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Identifying cancer-associated mutations (driver mutations) is critical for understanding the cellular function of cancer genome that
leads to activation of oncogenes or inactivation of tumor suppressor genes. Many approaches are proposed which use supervised
machine learning techniques for prediction with features obtained by some databases. However, often we do not know which
features are important for driver mutations prediction. In this study, we propose a novel feature selection method (called DX)
from 126 candidate features’ set. In order to obtain the best performance, rotation forest algorithm was adopted to perform the
experiment. On the train dataset which was collected from COSMIC and Swiss-Prot databases, we are able to obtain high prediction
performance with 88.03% accuracy, 93.9% precision, and 81.35% recall when the 11 top-ranked features were used. Comparison with
other various techniques in the TP53, EGFR, and Cosmic2plus datasets shows the generality of our method.

1. Introduction

Recent developments of large-scale sequencing in the cancer
genome have exploited hundreds or thousands of vari-
ous types of mutations [1], such as DNA sequence alter-
ations including point mutations, nucleotide mutations, and
genomic rearrangements [2]. Although many somatic muta-
tions are discovered, a small fraction of mutations promote
cancer progress (driver genes that drive tumor evolution,
about <1%) and majority of mutations are likely to be
“passengers” which have no effects on tumor cell selection
[3-5]. Many methods are used to explore the mechanism on
the different mutations. For example, Purohit et al. [6] have
conducted studies on the drug resistance through docking
and binding analysis and found that mutation (S315T) has
high docking score: it can decrease the flexibility of binding
residues and make them rigid by altering the conformational
changes, and in turn it hampers the INH activity. Lamin A/C
proteins are the major components of a thin proteinaceous fil-
amentous meshwork and the structural and functional conse-
quences of mutation R482W cause FPLD [7]. Both structure
and relationship of mutation protein are also studied, such as

cancer-associated E17K [8], SH2-containing protein (NSP3)
and Crk-associated substrate (p130Cas) [9], TMC114 [10, 11],
PncA of Mycobacterium tuberculosis [12], and KIT receptor
[13]. Among these mutations’ analyses, the missense mutation
which is a point mutation that can cause different codon
coding through gene is widely noted [14, 15]. So, various
methods on the basis of data are used to identify which
missense mutations are drivers and which are passengers [16].

So far, several approaches have been exploited to identify
driver mutations and can be roughly classified into two
categories. The first class is based on biological difference
with the hypothesis that a driver gene has a higher frequency
compared to passenger genes with passenger mutations
[1, 17-19]. Parmigiani et al. developed a software package
(CancerMutationAnalysis, bioconductor) to identify driver
mutations at the gene level. This software can calculate
passenger mutation rate. Carter et al. proposed a novel
method for estimating the passenger mutation rate from three
aspects including the number of nonsilent somatic single
based variants, reducing known driver mutations and the
frequency of the nonsilent somatic single (24 categories)
[20]. Zhang et al. [17] computed the Mahalanobis distance
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of a gene from known cancer genes with four features
including gene size, background nonsynonymous mutation
rates, somatically acquired events, and the rate of these events
in carriers. MutSig tools are also used to compute the score
of each gene in the tumor. On the other hand, researchers
adopt some features related to the missense mutations to train
classifier using some learning algorithms, and then the model
can be applied to the test dataset. Hitherto several groups
propose some methods to recognize driver mutations from
a lot of passenger mutations [15, 20-30]. They use differ-
ent features and algorithms for prediction, especially feature
spaces.

Recently, Tan et al. [30] proposed a novel feature extrac-
tion scheme for driver mutations identification. They selected
126 features relating to physicochemical properties of amino
acids (AARC), scoring mutation matrix (SSM) from AAIn-
dex database [31], 2-gram feature from sequence (PSS), and
annotated features (AF) from other databases, then used DX
score to rank 126 features, and finally selected 70 features
according to accuracy of support vector machine (SVM).
This work is interesting and shows us how to select efficient
features for our recognition.

In this study, inspired by Tan et al’s method, we developed
a novel method to predict driver mutations from candidate
passenger mutations using DX-RF (rotation forest (RF) algo-
rithm with DX method). In order to utilize more features, we
also adopt four kinds of features that were used by Tan et al.
A novel scoring system (DX) was employed to evaluate the
performance of each feature in identifying driver mutations.
Our experiments can acquire 87.97% average accuracy on
DX-RF method using the 11 top-ranked features combined.
We also tested the classifier on the other dataset and got
higher accuracy than before.

2. Materials and Methods

2.1. Data Collection. The driver-passenger mutations dataset
is retrieved from Tan et al. [30]. This dataset is composed
of cancer-associated variants (driver mutations) which were
collected from COSMIC database and neutral polymor-
phisms (passenger mutations) which were collected from
Swiss-Prot Variant Pages (humsavar.txt) with only the record
type “Polymorphism” Based on this dataset, train dataset
with 4193 driver mutations and 4193 passenger mutations is
constructed. The test dataset contains three disjointed driver
mutations sets (EGFR, TP53, and Cosmic2plus) and passen-
ger mutations dataset which was collected from humsavar.txt
by removing those that appeared in the train dataset. In
this study, driver mutations are labeled as positive class and
passenger mutations are labeled as negative class.

2.2. Feature Extraction. The candidate features were collected
from Tan et al’s paper which mainly contain four type features
which are composed of AARC features (physicochemical
properties), SSM features (scoring mutation matrix, from
AAlIndex), PSS features which were produced according to
Wu et al. [32] and Wang et al. [33] using 2-gram and 6-
letter method, and annotated features which were collected
from several databases including UniProt KnowledgeBase,
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Swiss-Prot Variant Page, and COMSIC database. In the
annotated features, there are 14 binary categorical features,
which perhaps are unavailable for the referring mutations.

2.2.1. Feature Coding. Machine learning-based techniques
such as support vector machine (SVM) and rotation forest
(RF) need a fixed number of inputs for training. So, before
training, the features should be converted to number. The
AARC feature value AARC(X) for a missense mutation is
defined by

AARG; (X) = AARC; (W) — AARC; (M), a)

where X denotes sample, W denotes wild-type residue, M
denotes mutation residue, and i denotes the ith AARC feature
value. The SSM feature value for a missense mutation is
assigned as the element (4, j) of scoring mutation matrix. The
2-gram method extracts two consecutive amino acid residues
in a protein sequence and counts the number of occurrences
of the residue pairs; it will produce 400-dimension vector
for a protein sequence. DX is used to calculate the score
of each feature and the 30 top-rank features are selected
for prediction. The 6-letter method classifies 20 amino acids
to six groups according to physicochemical properties [34].
Table 1 shows the six groups.

The 6-letter method first represents a protein sequence by
the 6-letter group and then encodes new protein sequence
using 2-gram method. Thus, The PSS feature value for a
missense mutation is assigned as the 436-dimension vector.
In order to reduce lost information, the linear correlation
coeflicient (LCC) is computed through 436-dimension vector
as follows:

LCC(S)
836 — o436 o436 —
436 )00 X% — X0 X Yy X

436 436 _\? 436 —2 436 —\2
\/436 Yo XiP— (Zi:1 xi) * \/436 Y X (Zi=1 xi)
(2)

>

where x; is the jth 2-gram feature value and ¥; is the
mean value of jth 2-gram feature. Finally, we got 31 PSS
features. The annotated features were collected from different
databases including UniProt KnowledgeBase, Swiss-Prot, and
COSMIG; here 29 features were used in this study.

2.2.2. The Feature Space. For each missense mutation of
dataset, there are 126 features, including 15 features of AARC,
51 SSM features, 31 features of PSS, and 29 features of function
annotated. On the whole, 15+ 51 + 31 + 29 = 126 features for
each missense mutation were got.

2.3. Feature Selection Method. In many pattern recognition
applications, feature selection is very important. Here we
use two methods to solve this problem: DX score [33] and
minimum redundancy maximal relevance (mRMR) [35]. The
author of DX method adopted it to pick out the most relevant
2-gram features. Intuitively, this DX score bears the capability
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TABLE 1: Six groups of 20 amino acids.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

D,E,N,Q H,R,K C STRAG MLL,V EY,W

of assessing a feature’s discrimination power in general case.
According to [36], the DX score can be defined as follows:

2
average_pos — average_ne
DX _Score = ( P ge-neg) , (3)
var_pos + var_neg

where average_pos denotes the mean value of the feature in
the interaction pairs of train dataset and average_neg denotes
the mean value of the feature in the noninteraction pairs of
train dataset. var_pos and var_neg denote the variance of the
feature in the interaction pairs and noninteraction pairs of
train dataset, respectively. The mRMR method selects good
features according to the maximal statistical dependency
criterion based on mutual information. A smaller index
of a feature denotes that it has a better trade-off between
maximum relevance to the target and minimum redundancy
to the features. The mutual information equation of random
variables x, y is defined as follows:

p(x,y)
px)p(y)

Here x, y are vectors and p(x, y), p(x), p(y) is probabilistic
density function. Max-Relevance D is to find features satisfy-
ing (5) and meanwhile Min-Redundancy R condition needs
to be added to select mutually exclusive features with (6);
x;, x; denote feature, S denotes the whole feature set, and ¢
denotes the target class. Consider

1069) = || ) log xdy. (@)

1
D= ExiZ’sI (x55¢), (5)
1
R=m Z I(x,»,xj). (6)
X;X;€S

The mRMR feature evaluation uses incremental search meth-
ods for optimal features and would loop N rounds when
given a feature set with N features. After the mRMR feature
evaluation, a ranking feature set is obtained.

2.4. Model Construction. The classification model of iden-
tifying driver mutations was based on rotation forest (RF)
[37] and the software Weka [38] was adopted to implement
our classification. The final train dataset is comprised of 4193
driver mutations and 4193 passenger mutations. In statistical
prediction, subsampling test and jackknife test are used as
two cross-validation methods. Jackknife test is considered
to be more objective and has been widely adopted by many
researchers to validate the power of various classifiers, but
it will take much longer time to perform the jackknife test.
So considering the numerous samples used in this study, 5-
fold cross-validation is used to evaluate the importance of the
features for train dataset. This process is repeated five times
and average accuracy is used to evaluate features.

A RF model was constructed on the train dataset with
default parameters. In order to get good features for identify-
ing driver mutations, 126 train datasets are built according to
IES [39, 40] approach based on the ranked features obtained
by the DX method and mRMR method, respectively. Then
the 126 train datasets are trained with 5-fold cross-validation
and this process was repeated five times. Thus, 126 * 5 * 2
models were generated. Five parameters, precision, recall,
accuracy, F-measure, and Matthews’s correlation coefficient
(MCC), were employed to measure the performance of fea-
tures combined on the training dataset and TP denotes true
driver mutations, TN denotes true passenger mutations, FP
denotes false driver mutations, and FN denotes false passen-
ger mutations

Recall = L,
TP + FN
.. TP

Precision = ——,

TP + FP

TP + TN

Accuracy = R
TP + TN + FN + FP

2 * Precision * Recall
F-measure =

Precision + Recall
MCC

TP * TN — FP * FN

/(TP + FP) * (TP + EN) % (IN + EP) * (IN + FN)
7)

3. Results and Discussion

3.1. Optimization of the Feature Space. In order to obtain the
best feature space for driver mutations prediction, two classi-
fiers which use RF with DX and mRMR feature selection
methods are constructed, called DX-RF and mRMR-RE, res-
pectively. Supplemental Materials S1 (in Supplementary Mat-
erial available online at http://dx.doi.org/10.1155/2014/905951)
are two results using the mRMR software: one table is a maxi-
mum relevance feature result that ranks the 126 features based
on their relevance to the class of samples; the other is called
the mRMR feature table that lists the 126 ranked features
according to mRMR criteria. The front feature means that
it is more important for driver mutations prediction in the
mRMR feature table. After ranking, IFS was adopted for opti-
mal feature set selection. During IFS procedure, features were
added with one feature from higher to lower rank accord-
ing to the mRMR table. Supplemental Materials S2 are the
result using DX method. After features were ranked, 126
individual predictors corresponding to 126 feature subsets
were constructed to train the dataset using mRMR-RF and
DX-RE The average results of 126 predictors using 5-fold
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FIGURE 1: The accuracy of two classifiers by adding features sequen-
tially using 5-fold cross-validation.

cross-validation based on two classifiers can be seen in the
Supplemental Materials S3. This feature selection process
is illustrated in Figure I; from Figurel it can be seen that
the DX-RF predictor achieved the highest 87.97% accuracy
when adopting the 11 top-ranked features and the mRMR-
RF predictor also got a similar highest 88.18% accuracy
with the 76 top-ranked features. In order to compare with
Tan et al., DX-SVMLight and DX-LibSVM with the 70 top-
ranked features of Tan et al. are performed. DX-SVMLight
got 83.04% accuracy and it is lower by about 4.93% and 5.14%
than DX-RF and mRMR-RE respectively. DX-LibSVM got
83.97% accuracy and it is lower by about 4% and 4.21% than
DX-RF and mRMR-RE respectively. For DX-RF classifier, we
can see that the performance of the DX-RF is almost the same
as the mRMR-RF (88.18% with the 76 top-ranked features)
with only 11 features. Finally, we select the 11 top-ranked
features with rotation forest algorithm to build the model for
driver mutations prediction. Supplemental Materials S4 show
that one table is the 11 top-ranked features of DX-RF; another
table is all 126 features that were used by Tan et al. [30] in their
study.

3.2. Feature Analysis. We investigate the distribution of the
optimal features based on DX-RF, mRMR-RE and Tan et
al’s method. From Figure 2, 0, 6, and 1 features were derived
from amino acid residue change features (AARC); 0, 12, and
40 were derived from substitution scoring matrix features
(SSM); 7, 31, and 21 were derived from protein sequence-
specific features (PSS); and 4, 27, and 8 were derived from
annotated features (AF) of DX-RF, mRMR-REF, and Tan et al.,
respectively.

3.3. Comparison of the Prediction Performance on the Train
Dataset. After the optimal feature subset can be confirmed,
the experiment was performed to evaluate whether DX-RF
method is better than other methods. According to DX and
mRMR, the experiments using 5-fold cross-validation on the
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FIGURE 2: Bar plots to show the feature distribution for the optimal
features. Blue denotes that the distribution of DX-RF: 0 derived
from amino acid residue change features (AARC), 0 derived from
substitution scoring matrix features (SSM), 7 derived from protein
sequence-specific features (PSS) and 4 derived from annotated
features (AF).

train dataset are performed again and this process can be
run 10 times. Table 2 shows the average results of DX-RF and
mRMR-RF method. From Table 2, the performance of DX-
RF method is almost the same as the mRMR-RF method.
However, the DX-RF method only needs 11 features, while the
mRMR-RF method needs 76 features.

3.4. Comparison of the Prediction Performance with Different
Methods on the Independent Set. To determine whether the
11 top-ranked features’ set contributes to the prediction of
driver mutations, we test independent set between DX-
RF and Tan et al’s method and construct four classifiers,
called DX-SVMLight, DX-LibSVM, DX-RF, and mRMR-
RE, respectively. Table 3 shows that the results on the three
datasets including TP53 + neutral, EGFR + neutral, and Cos-
mic2plus + neutral. Four classifiers can identify all TP53 and
EGFR driver mutations (recall: 100%). Particularly, on the
Cosmic2plus dataset, DX-SVMLight can identify 940 driver
mutations, DX-LibSVM can identify 963 driver mutations,
mRMR-RF can predict 902 driver mutations, and DX-RF
predicts 892, but DX-RF method gets higher precision than
DX-LibSVM, (59.91% versus 51.83%) and almost the same as
DX-SVMLight. DX-RF predicts 3942 passenger mutations,
which is higher than DX-SVMLight (with 3888 passenger
mutations), DX-LibSVM (with 3644 passenger mutations),
and mRMR-RF (with 3919 passenger mutations).

We know that false positive should be avoided. In the
experiment, DX-SVMLight (651 false driver mutations), DX-
LibSVM (895 false driver mutations), and mRMR-RF (620
false driver mutations) all got high FP (false positive). DX-RF
method only got 597 false driver mutations. Table 4 gives the
detailed information based on the four classifiers on the three
datasets. From Tables 3 and 4, we can conclude that DX-RF is
more reliable than DX-SVMLight, DX-LibSVM, and mRMR-
RF according to the results of three independent sets.
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TaBLE 2: The performance of two classifiers on the training dataset.
Method Precision Recall F-measure Accuracy MCC ROC area
DX-RF 0.939 0.8135 0.8717 0.88028 0.7674 0.9353
Variance 0.003 0.0022 0.0015 0.0014 0.003 0.0014
mRMR-RF 0.9277 0.8294 0.8758 0.8824 0.7691 0.9429
Variance 0.0026 0.0044 0.0022 0.0018 0.0034 0.0013
TABLE 3: Performance of predicting on three test datasets (TP53, EGFR, and Cosmic2plus).
Method Test set Accuracy Recall Precision F-measure MCC
TP53 + neutral 88.86 100 62.4 76.85 0.734
mRMR-RF EGEFR + neutral 86.68 100 15.88 2741 0.3702
Cosmic2plus + neutral 85.3 81.04 59.26 68.46 0.6041
TP53 + neutral 83.93 100 53.48 69.69 0.6553
DX-LibSVM EGFR + neutral 80.78 100 11.56 20.73 0.3047
Cosmic2plus + neutral 81.51 86.52 51.83 64.83 0.5655
TP53 + neutral 88.31 100 61.25 75.97 0.7243
DX-SVMLight EGEFR + neutral 86.02 100 15.23 26.44 0.3612
Cosmic2plus + neutral 85.42 84.46 59.08 69.53 0.6199
TP53 + neutral 89.28 100 63.28 77.51 0.7414
DX-RF EGEFR + neutral 87.18 100 16.39 28.16 0.3772
Cosmic2plus + neutral 85.53 80.14 59.91 68.56 0.6048
TABLE 4: The detailed information of the four classifiers.
Method Dataset TP FP N FN
TP53 1029 620 3919 0
mRMR-RF EGFR 17 620 3919 0
Cosmic2plus 902 620 3919 211
TP53 1029 651 3888 0
DX-SVMLight EGFR 117 651 3888 0
Cosmic2plus 940 651 3888 173
TP53 1029 895 3644 0
DX-LibSVM EGFR 117 895 3644 0
Cosmic2plus 963 895 3644 150
TP53 1029 597 3942 0
DX-RF EGFR 117 597 3942 0
Cosmic2plus 892 597 3942 221

4. Conclusion

In this study, we propose a novel feature extraction for identi-
tying driver mutations. The model was constructed by the
optimal features set with rotation forest. The 5-fold CV exper-
iments are performed on the train dataset and obtain high
prediction performance with 93.9% precision and 81.35%
recall when the 11 top-ranked features are used. On the
independent set of missense mutations, the DX-RF got higher
89.28%, 87.18%, and 85.53% accuracy than the other methods
on the TP53, EGFR, and Cosmic2plus, respectively.
Although our work got the best performance, further
improvements are both needful and possible. In the future,
on the one hand, we will exploit more correlation features
to describe the difference between driver mutations and

passenger mutations. On the other hand, a new fast algorithm
will be considered for driver mutations prediction.
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