–173 g/eq, a viscosity of 2.5–4.5 Pa·s (25 ◦C), and a density of 1.17 × 106 g/m3

from Shell (China) Co., Ltd. (Beijing, China); a curing agent (amine adduct, PN-40) with an average
particle size of about 10–12 µm, a softening point of 105–110 ◦C, and a pot life of about 3 months
from Japanese Ajinomoto Co., Ltd. (Kawasaki, Japan); 2-ethoxyethyl acetate (AR, 98%) from Shanghai
Aladdin Biochemical Technology Co., Ltd. (Shanghai, China); a powder spray bottle from Hopeck
Plastics Industry (Suzhou) Co., Ltd. (Suzhou, China); and round cover slips (10 mm in diameter) from
Jianghai Glass Instrument Factory (Jiangsu, China).

2.1.2. Experiment Equipment

Electrical resistivity measurement was performed with an RTS-9 four-point probe resistivity
measuring instrument (Four Probes Tech Co., Ltd., Guangzhou, China). Lap shear strength
measurement was performed with a CMT 6503 electromechanical universal testing machine (Sans
Testing Machine Co., Ltd., Shenzhen, China). SEM was performed with a JEOL (JSM-7900F, JEOL,
Kyoto, Japan) high-resolution scanning electron microscope.
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2.2. Preparation of ECAs

2.2.1. Powder Spraying Process

The fabrication procedure consisted of three main steps: preparation of the polymer matrix,
spraying of Ag flakes, and heat curing. The bisphenol-F-based epoxy resin (EPON 862) was used for
the polymer matrix, which showed low viscosity and good chemical resistance characteristics. PN-40
was used as the latent curing agent, which reacts with epoxy resins at high temperatures on heating.
First, 1 g of epoxy resin with 0.2 g of curing agent (PN-40) was stirred by hand clockwise with a glass
rod (1.2–2.0 laps/s) for 7 min; then, 0.5 g of 2-ethoxyethyl acetate was added and stirred for 3 min at
room temperature and atmospheric pressure. Second, the sample was vacuumed for 30 min at room
temperature. Note that the vacuum process conducted at room temperature cannot lead to the gelation
reaction of the epoxy resin system since PN-40 is a latent curing agent. Thus, the polymer matrix
was obtained.

For the spraying of Ag flakes process, the polymer matrix was first coated on the substrate. Second,
the Ag flakes were sprayed into the polymer matrix with the mass fraction of the Ag flakes ranging
from 0 to 80 wt % and then cured for 1 h at 150 ◦C in an oven. The whole preparation time was within
2 h. After that, it cooled down to room temperature for 10 h and the ECAs fabricated by the powder
spraying process were obtained.

2.2.2. Conventional Process

For comparison with the powder spraying process, the conventional process was also used in
this study. The fabrication procedure was as follows: First, the polymer matrix was prepared with the
same method as the powder spraying process. Second, the Ag flakes were added into the polymer
matrix with their mass fraction ranging from 0 to 80 wt %, with stirring performed as mentioned in
the powder spraying process for 5 min simultaneously. After the stirring operation, it was coated
on the substrate and cured for 1 h at 150 ◦C in an oven. The whole preparation time was within 2 h.
After it cooled down to room temperature for 10 h, the ECAs fabricated by the conventional process
were obtained.

2.3. Experiment Tests

2.3.1. Tests on Electrical Conductivity

To test the electrical conductivity, round cover slips of 10 mm in diameter were used as the
substrate for the ECAs. The prepared ECAs were coated on the round cover slips. After curing and
cooling down to room temperature, the electrical resistivity of the ECAs was measured with an RTS-9
four-point probe resistivity measurement meter. Each point was chosen five times, and the average
value was taken for further data processing.

2.3.2. Tests on Shear Strength

The tests on shear strength were carried out using a CMT 6503 electromechanical universal testing
machine employing the rigid-to-rigid tension loading mode. LY12-CZ aluminum alloy plates (Mingtai
aluminium industry Co., Ltd., Zhengzhou, China) (100 × 25 × 2 mm3) were used as substrates for the
ECAs for shear strength testing. They were first polished with abrasive paper and rinsed with acetone,
then dried at room temperature. Afterward, the ECAs with a weight of 0.03–0.09 g were bonded
between two LY12-CZ aluminum alloy plates with a contact area of 25 × 25 mm2 and a thickness of
about 0.2–0.5 mm. In the tests, polyimide tape (0.3 mm in width, 0.07 mm in thickness) was used
to control the thickness of the ECAs. It was adhered to the aluminum alloy plates and the thickness
was controlled by the layers of the polyimide tape. Specifically, for the powder spraying process,
the bond steps of the ECAs on LY12-CZ aluminum alloy plates were as follows: the polyimide tape
was adhered to the aluminum alloy plates; the as-prepared polymer matrix was coated with a thin
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blade; the Ag flakes, ranging from 0 to 80 wt %, were sprayed; another aluminum alloy plate was
covered and the two aluminum alloy plates were fixed with two binder clips on both sides. These
operations were done at room temperature and atmospheric pressure, followed by curing at 150 ◦C
for 1 h and cooling down to room temperature for 10 h. For the conventional process, the bond steps
were similar to the powder spraying process to some extent: the polyimide tape was adhered to the
aluminum alloy plates; the as-prepared mixture of polymer matrix was coated with Ag flakes ranging
from 0 to 80 wt % with a thin blade; another aluminum alloy plate was covered and the two aluminum
alloy plates were fixed with two binder clips on both sides. These operations were done at room
temperature and atmospheric pressure, followed by curing at 150 ◦C for 1 h and cooling down to room
temperature for 10 h. After cooling down to room temperature, the polyimide tape adhered to the
aluminum alloy plates was removed in both the powder spraying process and conventional process.
An electromechanical universal testing machine was used to test the lap shear strength of the ECAs
coated between two aluminum alloy plates with a speed of 10 mm/min. The maximum load was
measured when shear failure occurred. Each point was chosen five times, and the average value was
taken for further data processing. The shear strength can be calculated with the following formula:

τ =
P

B · L
(1)

where τ is the shear strength of the ECAs (MPa), P is the maximum load when the sample fails (N), B is
the width of the sample lap joint surface (mm), and L is the length of sample lap surface (mm).

3. Results and Discussion

3.1. Electrical Property of ECAs

In order to investigate the electrical property of the ECAs prepared with the powder spraying
process and the conventional process, a series of experiments were carried out with an RTS-9 four-point
probe resistivity measuring instrument.

Figure 1 shows the electrical property of the ECAs fabricated by the powder spraying process and
the conventional process. As shown in the figure, the electrical resistivity for both ECAs exhibited a
similar tendency of decreasing with a mass fraction of Ag flakes below 50 wt % and remaining stable
with a mass fraction of Ag flakes higher than 50 wt %. This indicates that the electrical conductivity
has a positive relationship with the content of Ag flakes. It can be clearly seen that the electrical
resistivity of ECAs fabricated by the powder spraying process was lower than that of ECAs by the
conventional process. Especially, ECAs with the conventional process showed no value of electrical
conductivity under the mass fraction of Ag flakes below 40 wt %, while the ECAs with the powder
spraying process showed obvious electrical conductivity. As the mass fraction of Ag flakes grew
to 40 wt %, the ECAs fabricated by the powder spraying process exhibited a remarkable electrical
resistivity of 1.9 × 10−3 Ω·cm. However, the electrical resistivity of ECAs with the conventional process
was 0.85 Ω·cm, which was almost 400 times that of ECAs fabricated with the powder spraying process.
This proves that the powder spraying process is feasible and better than the conventional process.

The results can be explained as follows. As mentioned above, epoxy resin was used as the polymer
matrix. The epoxy resin, as the main component of the ECAs, fully dispersed Ag flakes when the
mass fraction of the Ag flakes was below 40 wt % when the conventional process was adopted. The
vast majority of Ag flakes were wrapped with epoxy resin after even stirring in the conventional
process, leading to Ag flakes not being able to complete the circuit; consequently, there was no electrical
resistivity value for the ECAs. However, during the powder spraying process, Ag flakes were sprayed
into the epoxy resin and freely contacted with each other, so the ECAs prepared with the powder
spraying process showed remarkable electrical conductivity. Therefore, ECAs fabricated with the
powder spraying process showed excellent electrical conductivity compared with those fabricated by
the conventional process.
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Figure 1. Electrical property of electrically conductive adhesives (ECAs) fabricated by the powder
spraying process and the conventional process.

3.2. Mechanical Property

In order to investigate the mechanical property of ECAs prepared by the powder spraying process
and the conventional process, a series of experiments were carried out with an electromechanical
universal testing machine.

Figure 2 demonstrates the lap shear strength of ECAs fabricated by the two different methods.
Both ECAs fabricated by the two different methods showed a similar trend. As the mass fraction of Ag
flakes increased, the lap shear strength of the ECAs simultaneously decreased. As the mass fraction
of Ag flakes increased, the bonding strength between the ECAs and the substrate decreased. This
indicates that the epoxy resin provided the mechanical property. Meanwhile, the figure shows that
the ECAs fabricated by the powder spraying process had higher lap shear strength than those by the
conventional process.Materials 2019, 12, x FOR PEER REVIEW 6 of 15 
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3.3. SEM Analysis

In order to investigate the morphology of ECAs prepared by the powder spraying process and
the conventional process, high-resolution SEM was used to observe the microstructure of Ag flakes
and ECAs, with the content of Ag flakes ranging from 20 to 80 wt %.

3.3.1. Ag Flakes

Figure 3 shows the microstructure of the Ag flakes. It can be observed that the Ag flakes had an
irregular flake structure, with their size ranging from several to a dozen microns.
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Figure 3. SEM images of Ag flakes. (a): aggregates of Ag flakes; (b): magnification image of Ag flakes.

3.3.2. ECAs Filled with 20 wt % Ag Flakes

Figure 4a–d show the microstructure of the ECAs filled with 20 wt % Ag flakes. Figure 4a,b show
ECAs fabricated by the powder spraying process, and Figure 4c,d show the ECAs fabricated by the
conventional process. From Figure 4a, it can be observed that the Ag flakes gathered together via
interconnecting sheets and formed a network in the powder spraying process. Therefore, it could
complete a circuit and showed electrical conductivity, as shown in Figure 1. Figure 4b shows its
cross-sectional morphology. A few Ag flakes with an irregular flake structure are shown scattered in
the epoxy resin because of the low mass fraction of Ag flakes.
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Compared with the powder spraying process shown in Figure 4a,b, the Ag flakes were more
discretely scattered in the epoxy resin shown in Figure 4c,d for the conventional process. The discrete
Ag flakes of the ECAs could not form a network. This illustrates the reason for the ECAs fabricated by
the conventional process not being able to show electrical conductivity, as shown in Figure 1, with the
Ag flakes with a mass fraction of 20 wt %.

3.3.3. ECAs Filled with 30 wt % Ag Flakes

Figure 5a–d show the microstructure of the ECAs filled with 30 wt % Ag flakes. Figure 5a,b show
the ECAs fabricated by the powder spraying process, and Figure 5c,d show the ECAs fabricated by
the conventional process. From Figure 5a, it can be observed that a dense network of Ag flakes was
formed compared with that shown in Figure 4a. Also, Figure 5b shows more Ag flakes fixed into the
polymer matrix than that of Figure 4b. Therefore, the ECAs filled with 30 wt % Ag flakes had higher
electrical conductivity than those filled with 20 wt % Ag flakes.
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Compared with the ECAs filled with 20 wt % Ag flakes (Figure 4c,d), there were more Ag flakes
scattered in the epoxy resin, as shown in Figure 5c,d, for the conventional process. However, the
increasing content of Ag flakes could not yet form a network. This illustrates the reason for the ECAs
fabricated by the conventional process not being able to show electrical conductivity, as shown in
Figure 1, with the Ag flakes with a mass fraction of 30 wt %.

3.3.4. ECAs Filled with 40 wt % Ag Flakes

Figure 6a–d show the microstructure of ECAs filled with 40 wt % Ag flakes. Figure 6a,b show the
ECAs fabricated by the powder spraying process, and Figure 6c,d show the ECAs fabricated by the
conventional process. As shown in Figure 6a, a dense network of Ag flakes was formed compared
with that shown in Figure 5a. Also, Figure 6b shows more Ag flakes fixed into the polymer matrix than
that of Figure 5b. Therefore, the ECAs filled with 40 wt % Ag flakes had higher electrical conductivity
than those filled with 30 wt % Ag flakes.
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An incomplete network of Ag flakes emerged, as shown in Figure 6c. However, the Ag flakes
shown in Figure 6c were still discrete and could insufficiently contact with each other, though more Ag
flakes were fixed into the polymer matrix compared with that in Figure 5c. Meanwhile, the Ag flakes
in the cross section are denser in Figure 6d than those in Figure 5d. Therefore, the ECAs filled with
40 wt % Ag flakes by the conventional process showed electrical conductivity to some extent with high
electrical resistivity, as shown in Figure 1.

3.3.5. ECAs Filled with 50 wt % Ag Flakes

Figure 7a–d show the microstructure of the ECAs filled with 50 wt % Ag flakes. Figure 7a,b show
the ECAs fabricated by the powder spraying process, and Figure 7c,d show the ECAs fabricated by
the conventional process. As shown in Figure 7a,b, there were more Ag flakes fixed into the polymer
matrix compared with that shown in Figure 6a,b. Meanwhile, a denser network was formed (Figure 7a)
compared with that shown in Figure 6a.Materials 2019, 12, x FOR PEER REVIEW 10 of 15 
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A network of Ag flakes was basically formed (Figure 7c). The Ag flakes shown in Figure 7c
relatively closely contacted with each other compared with those in Figure 6c. Meanwhile, the Ag flakes
in the cross section were denser (Figure 7d) compared with those shown in Figure 6d. Therefore, the
ECAs filled with 50 wt % Ag flakes by the conventional process showed obvious electrical conductivity
compared with those filled with 40 wt % Ag flakes, as shown in Figure 1. Furthermore, the ECAs filled
with 50 wt % Ag flakes had higher electrical conductivity than those filled with 40 wt % Ag flakes via
both methods, which agrees well with the electrical resistivity data shown in Figure 1.

3.3.6. ECAs Filled with 60 wt % Ag Flakes

Figure 8a–d show the microstructure of ECAs filled with 60 wt % Ag flakes. Figure 8a,b show
the ECAs fabricated by the powder spraying process, and Figure 8c,d show the ECAs fabricated by
the conventional process. As shown in Figure 8a,b, there were more Ag flakes fixed into the polymer
matrix compared with Figure 7a,b. Meanwhile, as Figure 8a shows, the network formed with Ag flakes
was denser than that in Figure 7a. Simultaneously, there were more Ag flakes fixed into the polymer
matrix, as shown in Figure 8c,d, compared with that in Figure 7c,d. Also, the network of Ag flakes was
fully formed, as shown in Figure 8c, by the conventional process. Thus, when the content of Ag flakes
was 60 wt %, the ECAs fabricated by the two methods showed good electrical resistivity, as shown
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3.3.7. ECAs Filled with 70 wt % Ag Flakes

Figure 9a–d show the microstructure of the ECAs filled with 70 wt % Ag flakes. It can be seen that
the network formed with the Ag flakes became increasingly dense as the content of Ag flakes increased.
There was a rare gap where the connection of Ag flakes was disconnected. This demonstrates that the
Ag flakes adequately contacted with each other when the content of Ag flakes reached up to 70 wt % in
both ECAs made by the two different methods. This is consistent with the electrical resistivity results
(Figure 1).
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3.3.8. ECAs Filled with 80 wt % Ag Flakes

Figure 10a–d show the microstructure of the ECAs filled with 80 wt % Ag flakes. It can be seen
that the network formed with Ag flakes reached the densest state as the content of Ag flakes was up to
80 wt %. There was a rare gap where the connection of Ag flakes was disconnected. This demonstrates
that the Ag flakes as electrical conduct fillers achieved compact interconnection when the content of Ag
flakes reached up to 80 wt % in both ECAs prepared by the two different methods. This is consistent
with the electrical resistivity results (Figure 1).
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Figure 10. ECAs filled with 80 wt % Ag flakes. (a) ECAs fabricated by the powder spraying process;
and (b) cross sections of ECAs fabricated by the powder spraying process; (c) ECAs fabricated by the
conventional process; and (d) cross sections of ECAs fabricated by the conventional process.
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4. Conclusions

In this study, we developed a novel preparation method of ECAs by the powder spraying process.
The ECAs fabricated by the powder spraying process exhibited excellent properties compared with
those made by the conventional preparation process. Especially at a low content of Ag flakes, they
showed good electrical conductivity, while the ECAs fabricated by the conventional process could not.
At the 40 wt % mass fraction of Ag flakes, ECAs fabricated by the powder spraying process exhibited
a remarkable electrical resistivity of 1.9 × 10−3 Ω·cm, which was almost 400 times that of the ECAs
fabricated by the powder spraying process. Further, the lap shear strength of the ECAs fabricated
by the powder spraying process was higher than that of the conventional process. Therefore, the
powder spraying process is feasible and superior to the conventional process. It can be speculated that
the powder spraying process may have potential applications in the fields of solar panels, electrode
materials, supercapacitors, and so on.
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