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Abstract

The two major intracellular protein degradation systems, the ubiquitin-proteasome system (UPS) and autophagy, work
collaboratively in many biological processes including development, apoptosis, aging, and countering oxidative injuries. We
report here that, in human retinal pigment epithelial cells (RPE), ARPE-19 cells, proteasome inhibitors, clasto-lactacystinb-
lactone (LA) or epoxomicin (Epo), at non-lethal doses, increased the protein levels of autophagy-specific genes Atg5 and
Atg7 and enhanced the conversion of microtubule-associated protein light chain (LC3) from LC3-I to its lipidative form, LC3-
II, which was enhanced by co-addition of the saturated concentration of Bafilomycin A1 (Baf). Detection of co-localization
for LC3 staining and labeled-lysosome further confirmed autophagic flux induced by LA or Epo. LA or Epo reduced the
phosphorylation of the protein kinase B (Akt), a downstream target of phosphatidylinositol-3-kinases (PI3K), and mammalian
target of rapamycin (mTOR) in ARPE-19 cells; by contrast, the induced changes of autophagy substrate, p62, showed
biphasic pattern. The autophagy inhibitor, Baf, attenuated the reduction in oxidative injury conferred by treatment with low
doses of LA and Epo in ARPE-19 cells exposed to menadione (VK3) or 4-hydroxynonenal (4-HNE). Knockdown of Atg7 with
siRNA in ARPE-19 cells reduced the protective effects of LA or Epo against VK3. Overall, our results suggest that treatment
with low levels of proteasome inhibitors confers resistance to oxidative injury by a pathway involving inhibition of the PI3K-
Akt-mTOR pathway and activation of autophagy.
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Introduction

Autophagy allows cells to adapt to nutrient deficiency and

cellular injuries. It includes three main mechanisms: macroauto-

phagy, microautophagy, and chaperone-mediated autophagy [1].

Macroautophagy (hereafter referred to as autophagy) begins with

formation of autophagosome, which sequesters unused proteins

and damaged cellular organelles. The autophagosome fuses with

lysosome to form autolysosomes in which degradation occurs [1].

Autophagy is an orchestrated cascade that involves more than 30

autophagy-specific proteins (Atgs), conserved from yeast to

mammals. For instance, autophagosome expansion, an early step

in autophagy, involves insertion of LC3-II into vacuole mem-

brane. This requires Atg7 (E1-like ubiquitin-activating enzyme),

Atg3 (E2-like ubiquitin-conjugation enzymes), Atg5-Atg12-Atg16

complex (E3-like ubiquitin-ligase), and other Atgs to work in

concert to conjugate phosphatidylethanolamine to LC3-I, thus

forming LC3-II [2,3]. The delicate process of starvation-induced

autophagy [4] is inversely regulated by mTOR which is activated

by PI3K-Akt induced by insulin or other growth factor [5,6].

Ubiquitin-proteasome system (UPS) mediated protein degrada-

tion differs from autophagy mediated degradation in that the UPS

is independent of lysosome and targets short-lived proteins while

autophagy is lysosome-dependent and targets long-lived proteins

or organelles. Emerging evidence suggest that there is cross-talk

between these two major intracellular degradation systems; for

instance, inhibition of the proteasome pathway can enhance

autophagy [7,8,9] and inhibition of autophagy either enhances

proteasome activity [10] or impairs the clearance of proteasome

substrates by delaying delivery of ubiquitinated protein to

proteasome [11]. Activation of the autophagy pathway can be

pro-apoptotic or anti-apoptotic [12,13,14]; under some contexts,

activation of autophagy can serve as an important defense against

oxidative injuries [15,16,17]. We have previously reported that

treatment with proteasome inhibitors can reduce oxidative injury

in human RPE cells [18]. We therefore tested whether the
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irreversible proteasome inhibitors, LA and Epo, can activate

autophagy in these cells and explored possible mechanisms for the

activation of autophagy and the reduction in oxidative injury.

Materials and Methods

Materials
The following substances, materials, and reagents (and suppli-

ers) were used in this study: menadione, 4’,6-diamidino-2-

phenylindole (DAPI), polyethyleneimine, Triton-X100 (Sigma,

St. Louis, MO); clasto-lactacystin-b-lactone, 4-ydroxynonenal, and

protease inhibitor cocktail (Calbiochem,San Diego, CA); cell

proliferation assay (MTS, CellTiter 96 AQueous One Solution),

caspase-3 activity assay kit (Promega); transfection reagents

(Lipofectamine 2000; Invitrogen Life Technologies, Carlsbad,

CA); clear-blue x-ray films (CL-XPosure films; Thermo Scientific

Branch); antibodies, ATG5, ATG7, HDAC6, phospho-AKT,

AKT, phospho-mTOR, mTOR,LC3, p62 (Cell Signaling Tech-

nology); acrylamide–bis-acrylamide solution (29:1; Bio-Rad); and

ARPE-19 cells (American Type Culture Collection [ATCC],

Manassas, VA); lyso tracker, lipofectamine 2000 (Invitrogen);

FITC-conjugated goat anti-mouse IgG (Beyotime, Beijing); non-

specific siRNA, and ATG7 siRNA (GenePharma, Shanghai).

Methods
Cell Culture. ARPE-19 cells were cultured as previously

described [18].

Western blot analysis. ARPE-19 cells were washed once

with PBS and lysed by addition of Super RIPA buffer containing a

protease-inhibitor cocktail (Sigma, St Louis). The first antibodies:

ATG5 (1:1000), ATG7 (1:1000), mTOR (1:1000), Phospho-

mTOR (1:1000), AKT(1:1000), Phospho-AKT (1:1000), LC3

(1:1000), p62 (1:1000), and the peroxidase-conjugated secondary

antibody (1:5000) were used. Details of the protein blotting

procedures were very similar to the protocol used previously [19].

Immunofluorescent confocal laser microscope. ARPE-

19 cells were cultured on polyethyleneimine - coated coverslips sit

in 6-well plates. After treated with LA, Epo, or sham-treatment,

the cells were firstly labeled by incubating with lysotracker

(Invitrogen), a lysosome reporter dye, for 90 min at 37uC. After

washed with PBS, the cells were fixed in 4% paraformaldehyde for

5–10 min, washed in PBS, blocked in goat sera for 45 min, and

then incubated with LC3 antibody (1:250) in 0.1% Triton-X100

for 2 h following incubated with FITC-conjugated goat anti-

mouse IgG in 0.1% Triton-X100 for another 45 min. Finally, the

nuclei were stained with DAPI for 3 min, washed, and then

observed under a Zeiss LSM 710 confocal microscope system

(Carl Zeiss, Germany). The images were taken under oil-

Figure 1. LA or Epo increased protein levels of ATG5, ATG7, and the conversion of LC3-I to LC3-II. A, ARPE-19 cells were treated with
Epo (0.3,10 nM, left panel) or LA (100-1000 nM, right panel) for 18-24 h, and proteins were harvested and subjected to immunoblotting for ATG5,
ATG7, LC3 and GAPDH. The blots shown were typical of at least triplicate experiments. The ratios of ATG5/GAPDH, ATG7/GAPHH, and LC3-II/GAPDH
for Epo (B) or LA treatment (C) were mean (+ SEM) of at least triplicate experiments. The ratios for control were set as 100% and the values from
treatment conditions were normalized to the control values. P,0.05 vs control.
doi:10.1371/journal.pone.0103364.g001
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immersion lens (X 63) and processed with Zen Le software. All the

procedures were performed under ambient temperature.

MTS Assay. MTS assay was done as previously described

[18].

Analysis of Proteasome Activity In Vitro. Measurement of

proteasome activity was performed as previously described [18].

Chymotrypsin-like degradative activity, mostly specific for enzy-

matic activities of proteasome complex, was used to indicate

proteasome activity in the study.

Assessment of Caspase-3 Activity. Assay of caspase-3

activity in ARPE-19 cells followed previous procedure [20].

RNA Interference. ARPE-19 cells were transfected with

either non-specific siRNA, or ATG7 siRNA (60 nM) under the

help of lipofectamine 2000. ARPE-19 cells were then subjected to

treatments, followed by western blot or MTS assay.

Statistical Analysis. Data were analyzed for significant

difference (P,0.05) by ANOVA and Bonferroni post hoc test

for multiple comparisons (SPSS 15.0.1; SPSS, Inc., Chicago, IL).

Results

1. LA or Epo activated autophagy pathway in RPE
To determine whether LA or Epo activate the autophagy

pathway in RPE, we first examined the levels of Atg5 and Atg7

proteins, essential for autophagosome maturation, and measured

the conversion of LC3 from LC3-I to LC3-II before and after LA

or Epo treatment. 18–24 h treatment with LA (100,1000 nM) or

Epo (0.3,10 nM) increased the protein levels of Atg5/Atg7, and

the conversion of LC3 (Fig. 1). To determine whether overpro-

duction of Atg-related proteins by LA or Epo treatment was due to

increased autophagosome formation or due to decreased autop-

hagosome fusion with lysosome, saturated concentration of Baf,

i.e. completely blocked autophagosome fusion with lysosome, was

added to LA or Epo treated cultures at the final 4 h; this operation

further increased the protein level of LC3-II (Figs. 2A, and 2B).

This method to monitor autophagic flux was described previously

[21]. To further confirm autophagic flux induced by LA or Epo

treatment, we analyzed the co-localization of LC3 staining with

lysosome. As shown in Fig. 2C, LA or Epo treatment increased

LC3-positive puncta (3rd column of the 2nd and 3rd rows)

compared to the sham treatment (3rd column of the 1st row) and

LA or Epo treatment further increased the co-localization between

LC3-positive puncta and labeled lysosome (4th column of the 2nd

and 3rd row) compared to the sham treatment (4th column of the

1st row). Together, the results suggest that increased protein levels

of Atg-related proteins by LA or Epo treatment are not due to

blockage of autophagic flux, but due to increased formation of

autophagosome.

2. Inhibition of PI3K/Akt/mTOR pathway by LA or Epo
Previous studies indicate that the PI3K/Akt/mTOR axis plays

important roles in autophagy inhibition, especially in starvation-

induced autophagy; inhibition of mTOR is one way to activate

Figure 2. LA or Epo induced autophagic flux. A, ARPE-19 cells were treated with DMSO, Epo (10 nM), or LA (1 mM) for 18 h and Baf (400 nM)
was added to the cultures for the final 4 h. Proteins were harvested and subjected to immunoblotting against LC3. The blots shown are typical of at
least triplicate experiments. The optic densities were averaged and quantified in B, the values in control were set as 100% and the values in treated
conditions were normalized to the control values. * P,0.05 vs control; **P,0.05 indicated that Epo or LA plus Baf differed significantly from Epo or LA
treatments. C, ARPE-19 cells were treated with DMSO, Epo (10 nM), or LA (1 mM) for 18 h, and labeled with fluorescence as described in Methods, and
imaged by confocal laser microscope. The images shown were typical of the images from five non-contiguous fields in each dish from triplicate
experiments. Scale bar, 20 mM. The LC3-positive puncta overlaying labeled lysosome for Epo, or LA treatment, and sham condition were averaged
from 20 cells and quantified in D. * P,0.05 vs control. Blue, DAPI-labeled nuclei; Red, lyso tracker-labeled lysosome; Green, FITC-labeled LC3. The
merged images were shown in the most right column and the orange-stained cells indicated LC3, co-localized with lysosome.
doi:10.1371/journal.pone.0103364.g002
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autophagy [22,23]. Therefore, we tested whether LA or Epo affect

the PI3K/Akt/mTOR pathway. Both LA (especially at 1 mM) and

Epo (especially at 10 nM) reduced levels of phospho-AKT and

phospho-mTOR but had little effect on the levels of AKT and

mTOR (Figs. 3A and 3B). Since p62 protein, also named as

sequestosome1(SQSTM1), is degraded by autophagy, it may be

used as a marker for autophagic flux [24]. To confirm that LA or

Epo induce autophagy, we tested p62 level in LA or Epo-treated

cultures and the changes of p62 indicated a biphasic pattern, i.e.

p62 was reduced at low doses but gradually increased with raised

concentrations of LA or Epo (Figs. 3A and 3B). The p62 level

induced by LA or Epo,especially at relatively high concentrations,

is probably the mixture of autophagy degradation and proteasome

inhibition, i.e. autophagy degradation reduces p62 but proteasome

inhibition increases p62. Several studies indicated p62 overex-

pression occurs under the conditions of proteasome inhibition

[25,26].

3. Bafilomycin A1(Baf) reversed the protective effects of
LA or Epo against oxidative injuries in ARPE-19 cells

We have demonstrated that LA protects against oxidative

injuries in ARPE-19 cells [18]. However, the detailed mechanism

remains unclear. Recent studies indicated that proteasome

inhibition could activate autophagy [7]. Therefore, we examined

whether Baf, an inhibitor of vacuolar-type H+-ATPase [27] that

suppresses autophagic flux, could attenuate the protective effects of

LA. First, we confirmed that Baf alone did not alter the viability of

RPE cells. RPE cells remained viable after 24 h treatment with

Baf (3,300 nM) (Fig. S1). We next treated cultures with 1 mM

LA, a paradigm that results in the maximal reduction in oxidative

injury [18], As expected, 18 h pretreatment with LA (1 mM)

completely blocked the toxicity of HNE or VK3 (Figs. 4A, and

4B), which is consistent with our previous study [18]. At the tested

concentrations, LA inhibited proteasome activity as reported in

our previous study [18]; co-addition of Baf with LA or Epo showed

additive effects on proteasome inhibition (Fig. 4D), which are

compatible with previous study [11], although Baf alone, at the

maximal dose applied, 300 nM, did not change proteasome

activity. Co-application of Baf (30,300 nM) for 18 h with LA

partially reversed the beneficial effects of LA (Figs. 4A, and 4B).

To confirm the consistency between the results for MTS and

apoptosis assays, we examined caspase-3 activity in the above

cultures. VK3 treatment significantly increased caspase-3 activity

compared to sham cultures, whereas co-addition of LA with VK3

reduced caspase-3 activity to the basal level; the values of

capspase3 activity by the three combinatorial treatment including

Baf, LA, and VK3 were in the middle of the values for VK3 and

LA plus VK3 treatments (Fig. 4C). In summary, the results for

Figure 3. LA or Epo decreased phospho-AKT and phospho-mTOR protein levels. ARPE-19 cells were treated with Epo (0.3,10 nM) (A) or
LA (100–1000 nM) (B) for 18–24 h, and proteins were harvested and subjected to immunoblotting for mTOR, phospho-mTOR(p-mTOR), AKT,
phospho-AKT(p-AKT), p62. The optical density ratios (mTOR/GAPDH, AKT/GAPDH, p-mTOR/GAPDH, p-AKT/GAPDH, p62/GAPDH) for Epo (C) or LA
treatment (D) were averaged from at least triplicate experiments and the ratios for the mTOR/GAPDH, AKT/GAPDH were not shown. The values for
control were set as 100%; the values for treatment condition were normalized to the control values. *P ,0.05 vs control.
doi:10.1371/journal.pone.0103364.g003
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apoptosis assay were compatible with the MTS results, thus, only

MTS assay was used to examine the survival status in the rest

study. To confirm that the protective effect by LA is a general

phenomenon for irreversible proteasome inhibitors, we tested

another irreversible proteasome inhibitor, Epo. A 22 h pretreat-

ment with Epo (0.3,10 nM) significantly blocked the toxicity of

HNE, with a maximal protective effect at a concentration of 3 nM

Epo against HNE-induced injury and 10 nM against VK3-

induced injury (Figs. 5A, and 5B). At these concentrations, Epo

inhibited proteasome activity significantly (Fig. S4). Co-application

of Baf (30,300 nM) with the Epo during the 18 h pretreatment

period completely reversed the protective effects of Epo against

HNE or VK3-induced cell death (Figs. 5C, and 5D).

4. Knockdown of Atg7 attenuated the protective effects
of LA or Epo

Considering the possible non-specific effects of LA or Epo

treatment, we examined the effects of LA or Epo on the toxicity of

VK3 in Atg7-knockdown ARPE-19 cells. Transfection with Atg7-

specific siRNA (SiATG7) reduced Atg7 in ARPE-19 cell cultures

beyond 50% of the level in the cultures transfected with scramble

siRNA (SCR) (Figs. 6 A, and 6B). Knockdown of Atg7 signifi-

cantly reduced, but not completely blocked the protective effect of

LA or Epo compared to the cultures transfected with scramble

siRNA (Figs. 6C, and 6D). Thus, the protection by LA or Epo

against VK3 toxicity also involves autophagy-independent mech-

anism in addition to up-regulating autophagy.

Figure 4. Bafilomycin A1 (Baf) reversed the protective effect of LA against HNE or VK3 in ARPE-19 cells. Cultures were pre-treated with LA
and the indicated concentrations of Baf (30,300 nM) for 18 h before 18 h exposure to HNE (15 mM) (A) or VK3 (20 mM) (B). MTS assay was used to
measure cell viability (A, B) and caspase-3 activity assay to measure apoptosis (C) at the end of the 18 h HNE or VK3 treatment. In MTS assay, *P,0.05 vs.
control, ** P,0.05 indicated that the three combinatorial treatment including HNE or VK3, LA, and Baf differed significantly from cultures treated by HNE
plus LA or VK3 plus LA; in caspase-3 assay, ** P,0.05 vs. control, ***P, *P ,0.05 indicated that the three combinatorial treatment including VK3, LA, and
Baf differed significantly from either VK3 or VK3 plus LA treatment respectively. D, ARPE-19 cells were treated by Baf (300 nM), LA (1 mM), Epo (10 nM), LA
plus Baf, or Epo plus Baf for 18 h, and then subjected to chymotrypsin-like proteasome activity assay as described in Methods. *P,0.05 indicated
significant difference between LA and LA plus Baf or between Epo and Epo plus Baf treatment; **P,0.05 indicated significant difference between
control and treatment conditions except by Baf. All the values in control cultures (A, B,C,D) were set at 100% and the values in treated cultures were
normalized to the control values. All the results shown are mean (6 SEM) of at least triplicate experiments in quadruplicate cultures.
doi:10.1371/journal.pone.0103364.g004

Figure 5. Bafilomycin A1 (Baf) reversed the protection of Epo
against HNE or VK3. Cultures were pre-treated with the indicated
concentrations of Epo for 18 h before 18 h exposure to HNE (15 mM) (A)
or VK3 (20 mM) (B); or the cultures were pre-treated with Epo (10 nM) and
the indicated concentrations of Baf (30,300 nM) for 18 h before 18 h
exposure to HNE (15 mM) (C) or VK3 (20 mM) (D). MTS assay was used to
measure cell viability at the end of the 18 h HNE or VK3 treatment. The
results shown in A, B, C, and D are mean (6 SEM) of at least three
independent experiments in quadruplicate cultures. The values in the
control cultures were set at 100% and the survivals in treated cultures
were normalized to the control values. * P,0.05 vs. control, ** P,0.05
indicated that the three combinatorial treatment including HNE or VK3,
Epo, Baf differed from either Epo plus VK3 or Epo plus HNE treatment.
doi:10.1371/journal.pone.0103364.g005
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Discussion

Our results demonstrate that the proteasome inhibitors LA or

Epo activated the autophagy pathway, as measured by increased

level of autophagosome proteins ATG5 and ATG7, increased

conversion of LC3-I to LC3-II, and increased autophagic flux. We

also demonstrated that LA or Epo inhibited the PI3K/Akt/

mTOR pathways, which is a possible way how LA or Epo induce

autophagy. We further demonstrated that autophagy inhibitor,

Baf, completely reversed the protective effects of low doses of

proteasome inhibitor Epo (Figs. 5A, and 5B), as well as for the

effects of MG-132 (Fig. S2); by contrast, Baf partially reversed the

cytoprotective effects of LA (Figs. 4A, and 4B). Therefore, the

cytoprotective effect of Epo may be mediated exclusively through

activation of autophagy, while other mechanisms may contribute

to the effects of LA. For example, we have found that LA can

ameliorate the reduction of glutathione levels seen after oxidative

injury in ARPE-19 cells (unpublished data); this effect would be

unlikely to be affected by Baf. We further demonstrated that the

protective effects of LA or Epo were significantly attenuated under

the condition of knockdown of ATG7. Overall, our results suggest

that LA or Epo reduced vulnerability to oxidative injuries at least

in part by activation of the autophagy, possibly through inhibition

of PI3K/Akt/mTOR signaling. Considering the non-specific

effects from the relatively high doses of LA or Epo, e.g. interfering

with autophagy substrate degradation (Figs. 3A, and 3B) or

reducing endoplasmic reticulum quality-control system [28], low

doses of LA or Epo, even autophagy enhancers, rapamycin and its

analogs [29], would be better candidates to be used against

oxidative injury in RPE cells.

Previous studies have suggested that peroxisome proliferator-

activated receptor alpha (PPARa) antagonist partially reversed the

protective effect of low doses of MG-132 against oxidative injuries

[18]. Thus, PPAR family antagonists were also tested on the effects

of Epo against HNE or VK3. PPARa antagonist GW6471, but

not PPARc antagonist GW9662, reversed the protective effects of

Epo in a dose-dependent manner; at 20 mM, the effects of

GW6471 reached the maximal (Fig. S3). In summary, low doses of

MG-132, Epo or LA protected RPE from oxidative injury via

activating autophagy and PPAR pathway activation also contrib-

utes to the anti-oxidative roles for MG-132 or Epo, but not for LA.

The reasons that LA could not activate PPAR pathway in ARPE-

19 cells are currently unclear and is under investigation. Some

studies indicated that PPAR activation could induce autophagy

[30,31], which may explain that both PPARa antagonist and Baf

could reverse the protective effects of MG-132 or Epo against

oxidative injuries, summarized from our previous and current

studies.

Figure 6. Knockdown of Atg7 attenuated the protective effect of LA or Epo. ARPE-19 cells were transfected with scramble siRNA (SCR), or
Atg7-specific siRNA (SiATG7), continued to be cultured for 24 h, followed by pre-treatments with Epo (10 nM, C) or LA (1 mM, D), or sham treatment
for 18–24 h, and then subjected to VK3 (20 mM) treatment for 18 h. After the 18 h VK3 treatment, the cultures were subjected to western blot
analyses (A) or MTS assay (C, D). The knockdown effects by siRNA were quantified in B, *P,0.05 indicated significant difference between the
knockdown effect of SiATG7 and SCR. In C, D, *P,0.05 indicated significant differences between LA or Epo treatment and LA or Epo plus VK3
treatments; ** P,0.05 indicated significant differences between the protective effects of LA or Epo treatment in SCR group and those in SiATG7
group. All the results were averaged from at least triplicate experiments and the values in control were set as 100% and the values in treated
conditions were normalized to the control values.
doi:10.1371/journal.pone.0103364.g006
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The cytoprotective effects of Epo against HNE and VK3

toxicity disappeared at high Epo concentrations (Figs. 5A, and

5B); this is similar to observations using proteasome inhibitors LA

and MG-132 in our previous study [18]. The loss of cytoprotection

at higher concentrations of these inhibitors may reflect inherent

toxicity of high concentrations of these inhibitors. The optimal

concentration of Epo against HNE was 3 nM in contrast with

10 nM against VK3 (Figs. 5A, and 5B). The difference probably

results from the differential inherent toxicity for HNE and VK3,

e.g. HNE is conjugated to proteins and/or induces oxidative stress

[32] in contrast with VK3, majorly as an oxidative stressor. It is

reasonable to think that Epo, as a potent and selective proteasome

inhibitor, may induce higher extent of protein aggregation at

10 nM than at 3 nM, thus caused more toxic effect with HNE at

relatively higher concentration.

Several recent studies have demonstrated interactions between

the proteasome and autophagy degradative pathways. For

example, increased expression of histone deacetylase (HDAC6)

reduces degeneration in flies with genetic inhibition of the UPS

and in a fly model of spinobulbar muscular atrophy; the effect of

HDAC6 is mediated by an increase in autophagy [33]. We did not

detect a change of the levels of HDAC6 in LA/Epo treated ARPE-

19 cells (data not shown). There are other mechanisms for cross-

talk between the UPS and autophagy pathways. For example,

proteasome inhibitions induce accumulation of misfolded proteins

which activates the unfolded protein response pathway; this

pathway works via inositol-requiring enzyme 1 (IRE1), an ER

transmembrane protein kinase/endoribonuclease, to activate a

number of pathways, including autophagy. This is a JNK-

dependent pathway in several cell types [8,14]. We demonstrated

here that PI3K/Akt/mTOR pathway was inhibited by LA and

Epo; inhibition of mTOR contributes to autophagy activation in

some situations [23]. Therefore, we inferred that inhibition of

mTOR pathway by LA or Epo, may contribute to their induction

of autophagy.

Phagocytosis and degradation of shed outer segments by the

RPE cells are critical for survival of photoreceptors - - this process

involves degradation of shedded discs by autophagy and lysosomal

degradation [34,35,36]. Atrophy or even death of retinal pigment

cells (RPEs) and photoreceptors [37,38] are the major pathological

changes in dry age-related macular degeneration (AMD). Oxida-

tive stress may play a role in RPE dysfunction in AMD [39]. The

results of this study suggest that interactions between the UPS and

autophagy might be a potential therapeutic target in AMD and

other disorders where oxidative stress may play a role.

Supporting Information

Figure S1 Baf did not compromise human RPE survival.
ARPE-19 cultures were treated with indicated concentrations of

Baf (3,300 nM) for 24 h. MTS assay was used to measure cell

viability at the end of treatment. The values in the sham-washed

control cultures were set at 100% and the survivals in treated

cultures were normalized to the control values. The results shown

are mean (6 SEM) of at least triplicate experiments in

quadruplicate cultures.

(TIF)

Figure S2 Baf reversed the protections of MG-132
against HNE. Cultures were pre-treated with MG-132

(30 nM) and the indicated concentrations of Baf (30,300 nM)

for 18 h before 18 h exposure to HNE (15 mM). MTS assay was

used to measure cell viability at the end of the 18 h HNE

treatment. The values in control cultures were set at 100% and the

survivals in treated cultures were normalized to the control values.

The results shown are mean (6 SEM) of at least three independent

experiments in quadruplicate cultures. *P,0.05 vs. control, ** P,

0.05 indicated that the three combinatorial treatment including 4-

HNE, MG-132, and Baf (100, 300 nM) differed significantly from

cultures treated by 4-HNE plus MG-132.

(TIF)

Figure S3 PPARa antagonist GW6471, but not PPARc
antagonist GW9662, reversed the protection of Epo
against VK3. Cultures were pre-treated with Epo (10 nM) and

the indicated concentrations of GW6471 (10,20 mM) (A) or

GW9662 (1,30 mM) (B) for 18 h before 18 h exposure to VK3

(20 mM). MTS assay was used to measure cell viability at the end

of the 18 h VK3 treatment. The values in control cultures were set

at 100% and the survivals in treated cultures were normalized to

the control values. The results shown are mean (6 SEM) of at least

three independent experiments in quadruplicate cultures. *P,0.05

vs. control, ** P,0.05 indicated that the three combinatorial

treatment including VK3, Epo, and GW6471 differed significantly

from cultures treated by VK3 plus GW6471.

(TIF)

Figure S4 Epo inhibited proteasome activity in a dose-
dependent manner. ARPE-19 cell cultures were treated with

different concentrations of Epo (0.3,30 nM) for 18 h, the cultures

were harvested and chymotrypsin-like proteasome activity was

measured. The results were averaged from at least triplicate

cultures, and the values from treated cultures were normalized to

those in the control cultures (proteasome activity 100%). * P,0.05

vs. control.

(TIF)
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