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Increasing interest is aroused by traditional Chinese medicine (TCM) treatment of chronic hepatitis B (CHB) based on specific
TCM syndrome. As the most common CHB syndromes, spleen-stomach dampness-heat (SSDH) syndrome and liver-gallbladder
dampness-heat (LGDH) syndrome are still apt to be confused in TCM diagnosis, greatly hindering the stable exertion of TCM
effectiveness. It is urgently needed to provide objective and biological evidences for differentiation and identification of the two
significant syndromes. In this study, microRNA (miRNA) microarray analyses coupled with bioinformatics were employed for
comparative miRNA profiling of SSDH and LGDH patients. It was found that the two syndromes had both the same and different
significantly differentially expressed miRNAs (SDE-miRNAs). Commonness and specificity were also both found between their
SDE-miRNA-based bioinformatics analyses, including Hierarchical Clustering, Gene Ontology (GO), Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways, and miRNA-GO/pathway networks. Furthermore, syndrome-specific SDE-miRNAs
were identified as the potential biomarkers, including hsa-miR-1273g-3p and hsa-miR-4419b for SSDH as well as hsa-miR-129-1-
3p and hsa-miR-129-2-3p for LGDH. All these laid biological and clinical bases for classification and diagnosis of the two
significant CHB dampness-heat syndromes including SSDH and LGDH, providing more opportunities for better application of
TCM efficacy and superiority in CHB treatment.

1. Introduction

Chronic hepatitis B (CHB) is a potentially life-threatening
liver disease caused by hepatitis B virus (HBV) infection. It
can progress to cirrhosis and hepatocellular carcinoma
(HCC), leading to continuously increasing morbidity [1, 2].
It is estimated that 257 million people are living with HBV
and Ca. 887 thousand people die annually fromHBV-related
disease worldwide [3]. 7ese result in increasing healthcare
cost and socioeconomic burdens [4]. CHB always represents
a major global health challenge, and its prevention and
control remains a significant issue.

Traditional Chinese medicine (TCM), with thousands
of years of effective clinical practice, has become an im-
portant complementary and alternative medical system and
aroused increased attention [5, 6]. It has been verified that
TCM can relieve the clinical symptoms, reduce the liver
injury, and slow the disease progression of CHB patients.
[7–9]. TCM syndrome (also called “ZHENG”) is the basic
concept of TCM theory. It describes special phenotype with
comprehensive symptoms and signs of patients at a par-
ticular stage of disease [10]. 7e identification of TCM
syndrome is the key to guide the specific TCM prescription
[11, 12].
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According to the standards of TCM syndrome differ-
entiation for viral hepatitis [13], dampness-heat syndrome is
the top popular CHB syndrome. In our previous study on
CHB syndrome distribution (from 1260 CHB patients) [14],
it was also found that dampness-heat syndrome occupied the
largest proportion (46%) of the total CHB syndromes. All
these indicated the significant importance of dampness-heat
syndrome in CHB. Notably, spleen-stomach dampness-heat
(SSDH) syndrome and liver-gallbladder dampness-heat
(LGDH) syndrome are not only the most common damp-
ness-heat syndromes but also the top two CHB syndromes,
taking up 17% and 15%, respectively. However, it is still
difficult to discriminate between SSDH and LGDH syn-
dromes and apt to confuse their TCM treatments because
they have some similar symptoms (also, see Supplementary
Materials). 7us, the two dampness-heat syndromes were
focused on in this study.

Currently, the classification of TCM syndromes is still
debated [15] since the biological evidence remains lacking.
In addition, syndrome differentiation currently depends on
traditional observation, auscultation, interrogation, palpa-
tion, and the clinical experiences of TCM practitioners
[16, 17]. Such diagnosis is usually accompanied with sub-
jectivity, ambiguity, and nonrepeatability to some extent,
which greatly impedes the stable exertion of TCM effec-
tiveness and superiority [18]. 7is issue is particularly
prominent for the identification of SSDH and LGDH syn-
dromes. In traditional TCM diagnosis, SSDH and LGDH
were classified by both the common and different symptoms
(see the Supplementary Materials). Patients with SSDH
syndrome usually present some special symptoms such as
distending pain in lateral thorax, whereas LGDH patients are
usually accompanied with ventosity, distention, and fullness.
Meanwhile, SSDH and LGDH patients share the same
symptoms such as yellow and slimy fur, nausea, and yellow
urine, which may lead to doubt in their differences and
confusion in discrimination. 7us, it is urgently needed to
scientifically prove the syndrome classification and explore
objective diagnosis for SSDH and LGDH syndromes.

MicroRNAs (miRNAs) are endogenous, noncoding,
single-stranded RNAs of 19–25 nucleotides in length [19].
7ey play vital roles in regulating the global signaling
networks and pathways involved in the pathological pro-
gression of liver diseases [20]. MiRNAs are attractive as
potential biomarkers in recent years because they are specific
to various disease states and reasonably stable under various
environments [21]. Due to the advantages of high
throughput, sensitivity, and accuracy [22], miRNA micro-
array profiling is regarded as a powerful strategy for dem-
onstrating the expression levels of overall miRNAs [23]. It
has become a predictive biomarker signature for detecting
and distinguishing human diseases from healthy control
(HC) over the past decade, such as colorectal cancer [24],
chronic hepatitis C [25], and hepatocellular carcinoma [26].
Su et al. utilized circulating miRNAs to reveal the differences
between two TCM syndromes in CHB [15, 27, 28], which
inspired us to employ comparative miRNAs profiling to
differentiate between the two CHB dampness-heat syn-
dromes in this work.

We aim at biologically verifying the differentiation of
SSDH and LGDH syndromes and identifying syndrome-
specific miRNA biomarkers. Using miRNA microarray
profiling, significantly differentially expressed miRNAs
(SDE-miRNAs) of SSDH and LGDH patients were screened
out firstly. 7ese SDE-miRNAs were comparably analyzed
by bioinformatics assays including Gene Ontology (GO)
[29], Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways [30], and miRNA-GO/pathway networks [31].
7us the biological similarities and differences between
SSDH and LGDH can be dissected and proved. Quantitative
real-time polymerase chain reaction (qRT-PCR) was further
conducted to measure the level of syndrome-specific SDE-
miRNAs, so that potential diagnostic biomarkers for each
syndrome can be validated.

2. Materials and Methods

2.1. Clinical Evaluation. Participants were satisfied with
inclusion criteria including CHB diagnostic criteria of
western medicine derived from “Guidelines for Prevention
and Treatment of Chronic Hepatitis B (December 2015)”
issued by Hepatology Branch and Infectious Disease
Branch of China Medical Association. 7e diagnostic
criteria for SSDH syndromes of CHB referred to the
Consensus of Experts in TCM Diagnosis and Treatment
(2012) as well as the research results and related mono-
graphs of the National Major Project of Science and
Technology (no. 2012ZX10005001). 7e LGDH patients
were diagnosed according to the Guidelines for the Diag-
nosis and Treatment of CHB in Traditional Chinese Med-
icine (2018) issued by Hepatobiliary Diseases Professional
Committee of China Association of Traditional Chinese
Medicine. 7e detailed contents of the inclusion criteria
and exclusion criteria can also be seen in the Supple-
mentary Materials.

2.2. Patients and Blood Collection. CHB patients with SSDH
or LGDH syndromes were aged from 22 to 51 years and
came from Chengdu Public Health and Medical Center. For
both the miRNA microarray profiling and qRT-PCR ana-
lyses, peripheral blood of 15 SSDH patients, 15 LGDH
patients, and 15 HC participants were collected in an EDTA
anticoagulant tube. 7e plasma was collected from pe-
ripheral blood (4mL) following the manufacturer’s in-
structions. In brief, peripheral blood was centrifuged for
10min at 1,700 g and 4°C.7e supernatant was collected and
centrifuged for 10min at 2,000 g and 4°C. 7e supernatant
was transferred into polypropylene tube as blood plasma
sample and stored at − 80°C.

2.3. RNA Extraction and miRNA Microarray Analysis.
RNA isolation was performed on each blood plasma sample
obtained as above. Total RNA was isolated by using Trizol,
which was then followed by Qiagen miRNeasy Mini kit
(Qiagen, Germany) according to the manufacturer’s in-
structions. 7e isolated RNA was quantified with the
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spectrophotometer. 7e quality of isolated RNA was
inspected by formaldehyde gel electrophoresis.

Genome-wide microRNA microarray profiling was
performed using a human miRNA microarray platform
(Agilent, USA). In short, 200 nanogram of miRNA was
labelled using miRNA Complete Labeling and Hyb kit.
Dried samples were placed into the hybridization oven
overnight. After hybridization and washing, signals were
measured by Agilent microarray scanner (G2565CA). 7e
picture analysis and data extraction were processed with
Agilent Feature Extraction software. 7e data were nor-
malized by using Agilent Gene Spring software.

2.4. Bioinformatics Analysis. TargetScanHuman and miR-
TarBase were used for target gene prediction of the SDE-
miRNAs. Hierarchical clustering analysis was performed
with Cluster 3.0 software, which was originally written by
Michael Eisen at Stanford University. GO and signaling
pathway analysis were performed based on the DAVID
Bioinformatics Resources 6.7 and KEGG database. 7e
miRNA-target gene interactions, miRNA-GO networks and
miRNA-pathway networks were analyzed by using Cyto-
scape software.

2.5. qRT-PCR for miRNA Verification. Significantly dysre-
gulated miRNAs were validated by qRT-PCR. 7e miRNAs
were separated by using miRcute serum/plasma miRNA
extraction and separation kit (TIANGEN, China). RNA was
reverse-transcribed to cDNA by employing cDNA synthesis
kit (Exiqon, Denmark). qRT-PCR system (Eppendorf,
Germany) combining with the predesigned primers (ABM,
Canada) was used for miRNA quantification. For the re-
action conditions, polymerase activation/denaturation was
performed for 10min at 95°C. 40 amplification cycles at 95°C
for 10 seconds, 63°C for 15 seconds, and 72°C for 32 seconds
were performed for miRNA quantification, followed by
signal detection. 7e relative amount of miRNA was nor-
malized against U6 snRNA (the internal control), and the
fold change (FC) in the amount of each miRNA compared
with the HC group was calculated by using the 2− ΔΔCT

method.

2.6. Statistical Analysis. 7e calculation of mean± standard
deviation (SD) and Students’ t test was performed with
GraphPad Prism 6.0 software. Only those miRNAs with
FC>2 (or<0.5) and P< 0.05 compared with the HC group
were considered as the SDE-miRNAs, and only these with all
FC>1.5 (or<0.7) and P< 0.05 were considered as the po-
tential biomarkers in the study.

3. Results

3.1. Patient Characteristics and miRNAMicroarray Profiling.
In order to gain biological insights into the similarities and
differences between SSDH and LGDH syndromes, and
further discover their miRNA biomarkers, 45 participants
were included in our study, including 15 SSDH patients, 15

LGDH patients, and 15 HC volunteers. As shown in Sup-
plementary Table S1, the sex and age were not significantly
different between the three groups (P> 0.05). 7e distri-
bution of ALT, AST, and TBIL were also found no signif-
icant differences between SSDH and LGDH groups
(P> 0.05). 7e virus load in SSDH was higher than that in
LGDH, but there was no significant difference (P> 0.05).
7e above clinical baseline data indicated that the partici-
pants were available for the next comparative miRNA
microarray profiling.

According to the quantitative data of the identified
miRNAs in microarray analysis, those with the FC> 2
(or<0.5) and P< 0.05 compared with the HC group were
screened as the SDE-miRNAs, which were considered to be
more valuable for further bioinformatics analysis [20]. Of
these, 7 SDE-miRNAs were upregulated, and 3 SDE-
miRNAs were downregulated in the SSDH group (Sup-
plementary Table S2), while 12 SDE-miRNAs were upre-
gulated in the LGDH group (Supplementary Table S3).
Moreover, 4 of these SDE-miRNAs, namely, hsa-miR-122-
5p, hsa-miR-320e, hsa-miR-1260a, and hsa-miR-483-3p,
were shared by both SSDH and LGDH groups.

3.2. Hierarchical Clustering Analysis and Target Gene
Prediction. To deeply dissect the biological commonalities
and differences between SSDH and LGDH syndromes, in-
tensive bioinformatics analysis of the SDE-miRNAs were
performed. Firstly, the hierarchical clustering analysis [32]
of SDE-miRNAs is shown in Figure 1. 7en, the target genes
of the SDE-miRNAs were predicted based on agreement
between the databases of TargetScanHuman and miRTar-
Base [33]. A total of 1000 and 1200 target genes were
predicted for the 10 SDE-miRNAs in SSDH and the 12 SDE-
miRNAs in LGDH, respectively. To further show the reg-
ulatory relationships between SDE-miRNAs and their target
genes, the biological interaction networks [34] were built
(Supplementary Figure S1).

3.3. Comparative GO Annotation for SSDH and LGDH
Syndromes. GO enrichment analysis were performed to
determine the biological functions of the target genes of
SDE-miRNAs. GO analysis mainly consists of three com-
ponents: biological processes, cellular components, and
molecular functions [29]. As shown in Figure 2, the top 10
terms of each GO component were plotted and compared
between SSDH and LGDH syndromes. Notably, although
the two dampness-heat syndromes shared some common
terms in each component, there were some syndrome-
specific terms. For biological processes (red histograms),
positive regulation of cellular biosynthetic process (GO:
0031328) and positive regulation of biosynthetic process
(GO:0009891) were specific for SSDH, and whole phos-
phorus metabolic process (GO:0006793) and phosphate
metabolic process (GO:0006796) were specifically related to
LGDH syndrome. For cellular components (green histo-
grams), the targets genes of the SDE-miRNAs in SSDH and
LGDH syndromes were specifically involved with insoluble
fraction (GO:0005626) and Golgi apparatus (GO:0005794),
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respectively. As for molecular functions (blue histograms), 4
terms were specific for each TCM syndromes, including ion
binding (GO:0043167), metal ion binding (GO:0046872),
transcription activator activity (GO:0016563) and tran-
scription repressor activity (GO:0016564) for SSDH syn-
drome, as well as transcription factor binding (GO:0008134),
protein kinase activity (GO:0004672), protein dimerization
activity (GO:0046983), and identical protein binding (GO:
0042802) for LGDH syndrome.

3.4. Comparative KEGG Pathway Analysis for SSDH and
LGDHSyndromes. KEGG pathway analysis [30] was carried
out to further understand the functions and signaling
pathways of the target genes. Twenty most commonly ob-
served pathways were showed to compare the two syn-
dromes (Figure 3). 7e result showed that the target genes of
SDE-miRNAs in SSDH and LGDH group both mainly
functioned in the MAPK signaling pathway (hsa04010),
neurotrophin signaling pathway (hsa04722), chemokine
signaling pathway (hsa04062), and endocytosis (hsa04144).
Notably, the target genes in SSDH group specifically linked
to 8 signaling pathways including ubiquitin-mediated pro-
teolysis (hsa04120), p53 signaling pathway (hsa04115),
regulation of actin cytoskeleton (hsa04810), cell adhesion
molecules (CAMs) (hsa04514), purine metabolism
(hsa00230), Wnt signaling pathway (hsa04310), glioma
(hsa05214) and epithelial cell signaling inHelicobacter pylori
infection (hsa05120). For LGDH syndrome, the target genes
were also particularly involved in 8 signaling pathways in-
cluding cytokine-cytokine receptor interaction (hsa04060),
focal adhesion (hsa04510), Jak-STAT signaling pathway
(hsa04630), TGF-beta signaling pathway (hsa04350), renal
cell carcinoma (hsa05211), pancreatic cancer (hsa05212),

colorectal cancer (hsa05210) and ErbB signaling pathway
(hsa04012).

3.5. Comparative miRNA-GO/Pathway Network Analysis for
SSDH and LGDH Syndromes. To further understand the
association relationships between SDE-miRNAs and their
corresponding GO terms and signaling pathways, miRNA-
GO networks (Figure 4) and miRNA-pathway networks
(Figure 5) were analyzed and demonstrated. As was shown
in Figures 4 and 5, the SDE-miRNAs (the red squares) of
SSDH or LGDH were all involved in the same network,
suggesting that there were close biological correlations
among the SDE-miRNAs of the syndrome. Furthermore,
according to the study on biology network [35], the size of
the red square indicates the complexity of regulatory rela-
tionship and the importance of the miRNA. For miRNA-GO
networks, hsa-miR-122-5p, hsa-miR-1260a, hsa-miR-3196,
and hsa-miR-15b-5p played crucial roles in modulating the
molecular networks in SSDH syndrome (Figure 4(a)),
whereas hsa-miR-483-3p, hsa-miR-22-3p, hsa-miR-21-5p,
and hsa-miR-129-1-3p might be key regulators of patho-
genesis in LGDH syndrome (Figure 4(b)). Moreover, the
visualized miRNA-pathway networks indicated that hsa-
miR-483-3p, hsa-miR-122-5p, hsa-miR-3196, and hsa-miR-
15b-5p played prominent roles in signaling pathways related
to SSDH syndrome (Figure 5(a)). Comparatively, hsa-miR-
483-3p, hsa-miR-21-5p, hsa-miR-129-2-3p, and hsa-miR-
22-3p carried considerable weight in LGDH groups
(Figure 5(b)).

3.6. Validation of the Biomarkers for SSDH and LGDH
Syndromes. To validate the microarray results and further
identify potential biomarkers for confirming and
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Figure 1: Hierarchical clustering analysis of the SDE-miRNAs in SSDH (a) and LGDH (b) syndromes. 7e red boxes and green boxes
represent upregulation and downregulation of the corresponding SDE-miRNA, respectively.
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Figure 2: GO annotation of target genes of the SDE-miRNAs in SSDH (a) and LGDH (b) syndromes.
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Figure 3: KEGG pathway analysis of target genes of the SDE-miRNAs in SSDH (a) and LGDH (b) syndromes.
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distinguishing between SSDH and LGDH syndromes in
CHB, syndrome-specific SDE-miRNAs were randomly
selected for qRT-PCR analysis. As shown in Figure 6, the
expression level of 6 SDE-miRNAs was measured. To gain
more reliability for syndrome-specificity, the expression
level of each SDE-miRNA in one syndrome must suffer the
comparison with that in the other syndrome and that in
the HC group simultaneously. Only the SDE-miRNAs
with both FC values >1.5 (or <0.7) and both P values <0.05
can be considered as biomarkers. For example, the ex-
pression level of hsa-miR-1273g-3p in SSDH group was
significantly higher than both that in the HC group
(FC � 2.12, P< 0.01) and that in the LGDH group

(FC � 2.45, P< 0.01) (Figure 6(a)). Likewise, hsa-miR-
4419b was significantly highly expressed in the SSDH
group when compared with both HC and LGDH groups,
with FC values of 1.88, 1.85 and P value was both lower
than 0.05 (Figure 6(b)). For LGDH group, a significant
hsa-miR-129-1-3p increase was shown when compared
with the HC group (FC � 2.71, P< 0.001) and SSDH group
(FC � 3.12, P< 0.001) (Figure 6(d)). Hsa-miR-129-2-3p
was significantly overexpressed in LGDH group when
compared with HC and SSDH groups, with FC values of
2.79, 2,49 and both P values lower than 0.001 (Figure 6(e)).
7ese results are also in accordance with the microarray
data. 7us, it was believed that hsa-miR-1273g-3p and

(a)

(b)

Figure 4: 7e miRNA-GO networks in the SSDH group (a) and LGDH group (b). 7e red squares (the central nodes) and the blue spots
represent the SDE-miRNAs and the pathways, respectively. 7e lines represent interactions between the SDE-miRNA and the GO term.
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hsa-miR-4419b could be employed as SSDH biomarkers
and that hsa-miR-129-1-3p and hsa-miR-129-2-3p were
available as LGDH biomarkers. However, hsa-miR-3196
(Figure 6(c)) and hsa-miR-21-5p (Figure 6(f )) with
P> 0.05 were excluded as biomarkers.

4. Discussion

TCM has been proved effective for CHB treatment in
practice for a long time. However, biological basis for
classification and diagnosis of TCM syndromes of CHB are
still lacking. Dampness-heat syndrome occupies the largest
proportion of the total CHB syndromes. 7e top two
dampness-heat syndromes, SSDH and LGDH are apt to be
confused since they have some similar symptoms. 7us, the

two syndromes were investigated in this study. Based on the
microarray profiling data, the SDE-miRNAs including hsa-
miR-122-5p, hsa-miR-320e, hsa-miR-1260a, and hsa-miR-
483-3p might be related with the progression of CHB
dampness-heat syndrome, as they were identified to be
significant in both SSDH and LGDH groups. Hsa-miR-
1273g-3p, hsa-miR-4419b, hsa-miR-451a hsa-miR-3196,
hsa-miR-223-3p, and hsa-miR-15b-5p might be specifically
linked to SSDH syndrome. Meanwhile, hsa-miR-129-1-3p,
hsa-miR-129-2-3p, hsa-miR-21-5p, hsa-miR-1304-3p hsa-
miR-30d-5p, hsa-miR-762, hsa-miR-4532, and hsa-miR-22-
3p might play an important and special role in LGDH
syndrome. 7ese results indicated that both syndrome-
common and syndrome-specific mechanisms may exist
between SSDH and LGDH.

(a)

(b)

Figure 5: 7e miRNA-pathway networks in SSDH group (a) and LGDH group (b). 7e red squares (the central nodes) and the blue spots
represent the SDE-miRNAs and their target gene pathways, respectively. 7e straight lines represent interactions between the SDE-miRNA
and the pathways.
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Most of the SDE-miRNAs have already been reported in
previous virus hepatopathy-related studies. In general,
miRNA could act as a cellular antiviral defense or help
viruses establish a favorable environment for their repli-
cation and survival [20]. Hsa-miR-122 is a liver-specific
miRNA and associated with the immune control of chronic
HBV infection [36]. It has been found that hsa-miR-122-5p
was upregulated during different phases of chronic HBV
infection [37], which is in accordance with our microarray
results. Hsa-miR-483-3p was differentially expressed in
peripheral blood mononuclear cell from the chronic
asymptomatic carriers [38] and upregulated in HBV-asso-
ciated HCC [39]. Hsa-miR-320 was identified as the miRNA
whose expression levels were altered by hepatitis virus in-
fection [40] and showed downregulation in hepatitis B
patients [41]. It has been demonstrated that hsa-miR-451a
was differentially expressed in CHB and might play a crucial
role in global signaling networks and pathways involved in
CHB pathogenesis [20]. Hsa-miR-15b has been reported to
be important during HBV infection because it could pro-
mote HBV replication by augmenting HBV enhancer I
activity via directly targeting hepatocyte nuclear factor 1α
[42]. Hsa-miR-1273g-3p might affect the activation and
apoptosis of HSCs by targeting PTEN in hepatitis virus [43].
Hsa-miR-223-3p was found to be significantly dysregulated
in HBV-positive patients [44]. It was further confirmed as a
novel noninvasive biomarker of HBV-positive HCC at a very
early stage of liver disease [45]. Hsa-miR-22 played a
prominent role in HBV-related diseases [46], as it might be
involved in HBV infection [47]. Hsa-miR-22-3p was found
differentially expressed during different pathologic processes
of CHB [20]. It has been indicated that hsa-miR-21-5p
participated in inflammatory responses and hepatocyte

proliferation and was closely related with liver disease
[48–50]. Serum hsa-miR-21-5p was significantly elevated in
CHB patients [51], which is consistent with our results. Hsa-
miR-30d was significantly overexpressed in HBV-associated
HCC patients [52], which was in accordance with the
upregulation of hsa-miR-30d in our study. Khairy et al. have
demonstrated that there was significant fold change of hsa-
miR-129 in HCC patients compared with the HC group [53].
Hsa-miR-129-2 has been evaluated as a potential early di-
agnostic biomarker for HBV-related HCC since 85% of HCC
patients at stage I could be distinguished by their miR-129-2
methylation levels [54]. Hsa-miR-4532 has been identified as
a vital miRNA demonstrating a strong expressional response
to HBV and could be used as an early diagnostic biomarker
of hepatitis B [41]. All these above suggested that most of the
identified SDE-miRNAs were biologically related to virus
hepatopathy, and thus the microarray results were further
validated. Some of the SDE-miRNAs (such as hsa-miR-
1260a, hsa-miR-3196, and hsa-miR-762) have not been
reported in virus hepatopathy-related studies, indicating
that the finding in our research is novel and needs further
investigation.

Detailed dissection of the identified SDE-miRNAs and
the regulation mechanisms is of great significance for
further understanding the pathogenesis and biological
differences of SSDH and LGDH syndromes in CHB. 7us,
intensive bioinformatics analysis based on the predicted
target genes of SDE-miRNAs was carried out. According to
GO data (Figure 2), the two dampness-heat syndromes
shared some common GO terms, and they also owned
syndrome-specific terms. KEGG pathway analysis (Fig-
ure 3) demonstrated that the target genes of SDE-miRNAs
in the two syndromes both mainly functioned in the MAPK
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Figure 6: Validation of the biomarkers for SSDH and LGDH syndromes by qRT-PCR. Statistical difference analysis of the relative
expression levels of hsa-miR-1273g-3p (a), hsa-miR-4419b (b), and hsa-miR-3196 (c) for SSDH compared with LGDH and HC, and hsa-
miR-129-1-3p (d), hsa-miR-129-2-3p (e), and hsa-miR-21-5p (f) for LGDH compared with SSDH and HC (n� 15). ∗P< 0.05, ∗∗P< 0.01,
∗∗∗P< 0.001.
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signaling pathway, neurotrophin signaling pathway, che-
mokine signaling pathway, and endocytosis. Meanwhile,
there were also some syndrome-specific signaling path-
ways, such as ubiquitin-mediated proteolysis for SSDH
syndrome and cytokine-cytokine receptor interaction for
LGDH syndrome. Finally, the association relationship and
the importance of the SDE-miRNAs in each TCM syn-
drome were determined by setting up miRNA-GO and
miRNA-pathway networks (Figures 4 and 5). For SSDH
and LGDH groups, although there were the same SDE-
miRNAs (such as hsa-miR-483-3p and hsa-miR-122-5p)
that played crucial roles in the networks, most of the key
SDE-miRNAs in the networks of the two syndromes were
different. All these above further validated that both bio-
logical similarity and differences existed between SSDH
and LGDH syndromes.7e results provided more evidence
for the TCM practices, in which the syndromes are based
on the same disease and discriminated by different
symptoms of patients [11], and in which the prescription of
TCM medications is determined by both the disease and
the specific symptoms.

Furthermore, in order to provide more biological bases
for objective diagnosis and accurate treatment of the two
dampness-heat syndromes, qRT-PCR were experimented to
identify potential biomarkers based on the syndrome-spe-
cific SDE-miRNAs. Comparisons among the three groups
(SSDH, LGDH, and HC) were carried out. Only those with
all FC>1.5 (or <0.7) and P< 0.05 were considered, and thus
more reliability for syndrome-specificity was provided.
Taken together, 4 SDE-miRNAs were validated as the di-
agnostic biomarkers, including hsa-miR-1273g-3p and hsa-
miR-4419b for SSDH as well as hsa-miR-129-1-3p and hsa-
miR-129-2-3p for LGDH.

However, some limitations also exist in this work. In
order to enhance the value of this study in future, a large
number of CHB patients with each syndrome should be
further enrolled and tested. 7e importance of the potential
diagnostic biomarkers of SSDH and LGDH syndromes
should be further confirmed. Studies on molecular regu-
lating mechanisms of the identified SDE-miRNAs in each
syndrome need to be carried out, so that the pathogenesis of
dampness-heat syndrome in CHB and therapeutic targets
for treatment can be deeply elucidated. Moreover, other
dampness-heat syndromes should also be investigated to
comprehensively understand the dampness-heat syndrome
of CHB.

5. Conclusion

By utilizing miRNA array profiling, 10 and 12 SDE-miRNAs
were identified in SSDH and LGDH syndromes of CHB,
respectively. Among these SDE-miRNAs, 4 were found in
both dampness-heat syndromes, but 6 and 8 specifically
linked to SSDH and LGDH, respectively. 7ese results in-
dicated that both biological similarity and syndrome-spec-
ificity existed in SSDH and LGDH patients. 7is was further
confirmed by bioinformatics analyses, in which both same
and different GO terms, KEGG pathways, and miRNA-GO/
pathway networks were found between the two syndromes.

Furthermore, syndrome-specific SDE-miRNAs were iden-
tified as the potential biomarkers, including hsa-miR-1273g-
3p and hsa-miR-4419b for SSDH and hsa-miR-129-1-3p and
hsa-miR-129-2-3p for LGDH, respectively. All these laid
scientific basis for the differentiation and diagnosis of the
two significant dampness-heat syndromes in CHB, pro-
viding more opportunities for stable exertion and better
application of the efficacy and superiority of TCM in CHB
treatment.
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