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Abstract

To identify genetic loci influencing bone accrual, we performed a genome-wide association scan for total-body bone
mineral density (TB-BMD) variation in 2,660 children of different ethnicities. We discovered variants in 7q31.31 associated
with BMD measurements, with the lowest P = 4.1610211 observed for rs917727 with minor allele frequency of 0.37. We
sought replication for all SNPs located 6500 kb from rs917727 in 11,052 additional individuals from five independent
studies including children and adults, together with de novo genotyping of rs3801387 (in perfect linkage disequilibrium
(LD) with rs917727) in 1,014 mothers of children from the discovery cohort. The top signal mapping in the surroundings
of WNT16 was replicated across studies with a meta-analysis P = 2.6610231 and an effect size explaining between 0.6%–
1.8% of TB-BMD variance. Conditional analyses on this signal revealed a secondary signal for total body BMD
(P = 1.42610210) for rs4609139 and mapping to C7orf58. We also examined the genomic region for association with skull
BMD to test if the associations were independent of skeletal loading. We identified two signals influencing skull BMD
variation, including rs917727 (P = 1.9610216) and rs7801723 (P = 8.9610228), also mapping to C7orf58 (r2 = 0.50 with
rs4609139). Wnt16 knockout (KO) mice with reduced total body BMD and gene expression profiles in human bone
biopsies support a role of C7orf58 and WNT16 on the BMD phenotypes observed at the human population level. In
summary, we detected two independent signals influencing total body and skull BMD variation in children and adults,
thus demonstrating the presence of allelic heterogeneity at the WNT16 locus. One of the skull BMD signals mapping to
C7orf58 is mostly driven by children, suggesting temporal determination on peak bone mass acquisition. Our life-course
approach postulates that these genetic effects influencing peak bone mass accrual may impact the risk of osteoporosis
later in life.
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Introduction

Roughly 30 to 50% of women and 15 to 30% of men

experience an osteoporosis-related fracture during their lifetime

[1]. In adults, bone mineral density (BMD) measured at skeletal

sites where osteoporotic fractures occur more frequently (i.e.,

lumbar spine, hip and forearm) is used for the diagnosis of

osteoporosis and assessment of fracture risk. BMD measured at a

given point in time is the result of peak-bone mass acquisition and

subsequent bone loss in later life.

Due to the rapid changes in bone area in early life, the total

body measurement (less head) is the preferred measurement to

evaluate bone health in children [2]. The total body BMD

measurement (in both children and adults) incorporates compo-

nents of both cortical (,80%) and to a lesser extent trabecular

(,20%) bone [3]. Moreover, it is likely that the genes underlying

skeletal growth and bone loss differ in importance across the

lifespan and can act in a site specific manner [4–6]. Peak bone

mass is an important determinant of the risk of osteoporosis later

in life [7,8]. Early identification of individuals prone to low peak

BMD may allow implementing strategies (interventions) which can

delay the onset of osteoporosis.

From a genetic perspective, the discovery of loci influencing

peak bone mass should be based on younger populations to avoid

the noise introduced by bone loss later in life. A relatively recent

Genome Wide Association Study (GWAS) in native British

children successfully identified an association between total body

derived BMD and variants in the osteoblast transcription factor

gene Osterix [9], an early acting developmental gene shown to

influence peak bone mass accrual but also BMD in adults [10,11] .

The purpose of this study was to identify genetic variants

associated with total body BMD (TB-BMD) in children, thus

targeting variants involved in bone accrual. We ran a GWAS on

children from the multiethnic Generation R Study and then

replicated our findings in five additional cohorts including

Northern European individuals covering different age groups

ranging from children to elderly adults, allowing any life-course

effect of the discovered variants to be evaluated.

Results

Association with total-body BMD in the discovery cohort
To search for loci influencing total-body BMD variation we

performed genome-wide association analysis in a subset of 2,660

children from the Generation R Study with DXA scans and

GWAS data. The Generation R Study is a population-based

multiethnic birth cohort currently assessing children at an average

age of 6.1 (SD 0.28) years. Table S1 shows population

characteristics of these children overall and stratified by ethnicity.

To increase the genome coverage of common variants we imputed

genotypes for 3,021,329 SNPs in reference to the combined CEU,

CHB/JPT and YRI HapMap Phase II panels using MACH/

minimac software taking into account the admixed nature of the

Generation R population [12]. The GWAS for TB-BMD in these

individuals adjusted for age, gender, weight and 20 principal

components, showed appropriate control for population structure

with genomic inflation factors (l) approaching unity (Figure 1A),

and revealed a genome-wide significant association (lowest

P = 4.1610211 for rs917727) mapping to the 7q.31 locus

(Figure 1B).

Replication of the 7q31.31 association signal
We sought replication of 721 SNPs spanning the region

comprised by +/2500 kb from the top associated SNP

(rs917727). We did this across five populations with total body

DXA scans and GWAS data including: the Avon Longitudinal Study

of Parents and Children (ALSPAC), the Gothenburg Osteoporosis and

Obesity Determinants (GOOD) and the Rotterdam Study (RS-I, RS-

II and RS-III) cohorts. These replication cohorts were selected to

cover a wide spectrum of age groups to assess the genetic

association with total body BMD variation throughout different

life periods (Figure 2A) comprising: ALSPAC children (n = 5,334;

mean age 9.9 years), GOOD young adults (n = 938; mean age 18.9

years) and a set of individuals over age 45 years RS-III (n = 1,594;

mean age 56.1 years), RS-II (n = 750; mean 67.2 years); and RS-I,

(n = 2,436, mean age 75.3 years). In addition, a sample of young

women of Northern European descent (mothers of the Generation

R participants) lacking GWAS scans, MoGENR, (n = 1,014; mean

age 38 years) were de-novo genotyped for rs3801387, a perfect

proxy (r2 = 1, based on the Hapmap phase II-CEU panel) of the

top associated SNP. Detailed population characteristics of these

cohorts can be found in Table S2. From the 721 SNPs used in the

meta-analysis 20 surpassed the genome-wide significant threshold

(Table 1) whilst a further 22 were suggestive of association

(P,161025). These SNPs had a minor allele frequency (MAF)

ranging between 0.23–0.30 across studies (Table 1). The top

associated SNP was rs917727 (P = 1.28610227 and P = 2.6610231

when including Generation R mothers), which had a combined

effect of 0.16 SD increment per copy of the minor allele

(Figure 2B). The effect of the rs917727 explained on average
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0.9% of the phenotypic variance in standardized BMD and had no

significant evidence for statistical heterogeneity across the meta-

analyzed cohorts (I2 = 17%, P = 0.306). The GWAS signal

mapped to a 66.3 Kb region of high LD (r2.0.8) between the

FAM3C and WNT16 genes (Figure 3A).

Conditional analyses for secondary signals
To assess the presence of allelic heterogeneity at the locus we

carried out a conditional analysis conditioning on the top signal.

After meta-analysis we identified a secondary independent signal

mapping to C7orf58 (Figure 3B) including 67 SNPs surpassing

(P,561028) genome-wide significant level (Table S3). In general,

most of these 67 SNPs were in high LD with each other (r2: 0.80–

1.00, based on the Hapmap phase II-CEU panel), displayed

moderate heterogeneity across cohorts (I2 between 11 and 47%)

and had smaller effect sizes (standardized SD 20.067 to 20.081)

as compared to those observed for the main signal. The lead SNP

rs4609139 associated at P = 1.42610210 (Figure S1) had an

average MAF of 0.35 across studies and a combined effect of

20.08 BMD standard deviations (SE:0.0126) per copy of the

minor allele, explaining on average 0.2% of the phenotypic

variance in standardized BMD.

Evaluation of covariates
In the discovery cohort we observed prominent effects of the

covariates on the SNP-phenotype relationships. To illustrate this

we present beta estimates as standardized coefficients from null-

intercept centered models in Table S4 (T-S4). As expected, lack of

correction for principal components of the sex- and age- adjusted

model (Model 0 in T-S4 and Figure 1A) generated important

inflation of the test statistic, which is severely reduced by inclusion

of twenty principal components (Model 1 in T-S4 and Figure 1A).

Inclusion of weight in the sex-, age- and PCs- corrected model

(Final Model in T-S4 and Figure 1A) increased the significance of

the putative signal by reducing the standard error of the SNP effect

estimate (from 0.030 to 0.022). Such reduction of the error

variance led to genome-wide significance after weight correction.

Weight is an important determinant of peak bone mass accrual

related to both loading and size effects as illustrated by the positive

relationship with total body BMD also evident across our SNP-

Phenotype models (Table S4).

Association with skull BMD
The impact of weight correction on the standard errors of the

association led us to hypothesize that, at least in children, the effect

Author Summary

Genetic investigations on bone mineral density (BMD)
variation in children allow the identification of factors
determining peak bone mass and their influence on
developing osteoporosis later in life. We ran a genome-
wide association study (GWAS) for total body BMD based
on 2,660 children of different ethnic backgrounds,
followed by replication in an additional 12,066 individuals
comprising children, young adults, and elderly popula-
tions. Our GWAS meta-analysis identified two independent
signals in the 7q31.31 locus, arising from SNPs in the
vicinity of WNT16, FAM3C, and C7orf58. These variants were
also associated with skull BMD, a skeletal trait with much
less environmental influence for which one of the signals
displayed age-specific effects. Integration of functional
studies in a Wnt16 knockout mouse model and gene
expression profiles in human bone tissue provided
additional evidence that WNT16 and C7orf58 underlie the
described associations. All together our findings demon-
strate the relevance of these factors for bone biology, the
attainment of peak bone mass, and their likely impact on
bone fragility later in life.

Figure 1. Genome-wide association of TB-BMD in the discovery cohort. A. Q-Q plot showing the inflation of the test statistics when
correction for data structure is not applied (green dots) and the loss of power when no weight correction is applied (red dots) in comparison with the
applied model (black dots) and B. Manhattan Plot of the genome wide association analysis of TB-BMD in the Generation R (discovery) cohort of model
correcting by age, gender and body weight.
doi:10.1371/journal.pgen.1002718.g001
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of variants in the WNT16 region on total-body BMD was

independent of skeletal loading (of which body weight is a proxy).

For this reason, we analyzed the 721 SNPs of the same genomic

region in relation to skull BMD across all five cohorts with GWAS

data and total body BMD (without Generation R mothers). Skull

BMD measured by the total body DXA scan constitutes an

independent measurement in children since the head region is

excluded from the total body BMD assessment. This is done given

the large variation in density and area inflicted by the skull on the

head region, which is particularly evident in paediatric populations

[13]. The head DXA region is suitable to evaluate the

relationships with skeletal loading considering that its direct

influence on the mineralization process of the skull is negligible.

Despite being a skeletal region composed of laminar bones, the

proportion of mostly cortical (95% for the inner and outer layers)

but also trabecular (inner lamella) bone in the skull is similarly high

to that of the overall skeleton (80% cortical) as compared to other

skeletal sites. In addition, the BMD of the skull is subject to the

same patterns of peak bone mass accrual and decrease with aging

observed across the lifetime (Figure 4A). Since, as expected, weight

was not a significant covariate in the analysis of skull BMD

(P = 0.09) we performed the meta-analysis using a sex- age-,

height- and PCs-corrected model across the five cohorts with

GWAS data. The strongest association signal with skull BMD

mapped to C7orf58 (the gene underlying the secondary signal of

TB-BMD). The most significantly associated SNP was rs7801723

with MAF between 0.33 and 0.39 across cohorts and in moderate

LD (r2 = 0.56) with rs4609139 (secondary signal in TB-BMD). The

combined effect of rs7801723 was 20.14 BMD standard

deviations (SE:0.012) per copy of the minor allele

(P = 8.9610228) showing a high heterogeneity I2 of 60.7% and

Phet = 0.03 (Figure 4B). Moreover, we identified 147 variants in the

7q31.31 locus achieving genome-wide significance (Table S5) and

suggesting the existence of two independent signals (Figure 5) in

the regional meta-analysis of skull BMD. The rs917727 SNP

(primary signal of total body BMD) was also associated at genome-

wide significant level (P = 1.9610216) with skull BMD with an

effect estimate of 0.12 BMD standard deviations (SE:0.014) per

copy of the minor allele and no evidence for significant

heterogeneity (I2 = 0%).

The heterogeneity at rs7801723 appeared to be driven by

different effects in younger and older populations (Figure 4B). For

this reason, we stratified the analysis according to whether

individuals within the cohorts had achieved total skeletal

maturation (RS-I, RS-II, RS-III) or were still in the process of

peak bone accrual (GOOD, ALSPAC, GEN-R). The rs7801723

signal seemed to be strongest in the younger populations

(B = 20.16; P = 2.06610227) since the effect was considerably

weaker in older populations (B = 20.08; P = 2.761024), though

differences in power due to lower sample size may also play a role

(Figure S2). Meta-regression across studies showed a significant

relation between mean age and absolute effect sizes observed for

rs7801723 (Figure S3) on skull BMD (Betaage meta-regres-

sion = 0.0015; P = 0.006) but not on total BMD (Betaage meta-

regression = 0.0008; P = 0.12). In contrast, the effect of rs917727

on skull BMD seems to be uniform across older (B = 0.14;

P = 4.1661029) and younger (B = 0.10; P = 4.2861029) popula-

tions, displaying no evidence of effect heterogeneity nor a

significant relation with the mean age across studies (Betaage

meta-regression = 20.0006; P = 0.19). Similarly, the effect size of

rs917727 on total body BMD was not related to the mean age of

the studies (Betaage meta-regression = 20.0004; P = 0.57).

Functional evaluation of the 7q31.31 locus
The effect of variants from the 7q31.31 locus on both total body

and skull BMD cannot be unequivocally attributed to any of the

closest three genes in the GWAS signal region (WNT16, FAM3C

and C7orf58). This is also complicated by the high LD across the

region. Based on current knowledge, WNT16 is the best candidate

at the locus considering that it belongs to the Wnt family of

proteins. The Wnt signaling pathway plays ubiquitous key roles in

fundamental biological processes, including those critical for bone

biology and specifically for bone formation [14,15]. FAM3C is a

widely expressed gene (including in osteoblasts) which belongs to a

cytokine-like gene family without homology to any known

cytokines [16]. Minimal information exits about the functional

Figure 2. TB-BMD across cohorts and meta-analysis. A. Mean Total Body BMD in each cohort by gender showing the highest BMD levels in
young adults and overall higher levels in male than in female participants. B. Forest plot of the association of TB-BMD and rs917727. Results are
reported per copy of the G-allele (MAF = 0.27).
doi:10.1371/journal.pgen.1002718.g002

Variants in WNT16 Locus and Peak Bone Mass Accrual

PLoS Genetics | www.plosgenetics.org 4 July 2012 | Volume 8 | Issue 7 | e1002718



Variants in WNT16 Locus and Peak Bone Mass Accrual

PLoS Genetics | www.plosgenetics.org 5 July 2012 | Volume 8 | Issue 7 | e1002718



aspects of C7orf58. Considering the hypothesis-free nature of our

GWAS approach we cannot exclude the possibility that any of

these genes may code for proteins involved in BMD regulation.

Wnt16 and Fam3c KO mouse models
Further evidence implicating WNT16 as the gene underlying

these associations with total body BMD at the population level is

provided by functional studies on Wnt16 knockout (KO) mice

generated at Lexicon Pharmaceuticals (Table 2). These KO mice

have reduced total body BMD at 24 weeks of age, resulting from

both reduced total body bone mineral content (BMC) and bone

area. BMC and aBMD measured at the spine (a skeletal site more

strongly influenced by trabecular bone than total body or femur

measurements) were slightly reduced in KO mice but this

reduction did not achieve statistical significance. Male and female

knockout mice appeared healthy with no discernible morpholog-

ical or growth defects, and normal femur length, body weight and

body composition. We also examined mice from three Fam3c KO

models testing for differences across DXA phenotypes with wild

type animals. We failed to observe any significant differences

across the skeletal phenotypes in each independent Fam3c KO

strategy (Table S6). Even though these data suggest Fam3c does not

influence bone mass in mice, the possibility of a false negative due

to power limitations cannot be excluded.

Gene transcript–phenotype correlations
We examined the correlation of gene expression transcript levels

derived from iliac bone crest biopsies in relation to BMD levels in

a distinct cohort of 78 unrelated-Norwegian women with total

body scans (of which 51% have osteoporosis) and who are part of a

set (n = 84) described in detail previously [17]. The investigated

region comprised +/2500 Kb of rs917727 and contained seven

different genes including TSPAN12 (3 transcripts), ING3 (4

transcripts), C7orf58 (2 transcripts), WNT16 (2 transcripts), FAM3C

(3 transcripts), PTPRZ1 (1 transcript) and one represented by the

Affymetrix probe with ID 217206_at lacking annotation. We only

identified significant correlations with BMD measurements of the

donors in transcripts from C7orf58 and WNT16 (Table 3).

Expression levels in one of the transcripts in WNT16

(224022_x_at) was significantly associated with BMD measured

at several skeletal sites including the total body, skull, legs, total hip

and lumbar spine (L1–L4 vertebrae). The correlation was positive

and of similar magnitude across sites, ranging between 0.25 and

0.31, indicating that higher expression of this gene is correlated

with higher BMD, results which are in line with the Wnt16 KO

mice data. Significant correlation with total body lean mass was

also observed (r2 = 0.31) for this transcript. This suggests a

pleiotropic effect on muscle considering that correction for BMI

did not importantly influence the correlation of the transcript with

total body BMD. There is even a stronger (inverse) correlation of

total body and skull BMD with expression levels of one of the

C7orf58 transcripts (228728_at), even approaching a correlation of

20.50 with total body BMD. This suggests high C7orf58

expression levels of this transcript are related to lower BMD.

This transcript was inversely correlated with body weight as well,

but still maintained a strong (inverse) correlation (r2 = 20.45) with

skull BMD (which as discussed above, is not readily affected by

body weight) and also with BMI-adjusted total body BMD

(r2 = 20.42). In addition, levels of both C7orf58 transcripts were

significantly correlated with age, which further supports the age-

specific effects seen for the GWAS variants mapping to C7orf58.

Discussion

In this study we carried out a genome-wide association scan of

total body BMD in 2,660 children with regional replication of the

top hit in 12,066 children and adults from six additional studies,

including de novo genotyping of a sample of 1,014 Northwestern

European pre-menopausal women, mothers of the children from

the discovery cohort. We identified at least two independent

signals (primary rs917727 and secondary rs4609139) associated

with total body BMD mapping to the 7q31.31 locus harboring

(among others) two genes and an open reading frame sequence

including WNT16, FAM3C and C7orf58. To examine whether the

observed associations were independent of skeletal loading we

tested variants in the 7q31.31 region for association with skull

BMD, a non-weight bearing skeletal site. We found the rs917727

influencing skull BMD and an even stronger signal arising from

rs7801723 (in partial LD with rs4609139) which unlike the total

body signals was largely driven by the younger (children)

populations. A DXA-based assessment of the Wnt16 KO mice

showed a lower total body BMD phenotype which is compatible

with an effect of WNT16 variants playing a role on total body

BMD at the human population level. Moreover, the analysis of

gene transcript expression profiles supports the involvement of

variants from both WNT16 and C7orf58. Together, these findings

postulate that the WNT16/C7orf58 locus contains complex

patterns of genetic variation, which play an important role in

peak bone mass accrual and may likely impact BMD determina-

tion at later life.

Genetic variants in the region mapping to FAM3C as the closest

gene, have been previously reported in the literature as associated

with speed of sound as analyzed by quantitative ultrasound in

radius and calcaneous in a Korean population [18] and in a recent

follow-up study the same SNPs were genotyped de novo and were

found to be associated with bone mineral density at different sites

in individuals of European descent [19]. Nonetheless, to our

knowledge this is the first time this locus is associated with total

body BMD in children. Total body BMD measured in children

corresponds only to the amount of bone accrued up to that point

in time; consequently the variants described here have a definite

role in the genetic determination of bone acquisition. Further-

more, considering the previously reported association in East

Asians, the multiethnic background of our discovery population

and the lack of heterogeneity in the total-body signal, one can

conclude the effect of these variants is present across populations

of different genetic background. To assess this in more detail we

examined in the multiethnic Generation R discovery cohort the

top associated SNPs of the meta-analysis across clusters of different

ethnic backgrounds (Table S7). We confirmed that the effect of the

top associated variants was not confined to individuals of

European descent. Effect directions and magnitude of the markers

were largely similar across groups, despite some evident differences

in linkage disequilibrium patterns between markers.

Without additional functional evaluation it is not feasible to

undisputedly distinguish which genes in the 7q31.31 region could

be underlying the observed GWAS signals. The analysis of gene

expression profiles provides supporting evidence for the involve-

Figure 3. Association plots for TB-BMD. A. SNP association plot for TB-BMD-associated region of Chromosome 7q31.31. B. SNP association plot
for TB-BMD-associated region of Chromosome 7q31.31 after conditioning on rs3801382. Genetic coordinates are as per Hapmap phase II-CEU. *Data
from the mothers of Generation R is not included.
doi:10.1371/journal.pgen.1002718.g003
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ment of variants from WNT16 and C7orf58, while not for FAM3C

in relation to total body BMD and skull BMD. Similarly, the lower

likelihood of an effect arising from FAM3C is supported by the

absence of an abnormal skeletal phenotype in the Fam3c KO mice,

although we cannot exclude the possibility that variants resulting

in gain of function of Fam3c affect bone. In contrast, functional

evidence of the involvement of WNT16 is well supported by the

analysis of expression profiles and the observation of reduced

BMD in the Wnt16 KO mice. The WNT16 human/mouse

sequence alignment shows 93% identity favoring the plausibility of

Figure 4. Skull-BMD across cohorts and meta-analysis. A. Gender-specific mean Skull BMD for each cohort. B. Forrest plot of the association of
skull BMD with rs7801723. The results are reported per copy of the T-allele (MAF = 0.37).
doi:10.1371/journal.pgen.1002718.g004

Figure 5. Association plots for skull-BMD. SNP association plot for the skull BMD-associated region in chromosome 7q31.31, based on 13,712
individuals from the five different cohorts with GWAS information.
doi:10.1371/journal.pgen.1002718.g005
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similarity in phenotypic effects across both species. Even though

the Wnt16 KO mice had reductions of both BMC (strongest) and

bone area, in humans we found no indication of an effect on bone

size (area) in either children or adults. This is consistent with the

lack of any observed association between common genetic

variation in this region and adult body height as assessed in a

sufficiently powered GWAS [20]. We can infer a prominent effect

of WNT16 on cortical bone in humans considering the close

resemblance of the cortical phenotype observed in the Wnt16 KO

mice to that reported in humans by Zheng et al. based on pQCT

(accompanying submission). This prominent genetic effect on

cortical bone is also manifested by the associations of WNT16

variants with BMD traits measured at skeletal sites rich in cortical

bone including the total body, the skull and the forearm as also

shown by Zheng et al. (accompanying submission). In addition,

Zheng et al. show that this effect on cortical bone influences bone

strength in mice and fracture risk in humans. Nevertheless, the

KO mouse data should be interpreted with caution since our

functional validation sought the confirmation of the KO strategy

but did not assess the integrity of the surrounding genomic region

(i.e. intact FAM3C and/or C7orf58 function). Further, total body

BMD also involves components of trabecular bone which, together

with the associations previously reported with ultrasound of the

heel [18] and lumbar spine [19] (sites of rich trabecular content),

do not fully exclude an effect of WNT16 (or FAM3C) variants on

this type of bone.

Both the secondary signal unveiled by our total body BMD GWAS

and the strongest signal in the skull BMD GWAS analyses map to an

open reading frame sequence (C7orf58) in the region. The effect

size for rs4609139 on total body BMD (mapping to C7orf58) was

up to 50% lower in magnitude than that of rs917727 (mapping in

the vicinity of WNT16). In contrast, the associations with skull

BMD were stronger for variants from the C7orf58 signal than for

those arising from WNT16. Further study of the mechanisms by

which C7orf58 exerts its role either independently or together with

WNT16 is warranted.

Several aspects derived from the analysis of skull BMD merit

further discussion. Skull BMD is minimally influenced by

loading, muscular activity, and in general less masked by

environmental influences. From this perspective, fine-tuned

mechanosensing mechanisms involved in the regulation of bone

metabolism can be better dissected examining skull BMD. The

skull BMD associations arising from the C7orf58 signal are

substantially more prominent in the younger populations. Such

age dependency was not seen for the signals arising from

WNT16, which also shows effects already evident at young age,

but that do persist through adulthood until very old age, as

corroborated by the replication studies in the older population

cohorts. Also, from the strong associations with skull BMD we

can infer that these effects likely to be arising from WNT16 and

C7orf58 are not mediated by a mechanosensing response to

skeletal loading. A recent study examining expression patterns at

different skeletal sites in rats has shown differential gene

expression patterns between the skull, the limbs and the total

body, which likely reflects different responses to loading and

mechanosensing between skeletal sites [21]. In the latter study,

WNT16 showed opposite expression patterns in arms than in

skull. While in rats only one isoform is active, in humans

different WNT16 isoforms could play distinct regulatory roles on

skeletal development and/or metabolism [22]. Alternatively,

modulation by other signaling factors could also modify the (up-/

down-) streaming effects of WNT16. Recently, it has been shown

that WNT16 influences hematopoietic stem cell differentiation

via non-canonical Wnt signaling in zebra fish [23]. Whether this

is also the case in bone biology remains to be confirmed, since its

effect through canonical (beta-catenin mediated) activation has

already been established in cartilage [24].

The allelic heterogeneity demonstrated by the conditional

analysis on total body BMD is indicative of multiple (at least 2)

causal variants in the region within and across phenotypes. The

associations with TB-BMD observed for the top hits reported in

the accompanying submission by Zheng et al. (namely rs2707466

for pQCT, rs2536189 for forearm BMD and rs7776725 for wrist

fracture) are affected differently by conditional analysis on the top

signal. As predicted by the complete linkage disequilibrium

between rs917727 (top total body BMD SNP) and rs777625 (top

wrist fracture SNP associated with TB-BMD with B = 0.156;

P = 2.36610227), after conditioning, the effect of rs777625 on TB-

BMD is largely gone (B = 20.0013; P = 0.93). In contrast, the

effects on TB-BMD of rs2536189 (forearm BMD from B = 0.135

Table 2. Summary statistics for densitometric properties of control (+/+) and Wnt16 deficient (2/2) mice.

Parameter Male WT Mice
Male Wnt16
KO Mice Statistics Female WT Mice

Female Wnt16
KO Mice Statistics

Number of mice 9 12 24 16

Body Weight (grams) 36.461.8 38.561.2 D= q5%, P = 0.42 28.260.8 26.861.2 D= Q5%, P = 0.30

Lean Body Mass (grams) 27.060.9 27.960.7 D= q4%, P = 0.42 20.560.4 19.660.6 D= Q4%, P = 0.20

Body Fat (percent) 23.162.1 24.961.4 D= q8%, P = 0.48 24.261.2 23.261.6 D= Q4%, P = 0.63

Femur Length (mm) 16.360.2 16.260.2 D= q1%, P = 0.58 16.260.1 16.160.1 D= 0%, P = 0.86

Body aBMD (mg/cm2) 56.961.1 54.860.7 D= Q4%, P = 0.11 53.960.6 48.760.6 D = Q10%, P,0.001

Body Bone Area (cm2) 9.460.2 8.660.3 D = Q9%, P = 0.03 8.960.2 8.160.1 D = Q8%, P = 0.002

Body BMC (mg) 532616 470618 D = Q12%, P = 0.02 479611 396610 D = Q17%, P,0.001

Femur aBMD (mg/cm2) 89.463.3 83.661.5 D= Q7%, P = 0.10 78.561.3 62.861.2 D = Q20%, P,0.001

Femur Bone Area (cm2) 0.3660.01 0.3460.01 D= Q7%, P = 0.13 0.3560.01 0.3160.01 D = Q13%, P,0.001

Femur BMC (mg) 32.661.8 28.061.0 D = Q17%, P = 0.03 27.860.6 19.560.7 D = Q30%, P,0.001

Spine aBMD (mg/cm2) 61.961.5 58.863.7 D= Q5%, P = 0.50 62.861.8 58.261.6 D= Q7%, P = 0.08

Spine BMC (mg) 25.860.9 23.262.0 D= Q10%, P = 0.29 26.360.9 24.360.9 D= Q8%, P = 0.16

Results provided as [mean +/2 SEM].
doi:10.1371/journal.pgen.1002718.t002
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P = 3.06610227 to B = 0.042; P = 6.761024) and rs2707466

(pQCT from B = 0.133 P = 5.13610225 to B = 0.043

P = 6.861024) are not completely explained by their moderate

LD (with r2 values between 0.51 and 0.55) with the top associated

SNP of the TB-BMD GWAS signal.

In addition to the top associated pQCT SNP (rs2707466), there

is yet another non-synonymous variant (rs2908004) annotated

within the coding region of WNT16 which is genome wide

significant in our meta-analysis of total body BMD. After

conditional analysis the effect sizes of these non-synonymous

SNPs show considerable reduction suggesting there are not likely

causal to the stronger top GWAS signal. Nevertheless, the residual

effect is still significant after conditioning (indicating independence

and) implying a weaker effect on TB-BMD or (more likely) partial

linkage disequilibrium with yet other causal variants. Such

relationships between genetic variants can follow diverse types of

complex relationships as recently described for loci displaying

allelic heterogeneity [25] for which follow-up investigations are

warranted to elucidate the definitive involvement of the genes in

this 7q31.31 region.

Finally, this region harbors one or more genes revealing critical

effects on bone biology. While we have shown that genetic variants

in this locus influence total body BMD variation in children of

multiple ethnic background, the relevance of our findings are

manifested by the persistence and consistency of the associations

observed later in life. Further, the prominent effect on total body

BMD we describe agrees with associations observed in adults

across diverse skeletal traits [18,19] (see also Zheng et al.

accompanying submission), but most importantly, by their effect

on risk of fracture (see also Zheng et al. accompanying

submission), the most deleterious consequence of osteoporosis.

In summary, this study detected at least two independent

GWAS signals influencing total body and skull BMD variation in

children, thus confirming the presence of allelic heterogeneity in

this WNT16 locus. In addition, we showed how the effects

observed in children are consistently replicated in adults. Specific

genetic determination of peak bone mass (rather than bone loss

later in life) is suggested by more prominent effects of some

markers in children than in adults. These genetic effects likely

influence the attainment of peak bone mass accrual and impact the

risk of osteoporosis and fracture later in life.

Methods

Ethics statement
All research aims and the specific measurements in the

participating studies involving human beings have been approved

by the correspondent Medical Ethical Committee. Written

informed consent was provided by all subjects or their parents in

the case of children. Mouse studies were performed in accordance

with institutional and regulatory guidelines for animal care and use

at Lexicon Pharmaceuticals.

Subjects
Generation R Study. The Generation R Study is a

prospective cohort study in which 9,778 pregnant women living

in Rotterdam and with delivery date from April 2002 until January

2006 were enrolled. Details of study design and data collection can

be found elsewhere [26]. The current study comprised 2,660

children (mean age 6.16, SD = 0.39 years), of which 1,511 are of

Dutch Northern European origin, who had both GWAS and

DXA-based BMD measurements. DXA measurements were

recorded on children visiting a unique research centre at around

5 years old accompanied by their mothers. All research aims and

the specific measurements in the Generation R Study have been

approved by the Medical Ethical Committee of the Erasmus

Medical Center, Rotterdam and written informed consent was

provided by all parents.

Avon Longitudinal Study of Parents and Children

(ALSPAC). In-silico replication of the GWAS signals was

initially pursued in The Avon Longitudinal Study of Parents and

Children (ALSPAC). This is a longitudinal population-based birth

cohort that recruited pregnant women residing in Avon, UK, with

an expected delivery date between 1st April 1991 and 31st

December 1992. This cohort is described in detail on the website

(http://www.alspac.bris.ac.uk) and elsewhere [27,28]. Total body

BMD and genome-wide SNP data were available for 5,334

unrelated children (mean age = 9.9, SD = 0.32 years) all of

Northern-European descent. Ethical approval was obtained from

the ALSPAC Law and Ethics committee and relevant local ethics

committees, and written informed consent was provided by all

parents.

The Gothenburg Osteoporosis and Obesity Determinants

(GOOD). The GOOD Study is a population-based cohort in

which male subjects from between 18 and 20 years of age in the

Gothenburg area in Sweden were randomly selected using

national population registers and invited to participate in this

initiative by phone. From the selected candidates 1,068 agreed to

participate providing oral and written informed consent [29,30].

The GOOD Study was approved by the local ethics committee at

Gothenburg University. A subset of 938 individuals from this study

with DXA measurements and GWAS data were included in this

analysis.

Rotterdam Study (RS I, II, and III). Additional in-silico

replication in elderly adults was pursued in participants of the

Rotterdam Study, a large prospective population-based cohort

study of white subjects aged 45 years and older living in the

Ommoord District of Rotterdam, The Netherlands who are

studied for the occurrence of chronic diseases and disability [31].

Subjects were derived from the three different cohorts of the

Rotterdam Study including RS-I (n = 2,436), RS-II (n = 750) and

RS-III (n = 1,594) comprising individuals of Northwestern Euro-

pean Ancestry with available BMD-DXA measurements and

GWAS data. Approval of the Medical Ethics Committee of the

Erasmus University Rotterdam was obtained for the three cohorts

of the Rotterdam Study. From all participants written informed

consent was acquired.

Bone mineral density measurements
Total body and Head BMD were measured in all participants

using dual-energy X-ray absorptiometry (DXA) following standard

manufacturer protocols. GE-Lunar iDXA was the devise used in

the Generation R Study while the other cohorts employed GE

Lunar (GE-Lunar Prodigy; GE Healthcare, Chalfont St Giles,

UK). Bone mineral content (BMC) was derived from the projected

bone area (BA) as BMC (mg) = BMD g/cm26BA (cm2). As

recommended by the International Society for Clinical Densitom-

etry total body less head (TBLH) was the measurement used in the

Generation R Study and ALSPAC instead of total body BMD [2].

Genotype assessment
Genotyping was performed using the Illumina HumanHap 610

QUAD microarray in The Generation R, GOOD and RS-III

cohorts while Illumina HumanHap 550 was the platform used for

ALSPAC, RS-I and RS-II cohorts. Stringent quality control of the

genotype and imputation process was performed in each study

(Table S8). Samples with gender discrepancy, excess of heterozy-

gosity or duplicates were excluded from analysis. De novo
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genotyping for the Generation R mothers was performed as part

of a GEFOS initiative at Kbiosciences for specific SNPs of interest

in the Osteoporosis field among those rs3801387.

Imputation
For the imputation in the discovery Generation R cohort, we

built a panel of reference haplotypes using HapMap phase II

(release 22, build 36) CEU, YRI and CHB/JPT data. A two-step

imputation process was performed, haplotype phasing and

genotype imputation were carried out using MACH and minimac

software, respectively. Imputation of the replication cohorts was

done using MACH v1 based on the Phase II CEU HapMap data

(release 22, build 36). Detailed descriptions of quality control and

imputation procedures are summarized in Table S8.

Statistical methods
Association between Total Body BMD and GWAS SNPs was

carried out using a regression framework adjusting for age,

gender, weight and population stratification in the Generation

R discovery cohort using MACH2QTL as implemented in

GRIMP [32]. Since this is a population-based study on

unrelated individuals of different ethnic background, 20

genomic principal components obtained after SNP quality

exclusion criteria and LD pruning were used to adjust for

population sub-structure reaching a Genomic Inflation Factor

(l) of 1. We selected the most associated SNP and SNPs located

at +/2500 kb from the top SNP for replication including all

markers with a MAF.0.01 and an r2 imputation quality score

.0.3 in all the participating studies. Additionally, rs3801387 a

proxy of the ‘top hit’ (r2 = 1 in HapMap CEU populations) was

genotyped in a subset of mothers of the Generation R Study of

Dutch Northern European background. All replication cohorts

included only individuals of North European ancestry and thus

the correction for stratification was not as astringent as for the

discovery cohort.

In the genome-wide association study, the association test of

SNPs with standardized residuals of total body (skull) BMD after

adjusting for age, gender, population stratification and weight

(height) was implemented via Mach2QTL for all cohorts.

Moreover, association in the mature adults and elderly cohorts,

in which ample ranges of age are seen (Rotterdam Studies I, II, III

and Mothers of Generation R) allowed for a non-linear

relationship between age and BMD by inclusion of a squared

term. On the conditional analysis we selected the most associated

genotyped SNP (rs3801382) and applied a regression model

including that marker besides the mentioned covariates in order to

evaluate its effect in the originally detected signal(s).

We carried out regional meta-analyses in METAL using the

minor allele from HapMap CEU genotypes as the coding allele,

and applying inverse-variance methodology assuming fixed

effects. A P value less than 561028 was considered genome-

wide significant (GWS). Heterogeneity was evaluated using

Cochran’s Q statistic and was quantified by I2. (http://www.

sph.umich.edu/csg/abecasis/Metal/). For the meta-regression

the absolute value of the effect size of the selected SNP (i.e.

rs7801723, rs917727) in each trait was regressed on mean age of

each of the six studies. These analyses were weighted by the

inverse of variance of the effect; in line with the methodology

applied for the meta-analyses.

Knockout mice
Wnt16 and Fam3c knockout (KO) mice were obtained from a

program scrutinizing targets for drug discovery at Lexicon

Pharmaceuticals. F2 hybrid littermates were derived from

C57BL/6J and 129 SvEv parental strains. The 28 knockout mice

(16 females) were generated by homologous recombination remov-

ing the first three exons of Wnt16. A three-fold strategy was used to

generate Fam3c KO mice including a gene-trap (G-T) disrupting the

intron between the first two exons of 6 mice (3 females); homologous

recombination removing the first two exons (HR#1) of 8 mice (4

females); and homologous recombination replacing the whole gene

of 8 mice (4 females) by the human gene (HR#2) resulting in loss of

function. Confirmation of the exon disruption in Wnt16 and Fam3c

(HR#1) was achieved with Southern blot hybridization analysis

while RT-PCR was used to confirm lack of gene expression of Fam3c

(G-T) in KO mice (see Zheng et al. for details). Successful disruption

of the Fam3c gene in all three KO strategies was demonstrated by a

consistent hematological phenotype (data not shown). Male and

female mice were scanned using a PIXImus DXA at 24 weeks

(Wnt16 KO comparison) and 14 weeks (Fam3c KO comparison) of

age. BMD (and body composition) measurements were obtained

from total body (excluding skull), femur and spine scans. Bone

mineral content (BMC) was derived from the projected bone area

(BA) as BMC (mg) = BMD mg/cm26BA (cm2). Student’s t-tests

were used to assess statistical significance (P,0.05) of the differences

within each sex.

Gene transcripts expression levels from trans-iliacal bone
biopsies

Gene expression profiles from all transcripts located within +/

2500 kb of the rs917727 SNP in locus 7q31.31 were analyzed

within an eQTL dataset of 78 Norwegian women, who make part of

the set published by Reppe and colleagues [17]. Of these 78 women,

40 had osteoporosis (T-score less than 22.5), 7 had osteopenia (T-

score between 22.5 and 21) and 31 were normal (T-score greater

than 21) as ascertained by the BMD measurement at the total hip

or lumbar spine (L1–L4 verterbrae). The Affymetrix HG U133 2.0

plus array was used for the expression analysis. The Affymetrix Cel

files were imported into Partek Genomics Suite (Partek Inc., St

Louis, MO, USA), and normalized using the RMA (Robust

Multichip Average) algorithm. Further normalization was done by

removing batch effects and patterns of gene expression levels due to

differences in synthesis times across samples.

Supporting Information

Figure S1 Forest plot for the genome wide association of the

rs4609139 with TB-BMD. Results after conditioning on

rs3801382, age, gender and weight. The results are reported per

copy of the T-allele (MAF = 0.328–0.356).

(TIF)

Figure S2 Skull BMD Association plots for adults and children.

A: SNP association plot for adult skull-BMD-associated region of

Chromosome 7q31. B: SNP association plot for children skull-

BMD-associated region of Chromosome 7q31. Genetic coordi-

nates are as per Hapmap phase II-CEU.

(TIF)

Figure S3 Meta-regression for TB- and Skull BMD on

rs7801723. Sample size weighted scatter plot of the absolute effect

size versus the mean age of the studies for rs780123 in relation to

A. skull and B. total body BMD.

(TIF)

Table S1 Characteristics of the participants in the complete

discovery cohort overall and by ethnicity. Characteristics of

subjects from the most numerous ethnicities defined according the

classification of Statistics Netherlands.

(PDF)
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Table S2 Characteristics of participants from the replication

cohorts.

(PDF)

Table S3 SNPs showing GWS association with TB-BMD after

conditioning by rs3801382.

(PDF)

Table S4 Evaluation of the covariates in the Generation R

Study. The reduction of SE when weight is included in the model,

allows the identification of the genetic signal mapping to 7q31,

here represented by rs917727.

(PDF)

Table S5 SNPs showing GWS association with skull BMD.

(PDF)

Table S6 Fam3c KO mouse data for each knockout strategy.

Gene trap and two types of homologous recombination: 1 and 2

(HR #1, HR #2).

(PDF)

Table S7 SNPs showing association with TB-BMD in the

discovery cohort, overall and by ethnic clustering.

(PDF)

Table S8 Information of genetic data for each of the study

cohorts. Genotyping methods, quality control of SNPs, imputation,

and statistical analysis for the genome-wide association studies.

(PDF)
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