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Abstract
Insights gained from multilevel computational models of biological systems can be trans-

lated into real-life applications only if the model correctness has been verified first. One of

the most frequently employed in silico techniques for computational model verification is

model checking. Traditional model checking approaches only consider the evolution of

numeric values, such as concentrations, over time and are appropriate for computational

models of small scale systems (e.g. intracellular networks). However for gaining a systems

level understanding of how biological organisms function it is essential to consider more

complex large scale biological systems (e.g. organs). Verifying computational models of

such systems requires capturing both how numeric values and properties of (emergent)

spatial structures (e.g. area of multicellular population) change over time and across multi-

ple levels of organization, which are not considered by existing model checking

approaches. To address this limitation we have developed a novel approximate probabilistic

multiscale spatio-temporal meta model checking methodology for verifying multilevel

computational models relative to specifications describing the desired/expected system

behaviour. The methodology is generic and supports computational models encoded using

various high-level modelling formalisms because it is defined relative to time series data

and not the models used to generate it. In addition, the methodology can be automatically

adapted to case study specific types of spatial structures and properties using the spatio-

temporal meta model checking concept. To automate the computational model verification

process we have implemented the model checking approach in the software tool Mule

(http://mule.modelchecking.org). Its applicability is illustrated against four systems biology

computational models previously published in the literature encoding the rat cardiovascular

system dynamics, the uterine contractions of labour, the Xenopus laevis cell cycle and the

acute inflammation of the gut and lung. Our methodology and software will enable computa-

tional biologists to efficiently develop reliable multilevel computational models of biological

systems.
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Introduction
Multilevel computational models of complex biological systems are abstract representations of
living systems that span multiple levels of organization. They encode the hierarchical organiza-
tion of biological systems explicitly, and therefore enable reasoning about how events initiated
at one level of organization reflect across multiple levels of organization. In systems biology [1,
2] multilevel, also commonly referred to as multiscale [3] computational models can be
employed for gaining a better understanding of the underlying mechanisms of living systems,
and to generate new hypotheses for driving experimental studies. Conversely in systems medi-
cine it is argued [4] that multilevel computational models could potentially facilitate delivering
personalized treatments by providing a patient specific understanding of how diseases and
their treatment reflect across multiple levels of organization [5].

However any insights gained from model simulation results can be successfully translated
into real-life applications only if the correctness of the models has been verified first. Computa-
tional models of biological systems can be validated either in the in vitro environment by
checking if the model simulation results can be reproduced experimentally, or in the in silico
environment by verifying if the model simulation results conform to a formal specification
describing the desired/expected system behaviour. An in silico approach that automates the
process of verifying models relative to formal specifications is called model checking [6, 7]; see
S1 Text for a brief description of model checking. Due to the complex, stochastic nature of bio-
logical systems only approximate probabilistic model checking approaches are considered
throughout this paper.

Validating multilevel computational models in the in vitro environment is challenging
because there is a need for experimental data from all levels of organization and the interac-
tions between different levels, which is often not available. Moreover in vitro validation proce-
dures need to account for the variability inherent in biological systems [8, 9] which can be of
different orders of magnitude at different levels. Conversely, verifying multilevel computational
models in the in silico environment is challenging because there is a lack of model checking
approaches that can explicitly distinguish between different levels of organization. Existing
model checking approaches can be employed to verify submodels corresponding to each level
of organization individually without the possibility of referring to interactions between differ-
ent levels.

In this paper we address this issue by developing a novel multiscale model checking meth-
odology for automatically verifying multilevel computational models relative to given specifica-
tions. Our approach is generic and supports computational models encoded using various
high-level modelling formalisms because it is defined relative to time series data representing
the model simulation results and not the models themselves. Moreover our methodology could
be potentially employed for analysing time series data recorded in the wet-lab as well. This
could enable checking if a computational model correctly describes a physical system, or that a
physical system correctly implements an in silico design, but this is beyond the scope of this
paper.

Both spatial and non-spatial computational models can be verified using our approach. The
specifications against which the computational models are verified can describe both how
numeric values (e.g. concentration of protein X) and properties of (emergent) spatial struc-
tures, called spatial entities, (e.g. area of multicellular population) are expected to change over
time and across multiple levels of organization. For instance, assuming we would like to verify
a computational model describing tumour growth, the specification could state that if the con-
centration of protein X in a cancerous cell rises above a certain threshold level (e.g. 0.8 M),
then the cell will divide and the cellular density or area of the tumour (structure) will increase.
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Assuming that the computational model considered is spatial, the type of spatial entities
and their properties, called spatial measures, can differ between case studies. For instance given
a tumour growth computational model one could be potentially interested in how the area of
the tumour structure changes over time, whereas in case of a migrating multicellular popula-
tion tracking the position of the population over time could be of interest.

We defined an abstraction of our approach, called multiscale spatio-temporalmetamodel
checking that enables the automatic reconfiguration of the model checking methodology
according to case study specific spatial entity types and measures. The spatio-temporalmeta
model checking approach resembles the meta-programming [10] concept from computer sci-
ence where an abstract type is defined that acts as a template for creating specific type instances
tailored to particular applications. Our spatio-temporal meta model checking approach is not
restricted to biologically relevant spatial entity types and properties, and therefore could be
employed to adapt the methodology to case studies from other fields of science. However we
do not illustrate this in this paper. Due to the intended general applicability of the approach,
and the fact that hierarchical systems in multiple domains of science (e.g. astrophysics, energy,
engineering, environmental science and materials science [11]) are commonly referred to as
multiscale, our approach is called multiscale rather than multilevel spatio-temporal meta
model checking.

To enable the automatic verification of multilevel computational models of biological systems
relative to formal specifications we have implemented the model checking method in the soft-
ware tool Mule which is made freely available online (http://mule.modelchecking.org) in binary
and source code format. Moreover a Docker [12] image has been created that provides a self-con-
tained environment for running Mule without additional setup on all major operating systems.

We illustrate the applicability of Mule by verifying the correctness of four multilevel compu-
tational models previously published in the literature. The models considered are of different
complexity, have been encoded using different modelling formalisms and software, are deter-
ministic, stochastic or hybrid, and encode space explicitly or not. The case studies correspond-
ing to the four multilevel computational models are the rat cardiovascular system dynamics
[13], the uterine contractions of labour [14], the Xenopus laevis cell cycle [15], and the acute
inflammation of the gut and lung [16]. The formal specifications against which the models are
verified were derived from the original papers introducing the models. The main reason for
this is that in the following we focus on describing the model verification methodology and not
on presenting novel biologically relevant results.

In brief, the main contributions of our paper are:

1. Definition of a multiscale spatio-temporal model checking methodology for verifying multi-
level computational models of biological systems relative to formal specifications describing
the desired/expected system behaviour.

2. Definition of the spatio-temporal meta model checking concept which enables automati-
cally reconfiguring the methodology according to case study specific spatial entity types and
measures.

3. Implementation of the multiscale spatio-temporal meta model checking approach in the
freely available software Mule. Both Bayesian and frequentist model checking algorithms
can be employed to verify multilevel computational models (considering user-defined error
bounds).

4. Illustrative examples of how to verify multilevel computational models of biological systems
using multiscale spatio-temporal meta model checking.
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Related work
In computational (systems) biology, model checking approaches have been employed for
model verification [17–32], parameter estimation/synthesis [33–42], model construction (i.e.
both model parameters and structure/topology) [43, 44], and robustness computation (consid-
ering various perturbations) [39, 44–47]; see recent review papers [48–50] for a more detailed
description.

One common characteristic of these model checking approaches is that they only consider
how numeric values (e.g. concentrations) change over time. They are appropriate for small
scale systems where the spatial domain is usually not represented explicitly (e.g. cell cycle [23,
27, 32, 36, 44, 46, 51], gene expression/regulatory networks [20, 35, 39, 52, 53], signalling path-
ways [17, 22, 25, 28–30, 38, 46, 54–56]). These model checking approaches cannot be directly
employed to verify either spatial computational models because they do not consider how spa-
tial properties change over time, or multilevel computational models because they do not dis-
tinguish between different levels of organization.

In previous work [57] we have defined a model checking methodology which enables verify-
ing computational models of biological systems with respect to both how numeric values and
spatial properties change over time. However the main limitation of this approach is that it
cannot explicitly distinguish between different levels of organization and therefore cannot be
employed to verify multilevel computational models of biological systems. Moreover the types
of spatial entities and measures are hardcoded in the methodology and cannot be reconfigured
according to the model verification requirements of different case studies.

Methods
Using the novel model checking approach introduced in this paper multilevel computational
models of biological systems can be verified relative to formal specifications as described by the
workflow depicted in Fig 1, which comprises four steps:

1. Model construction: Using biological observations and/or relevant references from the lit-
erature to construct the computational model.

2. Multiscale spatio-temporal analysis: Each time the model is simulated time series data are
generated in which spatial entities from multiple scales are automatically detected and
analysed.

3. Formal specification: The specification of the system is mapped from natural language into
formal logic.

4. Model checking: The model checker takes as input the processed time series data (repre-
senting the behaviour of the modelled system) and the formal specification, and verifies if
the model is correct relative to the specification using the model checking algorithm chosen
by the user (e.g. frequentist statistical model checking). In the case that the model is incor-
rect it is updated and verified again.

Model construction
The biological systems considered here are assumed to be inherently complex, stochastic, and
to span multiple levels of organization [58], where different levels of organization correspond
to different spatio-temporal scales. Moreover we assume in the following that biological sys-
tems which are multilevel (i.e. span multiple levels of biological organization) are inherently
multiscale (i.e. span multiple spatio-temporal scales). Therefore the terms multiscale and mul-
tilevel are used interchangeably in this paper. However, since our methodology is “multiscale”
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instead of “multilevel” we will refer to “scales” rather than “levels” when describing it. The mul-
tiscale system representation is assumed to be hierarchical, with the most coarse-grained scales
represented at the top of the hierarchy and the most fine-grained scales at the bottom. Time
can be represented either in a discrete (using non-negative integer values) or continuous (using
non-negative real values) manner. Whenever space is represented explicitly, we assume
throughout, similarly to our previous work [57], that it is discretised and represented in
pseudo-3D i.e. 2D space in which pile up is allowed, where the degree of pile up for each spatial

Fig 1. Multiscale spatio-temporal model checking workflow. The first step (1) in the workflow is using biological
observations and/or information from the literature to construct the multilevel computational model of the biological system
considered. Next (2) the model is simulated to produce time series data in which spatial entities frommultiple scales are
automatically detected and analysed using a multiscale spatio-temporal analysis module. Then (3) the specification against
which the model is verified is translated from natural language to a formal multiscale spatio-temporal language called
PBLMSTL. Finally (4) using the model checker Mule the model is automatically verified relative to the given PBLMSTL
specification considering the processed time series data representing the modelled system behaviour. If the model is
declared incorrect relative to the given specification then it is updated and the steps (2) and (4) are repeated.

doi:10.1371/journal.pone.0154847.g001
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position is computed using a density measure (e.g. representing cellular density). However
adapting the methodology to other numbers of spatial dimensions requires minor changes
which are described later. Furthermore we consider that the behaviour of such systems can be
represented as sequences of discrete states where the system probabilistically transitions
between states only when an event (e.g. a biochemical reaction) occurs.

Such systems are usually represented using high-level modelling languages (e.g. agent based
models, cellular automata etc.), examples of which are given in the Results section. However,
for model checking purposes, the behaviour of the computational models is usually described
using an equivalent low level representation (e.g. a state transition system). The main reason
for this is to enable defining the model checking algorithms relative to a single common rather
than multiple different model representations.

Low level modelling formalisms often employed to encode systems that have the above
mentioned properties are stochastic discrete-event systems (SDES) [59] when no constraint is
imposed on the representation of time, respectively discrete-time/continuous-time Markov
chains (DTMC/CTMC) when time is assumed to be discrete/continuous. One limitation of
SDESs (and DTMCs/CTMCs) is that they do not explicitly distinguish between how numeric
and spatial properties of the system change over time and across multiple scales. An extension
of SDESs called stochastic spatial discrete-event systems (SSpDES) was defined in [57] to
enable explicitly differentiating between numeric and spatial properties. However, similarly to
SDESs, SSpDESs do not enable distinguishing between different scales.

In order to address this issue a multiscale extension of SSpDESs calledMultiscale Stochastic
Spatial Discrete Event Systems, or MSSpDES for short, is defined next. Formally an MSSpDES
M is a 9-tuple hS, T, μ, NSV, SpSV, NV, CSpV,MA, SVSSi where:
• S = {s0, s1, . . ., sk} is the set containing all possible states of the system.

• T is the set representing time and it is typically equal to the set of non-negative integer num-
bers in case of a discrete-time representation (i.e. T = Z+), respectively the set of non-negative
real numbers in case of a continuous-time representation (i.e. T = R+).

• μ is a probability measure employed to compute the probability of the system to transition
along the sequences of states described by a collection of model simulation traces. In case of
biological systems it is often assumed that the Markov (memoryless) property holds i.e. the
probability of the systems to transition between states depends only on the current and not
on previous states. Considering this assumption, if a discrete-time representation is
employed then μ is defined similarly as for DTMCs [60] relative to a transition probability
function P: S × S! [0, 1] which records the probability of transitioning between any two
states si, sj 2 S. Conversely, if a continuous-time representation is employed then μ is defined
similarly as for CTMCs [61] considering a transition rate matrix Q: S × S! R which records
the rate at which a system transitions between any two states si, sj 2 S and from which the
corresponding state transition probabilities can be derived.

• NSV = {nsv1, nsv2, . . ., nsvl} is the set of numeric state variables describing the state of the
system.

• SpSV = {spsv1, spsv2, . . ., spsvm} is the set of spatial state variables describing the state of the
system.

• NV: S × NSV!ℝ is the numeric value assignment function employed to compute for a given
state of the system s 2 S the value valNSV 2ℝ of the numeric state variable nsv 2 NSV, where
valNSV = NV(s, nsv).
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• CSpV = {SpV1, SpV2, . . ., SpVn} is the collection of spatial value assignment functions, where
each spatial value assignment function SpVi 2 CSpV, SpVi : S � SpSV ! R

mi�ni , is
employed to compute for a given state of the system s 2 S the value valSpSV 2 R

mi�ni of spa-
tial state variable spsv 2 SpSV that corresponds to a discretised spatial domain of sizemi × ni,
where valSpSV = SpVi(s, spsv).

• MA = (VMA, EMA) is the multiscale architecture graph encoding the hierarchical multiscale
structure of the system under consideration.

• SVSS: NSV [ SpSV! VMA is the state variable scale and subsystem assignment function
which associates each state variable sv 2 NSV [ SpSV with a vertex vscsubsys 2 VMA encoding a
particular scale and subsystem, where vscsubsys = SVSS(sv).

Themultiscale architecture graphMA = (VMA, EMA) is employed to formally encode the hier-
archical top-down structure of multiscale systems and is represented as a rooted (directed) tree,
where VMA represents the set of vertices and EMA the set of directed edges. The main reason for
choosing the rooted directed tree representation is that its structure is inherently hierarchical
and therefore similar to the organization of biological organisms. We assume throughout that
vertices higher in the tree correspond to coarse-grained scales, and vertices lower in the tree cor-
respond to fine-grained scales. Each vertex v 2 VMA is encoded as a tuple (sc, subsys) where
subsys represents a particular biological subsystem (e.g. heart) and sc its corresponding scale
(e.g. organ). Both scales and subsystems are recorded by theMA graph to enable distinguishing
between different scales (e.g. organ and cellular), and/or different subsystems (e.g. heart and

liver) corresponding to the same scale (e.g. organ). Directed edges (v, vi) 2 EMA, i ¼ 1;m, link
the biological subsystem represented by vertex v to all itsm constituent subsystems from finer-
grained scales represented by vertices vi.

The assumption made here is that biological systems can be decomposed in a top-down
manner from coarse-grained (e.g. population/organism) to fine-grained (e.g. intracellular/
molecular) scales. Moreover at each scale (e.g. organ) one or multiple biological subsystems
(e.g. heart and kidney) could be explicitly considered. The number and type of biological sub-
systems and/or scales considered differs depending on the biological question addressed. A
description of how to construct theMA graph corresponding to a given biological system is
given in S2 Text.

Considering that theMA graph is represented as a rooted directed tree, a strict partial
order < can be defined over the set of vertices VMA, where v1 < v2, for all v1, v2 2 VMA, if the
unique path from the root to v1 passes through v2. Similarly a non-strict partial order� can
be defined over VMA, where v1 � v2 if the unique path from the root to v1 passes through v2,
or v1 = v2. One of the main practical benefits of defining these partial orders is that they
enable writing expressions for referring to all subsystems vi of a system vj (vi � vj), and all
ancestor/parent systems vk of a subsystem vl (vl < vk) in a concise manner. Therefore such
expressions could be employed to write shorter formal specifications against which the
computational models are verified.

A simple illustrative example of how to construct a (discrete-time) MSSpDES model for a
biological system spanning multiple levels of organization is given below.

Example 1 Simple illustrative example of how to construct an MSSpDES model. Let us
assume that we would like to model the movement (considering the von Neumann neighbour-
hood relation) of a unicellular microorganism in a fixed size environment (here a discretised
rectangular grid of size 2 × 2). In order to move, the cell requires energy which it can chemi-
cally convert from an abstractly denoted nutrient A; the chemical reaction for converting A to
energy is A! Energy. If nutrient A is available intracellularly then it can be converted directly
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to energy. Otherwise it has to be assimilated from the environment first; the cell can only
assimilate nutrients from the position of the discretised space which it currently occupies. The
probability of the cell to move is 20%, respectively 30% to convert A to energy and 50% to
assimilate A from the environment.

Although the system considered in this example is much simpler than a real-life one, it suf-
fices to illustrate the principles of abstractly representing a multiscale stochastic spatial dis-
crete-event system. Throughout this example a discrete time representation is employed.

The spatial state variables employed to describe the behaviour of the system are Cell—
encoding the position of the cell in the discretised space, and A_extracellular—representing the
distribution of nutrient A in the environment. Conversely the employed numeric state variables
are A_intracellular—encoding the intracellular availability of nutrient A, and Energy—repre-
senting the cell’s energy supply. The considered subsystems and corresponding scales are
energy production reaction network at the intracellular scale, microorganism at the cellular
scale, and growth media at the environment scale. State variables associated with the energy
production reaction network (intracellular scale) are A_intracellular and Energy, respectively
Cell with the microorganism (cellular scale), and A_extracellular with the growth media (envi-
ronment scale). In the initial state (S0) of the system, depicted in Fig 2, the cell is positioned in
the lower right part of the environment, A_extracellular is uniformly distributed across the

entire environment (A_extracellular[i, j] = 1, for all i; j ¼ 1; 2), and the initial levels of A_intra-
cellular and Energy are zero.

Starting from the initial state S0 the system can (in)directly transition to any of the states
depicted in Fig 3.

Given that in S0 the cell has no supplies of intracellular nutrient A or energy, the only possi-
ble action is for it to assimilate A from its environment (S0 ! S1, probability 100%). Since only
one supply of nutrient A is available the only possible next action is to convert the newly gained
intracellular A supply to energy (S1 ! S2, probability 100%). Once a supply of energy is avail-
able the cell can move either above (S2 ! S4) or to its left (S2 ! S3). The probability of moving
to either of the neighbouring positions is therefore equal to 100% / 2 = 50%. Continuing from
either state S3 or S4 the cell will try to assimilate new A nutrient supplies, which can be con-
verted to energy and then used to move in the environment. This process is repeated multiple
times until the cell reaches a state in which it has no A nutrients available extracellularly/intra-
cellularly, respectively no supplies of energy (i.e. S10, S11, S18, S19, S25, S26). In such cases the cell
becomes dormant and the system reaches its final state.

Using the notations above we formally define the corresponding MSSpDES modelM and
(state) transition probability function P as follows:

Fig 2. Initial state of the system.Cell and A_extracellular are the spatial state variables representing the
position of the cell, respectively distribution of nutrient A in the environment. A_intracellular and Energy
represent the intracellular availability of nutrient A, respectively energy.

doi:10.1371/journal.pone.0154847.g002
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Fig 3. The state space of the system i.e. all possible states which can be reached from the initial state
S0. Cell and A_extracellular are the spatial state variables representing the position of the cell, respectively
distribution of nutrient A in the environment. A_intracellular and Energy represent the intracellular availability
of nutrient A, respectively energy. The percentage associated with the arrows connecting each pair of states
represents the probability of transitioning from one state to the other.

doi:10.1371/journal.pone.0154847.g003

A Novel Multiscale Spatio-Temporal Meta Model Checking Approach

PLOS ONE | DOI:10.1371/journal.pone.0154847 May 17, 2016 9 / 43



• M = hS, T, μ, NSV, SpSV, NV, CSpV,MA, SVSSi, where:
• S = {S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, S22,
S23, S24, S25, S26}.

• T = Z+ is the set representing time.

• μ is the function used to compute the probability associated with a set of paths Paths(S0)
starting from S0 having a common finite prefix σfinite = {s0, s1, . . ., sn}, which means that

for all σ 2 Paths(S0), s½i� ¼ sf inite½i� ¼ si; i ¼ 0; n, where σ[i] denotes the i-th state in σ.
The probability value corresponding to Paths(S0) is computed by multiplying the proba-
bilities of the state transitions associated with the common finite path prefix σfinite. For
instance given the finite state sequence σfinite = {S0, S1, S2, S3, S5, S7, S10}, μ({σ 2 Paths(S0) |
σ[i] = σfinite[i], 0� i� 6}) = P(S0, S1) � P(S1, S2) � P(S2, S3) � P(S3, S5) � P(S5, S7) � P(S7, S10),
where the probability values P(Si, Sj) with Si, Sj 2 S are recorded by the transition probabil-
ity function P provided below.

• NSV = {A_intracellular,Energy}, and NV is the function used to compute the value of
A_intracellular and Energy in a given state of a computation path. The values of the
numeric state variables for each state (e.g. NV(S0, Energy) = 0) are depicted in Fig 3 and
therefore will not be explicitly restated here.

• SpSV = {Cell, A_extracellular}, and CSpV = {SpV} is the collection containing the spatial
value assignment function SpV used to evaluate Cell and A_extracellular in a given state of
a computation path. The values of the spatial state variables for each state (e.g. SpV(S0,Cell)
= [0, 0;0, 1]) are depicted in Fig 3 and therefore will not be explicitly restated here.

• MA is the multiscale architecture graph depicted in Fig 4 encoding the hierarchical organi-
zation of the considered subsystems, namely the growth media (environment scale), the
microorganism (cellular scale) and the energy production reaction network (intracellular
scale).

• SVSS is the state variable scale and subsystem assignment function which associates state
variables to particular subsystems encoded as vertices in theMA graph. The values
returned by SVSS for the considered state variables are: SVSS(A_intracellular) = (Intracel-
lular, EnergyProductionReactionNetwork), SVSS(Energy) = (Intracellular, EnergyProduc-
tionReactionNetwork), SVSS(Cell) = (Cellular, Microorganism), and SVSS(A_extracellular)
= (Environment, GrowthMedia).

• P is the transition probability function which records the probability of transitioning between
any two states of the system si, sj 2 S. Due to page size constraints it is not possible to represent
P explicitly. Instead only its non-zero entries are given below: P(S0, S1) = 100%, P(S1, S2) =
100%, P(S2, S3) = 50%, P(S2, S4) = 50%, P(S3, S5) = 100%, P(S4, S6) = 100%, P(S5, S7) = 100%,
P(S6, S8) = 100%, P(S7, S9) = 50%, P(S7, S10) = 50%, P(S8, S11) = 50%, P(S8, S12) = 50%,
P(S9, S13) = 100%, P(S12, S14) = 100%, P(S13, S15) = 100%, P(S14, S16) = 100%, P(S15, S17) =
50%, P(S15, S18) = 50%, P(S16, S19) = 50%, P(S16, S20) = 50%, P(S17, S21) = 100%, P(S20, S22) =
100%, P(S21, S23) = 100%, P(S22, S24) = 100%, P(S23, S25) = 50%, P(S23, S26) = 50%,
P(S24, S25) = 50%, P(S24, S26) = 50%.

In spite of the simplicity of the scenario described above the same model development prin-
ciples apply to more complex multiscale real-life systems. However due to the inherent com-
plexity of such systems the size of the state space is expected to be larger.
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The main reason for encoding multiscale stochastic biological systems using a low-level
modelling formalism such as MSSpDES is to enable our model checking approach to be
employed for the general class of SDESs, which MSSpDESs extend, instead of restricting it to a
particular high-level modelling formalism.

Although MSSpDES models are restricted to a two-dimensional spatial representation (see
codomain of spatial value assignment functions SpVi 2 CSpV), extending the models from a
two- to, for instance three-dimensional spatial representation, requires only replacing the
codomain R

mi�ni of each SpVi 2 CSpV with R
mi�ni�pi .

MSSpDESs are multiscale extensions of SSpDESs hS, Tr, μ, NSV, SpSV, NV, SpVi, where the
semantics of S, μ, NSV, SpSV and NV is preserved, the transition rates matrix Tr was replaced
by the set T representing time and the state transition probabilities are defined by a transition
probability function P for discrete-time systems, respectively are derived from a transition
rates matrix Q for continuous-time systems. The single spatial value assignment function SpV
in an SSpDES is replaced by CSpV, theMA graph is defined to explicitly encode the hierarchi-
cal representation of the systems under consideration, and SVSS is introduced to associate state
variables with particular scales and subsystems encoded as vertices in theMA graph. The main
advantage of defining MSSpDESs as extensions of SSpDESs is backwards compatibility.
SSpDESs can be encoded as MSSpDESs where the set T and probability measure μ are defined
accordingly, CSpV contains a single element SpV, and theMA graph contains only one vertex
to which all state variables are assigned using SVSS. Due to this, multiple SSpDESs employing
the same representation of time can be easily integrated into a single MSSpDES by defining the
set T and probability measure μ accordingly, gathering all spatial value assignment functions
SpV into a single collection, constructing a correspondingMA graph, mapping state variables
to appropriate vertices in the graph and adding interactions between submodels.

Fig 4. Themultiscale architecture graph corresponding to the simple illustrative MSSpDES example.
Each vertex in the graph (e.g. (Environment, GrowthMedia)) corresponds to a subsystem (e.g. growth media)
and its associated scale (e.g. environment). Directed edges between vertices (e.g. ((Environment,
GrowthMedia), (Cellular, Microorganism))) indicate how one subsystem from a coarse-grained scale (e.g.
(Environment, GrowthMedia)) can be decomposed in one or multiple subsystems frommore fine-grained
scales (e.g. (Cellular, Microorganism)).

doi:10.1371/journal.pone.0154847.g004
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Multiscale spatio-temporal analysis
Detection and analysis of spatial entities. Let us denote execution traces (or time series

data) generated by MSSpDES models as σ = {(s0, t0), (s1, t1), . . .}, where s0, s1, . . . represent the
states of the execution trace and t0, t1, . . . the time durations spent in each corresponding state.
Typically in case of a continuous-time representation the time durations are represented by
non-negative real values t0, t1, . . . 2 R+, whereas in case of a discrete-time representation by
non-negative integer values t0, t1, . . . 2 Z+.

Given an execution trace σ = {(s0, t0), (s1, t1), . . .}, a numeric state variable nsv and a spatial
state variable spsv, it is possible to reason about how the values of nsv and spsv change over time
by evaluating them for each state in σ using NV(s0, nsv), NV(s1, nsv), . . ., respectively SpV(s0,
spsv), SpV(s1, spsv), . . .. Although the sequence SpV(s0, spsv), SpV(s1, spsv), . . . describes how the
entire discretised spatial domain DSD ¼ R

mspsv�nspsv corresponding to spsv changes over time, we
are interested in reasoning about how emergent spatial structures, called spatial entities, identi-
fied by subsets of positions in DSD change over time. For instance assuming that spsv records
the cellular density in a 2D environment DSD and that we would like to reason about spatial
entities denoting multicellular populations, then only the subsets comprising at least x (e.g.
x = 20) neighbouring positions in DSD having the cellular density value greater than 0 would be
considered. To reason about such spatial entities there is a need for an additional processing
step which automatically detects and analyses how the spatial entities change over time.

This processing step is denoted as the multiscale spatio-temporal analysis and its associated
workflow is depicted in Fig 5. The first step in the workflow is to split up the time series data
corresponding to all spatial state variables such that each resulting time subseries corresponds
to a single subsystem and scale. Next each time subseries is passed to a uniscale spatio-temporal
analysis module which automatically detects, analyses and annotates spatial entities with their
corresponding scale and subsystem. Finally, during the last step the collections of detected spa-
tial entities are merged such that spatial entities corresponding to the same time point are
grouped together.

The uniscale spatio-temporal analysis module assumes that the problem of detecting and
analysing spatial entities at a given time point is transformed into an image processing prob-
lem. This transformation is possible because the spatial domain is assumed to be discretised
and (the value of) each position in the discretised space can be mapped to (the intensity of) a
pixel in an image. One of the main advantages of this is that existing image processing
approaches for detecting and analysing objects in images can be directly reused.

We define parameterized detection and analysis modules for two generic types of spatial
entities, namely regions and clusters [57].

Regions represent subsets of neighbouring positions in the discretised space (considering
the Moore neighbourhood relation) with associated values (e.g. concentrations) above a user-
defined threshold. For instance considering a computational model that encodes the evolution
of a population of cells in a 2D environment, regions could represent patches of neighbouring
cells where the cellular density is greater than a user-defined value. More formally a region R is
defined with respect to a state s and spatial state variable spsv as a subset f0; 1gmspsv�nspsv (i.e.
positions of the discretised space included in R are marked with 1, all others with 0) of neigh-
bouring positions in SpV(s,spsv) such that for all positions of the discretised space (i, j) 2 R
marked with 1, the corresponding value SpV(s, spsv)[i, j]� THRESHOLD, and the number of
positions included in R is greater than �size, where THRESHOLD 2 R, �size 2 N are user-defined
parameters. The module for detecting and analysing regions is an implementation of Algo-
rithm 1 in [57] using image processing functions from the open source Computer Vision
library OpenCV [62].
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Fig 5. Themultiscale spatio-temporal analysis workflow. AnMSSpDESmodel of the system under
consideration is constructed and simulated to generate time series data. This time series data is split up into
subsets (1) such that each subset corresponds to a single subsystem and scale. The time series data
subsets are passed to a uniscale spatio-temporal analysis module (2) which automatically detects, analyses
and annotates spatial entities with their corresponding scale and subsystem. The results of the uniscale
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Conversely clusters represent subsets of neighbouring regions in the discretised space where
the maximum distance between two neighbouring regions is bounded above by a user-defined
threshold. For instance considering again the computational model encoding the evolution of a
population of cells, clusters could represent groups of patches of cells where the distance
between neighbouring patches is less or equal to a user-defined threshold value. Clusters are
computed using an improved version of the DBSCAN algorithm [63]. The output of this algo-
rithm depends on the given set of regions REG, the pseudometric d used to compute the dis-
tance between any two regions in REG, the maximum distance �distance between two
neighbouring regions, and the minimum number of regions �size neighbouring a core region,
where a region is denoted as core if its number of neighbouring regions is greater or equal to
�size. The pseudometric d considered here is defined with respect to a set of regions REG,

d: REG × REG! R+, dðA;BÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxB � xAÞ2 þ ðyB � yAÞ2

q
, where (xA, yA) and (xB, yB) are the

centroids of regions A, respectively B. Moreover two regions REG1, REGn 2 REG are called den-
sity-reachable if there exists a sequence of regions REG1, REG2, . . ., REGn 2 REG, where i� 1
and n� 2 such that for all i< n, REGi is a core region, and REGi+1 is a neighbour of REGi.
Using the notations above a cluster C is defined as a maximal subset f0; 1gm1�n1 �
f0; 1gm2�n2 � :::� f0; 1gmp�np (i.e. regions’ positions included in C are marked with 1, all oth-
ers with 0) of the given set of regions REG = {REG1, REG2, . . ., REGp} such that all regions in C
are density-reachable from an arbitrary core region of C [63].

Each detected region/cluster is characterized by a set of general quantitative spatial mea-
sures that enable describing how the spatial entity changes over time. A description of the set
of spatial measures considered is given in Table 1.

spatio-temporal analysis are then merged (3) such that spatial entities corresponding to the same time point
are grouped together. If more simulations are required, a new time series dataset is generated, for which
steps (1)–(3) are repeated.

doi:10.1371/journal.pone.0154847.g005

Table 1. Description of the spatial measures considered.

Name Values Description

clusteredness [0, 1] Indicates if regions contain holes (clusteredness <1) or not (clusteredness = 1), respectively measures if the
average distance between all positions considered in a cluster is small (clusteredness !1) or large
(clusteredness !0).

density [0, 1] Computes the average value associated with the discretised spatial positions defining a region/cluster.

area R+ Represents the number of positions in the discretised space associated with a region/cluster.

perimeter R+ Represents the length of the outer contour of a region, respectively the convex hull of a cluster.

distance from the origin R+ Computes the minimum distance between the outer contour of a region, respectively the convex hull of a
cluster, and the centre point of the discretised spatial domain.

angle [0, 360]
(degrees)

Determined by the lines that pass through the discretised spatial domain’s centre point and are tangent to a
region’s outer contour, respectively cluster’s convex hull.

triangle/rectangle/circle
measure

[0, 1] Indicates if the shape of the region’s outer contour, respectively cluster’s convex hull, is similar to a triangle/
rectangle/circle (triangle/rectangle/circle measure !1) or not (triangle/rectangle/circle measure !0).

centroid Ox/Oy coordinate R+ Represents the Ox/Oy coordinate of the geometric centre of the region’s outer contour, respectively
cluster’s convex hull.

Each spatial measure considered has a name (column “Name”), an associated range of valid values (column “Values”) and a corresponding description

(column “Description”). In case of spatial measures which have similar semantics the table rows have been merged and the spatial measure names are

separated by the “/” symbol (see last two table rows).

doi:10.1371/journal.pone.0154847.t001
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The spatial entity types and measures were chosen relative to the case studies considered
here. Therefore depending on case study specific requirements different sets of spatial entity
types and/or measures may need to be employed. For instance, extending the spatial represen-
tation from two to three dimensions requires employing appropriate types of spatial entities
(e.g. 3D structure) and measures (e.g. volume), and updating the multiscale spatio-temporal
analysis module (implementation) accordingly. Moreover (the value corresponding to) each
position in the discretised space is mapped to (the intensity of) a voxel, rather than a pixel in
an image. The model checking approach is adapted automatically to different spatial entity
types and/or measures using the spatio-temporal meta model checking concept described later.

The output of the multiscale spatio-temporal analysis is time series data describing how the
values of the spatial measures considered change over time for each detected spatial entity,
scale and subsystem.

Multiscale Spatial Temporal Markup Language. The MSSpDES model simulation results
are represented by time series data produced by the multiscale spatio-temporal analysis and
time series data describing the evolution over time of numeric state variables values.

To represent these model simulation results in a uniform manner which facilitates exchange
of data sets and integration of software tools a corresponding standard data representation for-
mat is required. To the best of our knowledge such a standard data representation format does
not exist.

One of the main requirements for the data representation format is that it supports record-
ing different numbers of values at different time points because the collection of (emergent)
spatial entities considered could potentially change over time. Traditional tabular (e.g. csv)
representation formats are not suitable because they assume that the number of recorded val-
ues (or columns) is constant throughout the entire time series. Moreover defining a representa-
tion format similar to csv that does not annotate numeric values with their meaning could be
potentially difficult to interpret.

For portability, structuring and readability purposes an eXtensible Markup Language
(XML) based standard representation format is defined calledMultiscale Spatial Temporal
Markup Language (MSTML). The rules and constraints for the structure of MSTML files are
formalised in XML Schema Definition (xsd) files. The latest version of the MSTML format is
made available at http://mule.modelchecking.org/standards, a description of the format is
given in S3 Text, and an example of an MSTML formatted file is depicted in Listing 1.

Listing 1. An example MSTML file recording multiscale spatio-temporal time
series data.
1 <?xml version=“1.0” encoding=“utf −8”?>
2 <experiment>
3 <timepoint value=“1”>
4 <spatialEntity spatialType=“cluster” scaleAndSubsystem=“Organ.

Liver”>
5 <clusteredness>0.01</clusteredness>
6 <density>0.4</density>
7 <area>15</area>
8 <perimeter>28</perimeter>
9 <distanceFromOrigin>81</distanceFromOrigin>
10 <angle>10.5</angle>
11 <triangleMeasure>0.5</triangleMeasure>
12 <rectangleMeasure>1.0</rectangleMeasure>
13 <circleMeasure>0.1</circleMeasure>
14 <centroidX>703.4999</centroidX>
15 <centroidY>118.087</centroidY>
16 </spatialEntity>
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17 <numericStateVariable scaleAndSubsystem=“Cellular.Hepatocyte”>
18 <name>dysfunction</name>
19 <value>0.1</value>
20 </numericStateVariable>
21 </timepoint>
22 . . .
23 </experiment>

For model checking purposes the number of MSTML files #MSTML generated for an
MSSpDES model assuming fixed parameter values varies depending if the model is determin-
istic (#MSTML = 1) or stochastic (#MSTML� 1), and if the required level of confidence for
the model checking result is high (e.g. 99%) or low (e.g. 70%).

To determine the correctness of a model the model checker verifies if its behaviour captured
by a corresponding set of MSTML files conforms to a given formal specification.

Formal specification
The temporal logic employed to write the formal specification needs to enable reasoning about
how values of numeric state variables and/or spatial measures, which are the state variables
considered, are expected to change over time and multiple scales.

To the best of our knowledge the only formal language for reasoning about numeric and
spatial properties corresponding to computational models of biological systems is called
Bounded Linear Spatial Temporal Logic (BLSTL), which we have previously introduced in
[57]. One of the main limitations of BLSTL is that it does not enable different scales to be
explicitly distinguished. Therefore it is not possible to relate how changes at one scale reflect at
another scale and vice versa.

Bounded Linear Multiscale Spatial Temporal Logic. To address the issue of relating
changes between scales we define the Bounded Linear Multiscale Spatial Temporal Logic
(BLMSTL) which enables explicitly distinguishing between state variables corresponding to
different scales and subsystems. Throughout it is assumed that the scales and subsystems con-
sidered are the same as the ones defined in theMA graph of the corresponding MSSpDES
model. Although MSSpDESs can be employed to represent both discrete- and continuous-time
stochastic discrete-event systems, the semantics of a temporal logic usually varies with the con-
sidered representation of time. Therefore in this paper we restrict the semantics of BLMSTL to
a continuous-time representation (similarly to CSL [64] and in contrast to BLSTL). However
adapting BLMSTL to a discrete-time representation requires changing only the semantics of
the time dependent operators, whereas the definition of all other atomic propositions (related
to different scales and subsystems, numeric state variables, and spatial entities) is preserved.

BLMSTL enables reasoning about how collections, or more formally bags, of spatial measures
values from one time point, and collections of numeric state variables and spatial measures values
corresponding to multiple time points change over time using statistical functions. Transfer rela-
tions between state variables from the same and/or different scales are encoded using standard
arithmetic functions. An informal natural language description of the most relevant BLMSTL
features is given below; see S4 Text for a formal definition of the BLMSTL syntax and semantics.

Similarly to BLSTL, BLMSTL employs temporal and Boolean operators for describing how
a system changes over time, respectively for composing simple logic statements into more com-
plex ones. BLMSTL atomic propositions enable describing relations between numeric state var-
iables and/or spatial measures associated to subsets of spatial entities.

Numeric state variables are specified by their name (e.g. heartBeat) and their associated
scale and subsystem (e.g. (organ, heart)); the corresponding BLMSTL notation for specifying
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scales and subsystems is scale.subsystem (e.g. organ.heart). Conversely spatial measures associ-
ated with subsets of spatial entities are specified by their spatial measure type (e.g. area), associ-
ated spatial entity type (e.g. regions) and their corresponding scale and subsystem. Similarly to
MSTML the sets of spatial entity types and spatial measures considered are SETconsidered =
{clusters, regions}, respectively SMconsidered = {clusteredness, density, area, perimeter, distance-
FromOrigin, angle, triangleMeasure, rectangleMeasure, circleMeasure, centroidX, centroidY}.

Instead of considering all spatial entities of a given type it is possible to select only a subset
of spatial entities by imposing constraints over the spatial measure values (e.g. spatial entities
with area> 10), by using subset operators \ (difference), \ (intersection) and [ (union), or
specifying one or multiple scales and subsystems using the partial orders< and� defined over
the set of vertices VMA (e.g. spatial entities whose corresponding scale and subsystem< (organ,
heart)).

The resulting collection of spatial measures values corresponding to multiple spatial entities
(e.g. value of the area for all detected spatial entities) can be described using unary (e.g. mean),
binary (e.g. covariance) or binary quantile (e.g. percentile) statistical functions. These statistical
functions can be additionally employed to reason about collections of numeric state variables
and spatial measures values corresponding to multiple time points (e.g. the value of numeric
state variable X for all time points in the time interval [0, 100]). By considering different num-
bers of time points for different state variables it is possible, for instance, to describe how values
corresponding to one time point (and a coarse-grained scale) relate to other values correspond-
ing to multiple time points (and a fine-grained scale), or vice versa.

Transfer functions defined over state variables from different scales can be encoded using
unary (e.g. square root) and binary (e.g. add) arithmetic functions. For instance if the value of
a state variable svcg from a coarse-grained scale is equal to the arithmetic mean of four state
variables svfg1, svfg2, svfg3, svfg4 from a more fine-grained scale, this can be written as svcg =
(svfg1+svfg2+svfg3+svfg4)/4; in BLMSTL “+” and “/” would be replaced by the arithmetic func-
tions add, respectively div.

Illustrative examples of statements written both in natural language and BLMSTL are given
below. For simplicity the number of scales and subsystems explicitly specified is two in all
examples.

• Natural language: Always during the time interval [0, 95] if the concentration of EGFR (cor-
responding to scale and subsystem (Intracellular, RasERKPathway)) increases over 20 M,
then the cancerous cell (corresponding to scale and subsystem (Cellular, Cancerous)) will
divide i.e. the cell count will increase.
BLMSTL: G[0, 95] (({EGFR}(scaleAndSubsystem =
Intracellular.RasERKPathway)> 20))
(d(count(density(filter(regions, scaleAndSubsystem =
Cellular.Cancerous))))> 0)).

• Natural language: If the concentration of drug X (corresponding to scale and subsystem
(Organism, Human)) eventually increases during time interval [5, 10], then the area of the
aorta cross section (corresponding to scale and subsystem (OrganSystem, Aorta)) will be
larger during time interval [10, 30] than [0, 10].
BLMSTL: (F [5, 10] d({X}(scaleAndSubsystem = Organism.Human))>0))
(min([10, 30]min(area(filter(regions, scaleAndSubsystem =
OrganSystem.Aorta))))>
max([0, 10]max(area(filter(regions, scaleAndSubsystem =
OrganSystem.Aorta))))).
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• Natural language: Always during the time interval [0, 100] the liver dysfunction measure
(corresponding to scale and subsystem (Organ, Liver)) is equal to the average density of dam-
aged liver tissues (corresponding to scales and subsystems� (Tissue, DamagedLiverTissue)).
The assumption made here is that the density value represents the degree of damage suffered
by the liver tissue.
BLMSTL: G[0, 100] ({LiverDysfunction} (scaleAndSubsystem =
Organ.Liver) = avg(density(filter(regions, scaleAndSubsystem�
Tissue.DamagedLiverTissue)))).

To enable the explicit encoding of the probability with which a BLMSTL statement is
expected to hold, a probabilistic extension of BLMSTL called Probabilistic Bounded Linear
Multiscale Spatial Temporal Logic is defined.

Probabilistic Bounded Linear Multiscale Spatial Temporal Logic. A Probabilistic
Bounded Linear Multiscale Spatial Temporal Logic (PBLMSTL) property ϕ is a logic property
of the form P⋈θ[ψ] where⋈ 2 {<,< =,> =,>}, θ 2 (0, 1) and ψ is a BLMSTL property.

An illustrative example of a natural language probabilistic statement mapped into
PBLMSTL is given below:

Natural language: The probability is greater than 0.99 that always during the time interval [0,
95] if the concentration of EGFR (corresponding to scale and subsystem (Intracellular,
RasERKPathway)) increases over 20 M, then the cancerous cell (corresponding to scale and
subsystem (Cellular, Cancerous)) will divide i.e. the cell count will increase.
PBLMSTL: P> 0.99 [G[0, 95] (({EGFR}(scaleAndSubsystem = Intracellular.RasERKPath-
way)> 20))
(d(count(density(filter(regions, scaleAndSubsystem =
Cellular.Cancerous))))> 0))].

A PBLMSTL property ϕ� P⋈θ[ψ] holds for an MSSpDESM if and only if the probability
of ψ to hold for a model simulation is⋈θ. Therefore in order to determine the truth value of a
PBLMSTL property ϕ the likelihood of ψ being true needs to be computed.

Model checking
Themultiscale spatio-temporal model checking problem is to automatically verify if an
MSSpDESM satisfies a PBLMSTL property ϕ.

In order to solve the model checking problem only approximate probabilistic model check-
ing approaches are considered throughout. As illustrated in Table 2 the approaches considered
are either Bayesian or frequentist, and estimate or hypothesis testing based; a brief description
of each approach was given in our previous work [57] and will not be restated here.

By means of approximate probabilistic model checking approaches the verification of a
PBLMSTL specification against an MSSpDES model is guaranteed to terminate. Therefore the
corresponding multiscale spatio-temporal model checking problem is well-defined; see S5 Text
for a formal proof. Intuitively the main idea behind the proof is to show that in order to verify
an MSSpDES model the number of required model simulations is finite, and that the number
of time points considered for each model simulation is bounded. Therefore the PBLMSTL
specification is evaluated against a finite number of time points and model simulations, which
can be done in a finite number of steps.

Spatio-temporal meta model checking
One of the main limitations of our methodology, as described up to this point, is that the evolu-
tion over time of spatial properties can be described only with respect to the predefined
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collections of spatial entity types SETconsidered = {clusters, regions} and spatial measures
SMconsidered = {clusteredness, density, area, perimeter, distanceFromOrigin, angle, triangleMea-
sure, rectangleMeasure, circleMeasure, centroidX, centroidY}.

In order to overcome this limitation and enable automatically reconfiguring the methodol-
ogy according to case study specific spatial entity types and measures, we define a generalized
version of the multiscale spatio-temporal model checking methodology called multiscale spa-
tio-temporalmetamodel checking in which SETconsidered and SMconsidered are replaced with
meta collections of spatial entity types SET, and spatial measures SM, defined as follows:

• SET ¼ fsety j sety isaspatialentity typeforwhichthere
existsacorrespondingspatialdetectionmechanism fsety;

fsety : SpSVp ! f0; 1gm1�n1 � f0; 1gm2�n2 � . . .� f0; 1gmp�np ;

which detects sets of spatial entities SE of type sety in the

discretised spatial domaing:

Considering the spatial state variable tuples spsvt 2 SpSVp, fsety computes which positions of
the discretised space are occupied (1) by spatial entities or not (0); see [57] for examples of
spatial detection mechanisms corresponding to the spatial entity types clusters and regions.

Table 2. Considered approximate probabilistic model checking approaches.

Name Type Input Description Sample size Ref.

Chernoff-Hoeffding
bounds based

FE �, δ The absolute difference between the estimated p and
true p0 probability of ψ to hold is greater than � with
probability less than δ (i.e. P[|p − p0| > �] < δ).

n ¼ 4
�2
log 2

d

� �
[65]

Improved frequentist
statistical hypothesis

testing

FH α, β Wald’s sequential probability ratio test [66] is
employed to decide if the null hypothesis H0 is
rejected in favour of the alternative hypothesis H1

considering the upper bounds on the probability of
type I and type II errors α, respectively β.

The value of n is determined during the execution
of the model checking approach considering α, β
and the number and order of MSTML files against
which ψ evaluates true; see ([67] [p. 21]) for an
approach on how to compute an upper bound for n.

[59,
68]

Probabilistic black-box FH - The p-value associated with the null and alternative
hypotheses H0, respectively H1 is computed after
evaluating the n MSTML files against ψ. The
hypothesis with the lowest corresponding p-value
holds.

n > 0 [69,
70]

Bayesian mean and
variance based

BE α, β,
T

The probability ρ and variance ν of ψ to hold are
estimated considering the given MSTML files and the
Beta prior parameters α and β. New MSTML files are
evaluated against ψ until the condition ν < T holds.

The value of n is determined during the execution
of the model checking approach considering α, β, T
and the number and order of MSTML files against
which ψ evaluates true.

[71]

Bayesian statistical
hypothesis testing

BH α, β,
T

A measure B of confidence in the null hypothesis H0

relative to the alternative hypothesis H1 is computed
considering the Beta prior parameters α and β. New
MSTML files are evaluated against ψ until either B >
T or B < 1=T .

The value of n is determined during the execution
of the model checking approach considering α, β, T
and the number and order of MSTML files against
which ψ evaluates true.

[72,
73]

Each table body row corresponds to a different approximate probabilistic model checking approach. The columns from left to right record the name, type

(i.e. F—Frequentist, B—Bayesian, E—Estimate, H—Hypothesis testing), input parameters (excluding ϕ and MSTML files), description, sample size (i.e. n)

and reference corresponding to a model checking approach. The null (i.e. H0) and alternative (i.e. H1) hypotheses represent ϕ (e.g. P>θ[ψ]), respectively

the opposite of ϕ (e.g. P�θ[ψ]). Bayesian methods consider prior knowledge when deciding if a logic property holds. Conversely frequentist approaches

assume that no prior knowledge is available. All methods except probabilistic black-box take as input a user-defined upper bound on the approximation

error. They request additional model simulations until the result is sufficiently accurate. Conversely probabilistic black-box model checking takes a fixed

number of model simulations as input and computes a p-value as the confidence measure of the result.

doi:10.1371/journal.pone.0154847.t002
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• SM = {sm | sm is a spatial measure, sm: SE! SMV	 R, where SE is a set of spatial entities
and SMV is the corresponding domain of valid spatial measure values}; similarly see [57] for
examples of spatial measures corresponding to the spatial entity types clusters and regions.

These collections are called meta because they provide only a description of the conditions
which should hold for each spatial entity type and spatial measure but do not explicitly define
instances thereof.

The multiscale spatio-temporal meta model checking methodology enables the creation of
different multiscale spatio-temporal model checking methodology instances by replacing SET
and SM with case study specific collections of spatial entity types and spatial measures. These
instances can then be used to verify corresponding MSSpDES models. For instance, in order to
verify computational models considering a 3D representation of space a corresponding model
checking methodology instance could be created that replaces SET and SM with SET3D =
{cuboid, cylinder, sphere} and SM3D = {volume, centroidX, centroidY, centroidZ}.

A graphical description of the workflow employed to create multiscale spatio-temporal
model checking methodology instances is given in Fig 6. For simplicity a single multiscale
model checking methodology instance is considered throughout this paper corresponding to
the collections of spatial entity types and measures SETconsidered, respectively SMconsidered.

Whenever creating new multiscale model checking methodology instances there is an addi-
tional need to define corresponding image processing functions for automatically detecting
and analysing spatial entities in time series data. However such functions can often be defined
based on existing approaches from the image processing literature.

Finally following on from S5 Text, when verifying an MSSpDES model relative to a formal
PBLMSTL specification, the number of required model simulations and the number of
required state transitions for each model simulation do not depend directly on the considered
collections of spatial entity types and spatial measures. Therefore regardless of the considered
instances of SET and SM the multiscale spatio-temporal model checking problem is well-
defined.

Implementation
The multiscale spatio-temporal meta model checking approach was implemented in the model
checking software Mule which enables automatically verifying multilevel computational mod-
els of biological systems relative to formal specifications; the model checker name is a concate-
nation of the first and last two letters in the word “Multiscale”. For efficiency purposes Mule
was implemented in C++ and supports all approximate probabilistic model checking
approaches described in Table 2.

Depending on the approximate probabilistic model checking approach employed the num-
ber of MSTML files required to verify if the computational model is valid relative to a
PBLMSTL specification is computed differently. In case of Chernoff-Hoeffding bounds based
and probabilistic black-box model checking approaches the number of required MSTML files
can be computed before running Mule (i.e. statically). Conversely in case of the improved fre-
quentist and Bayesian statistical hypothesis testing, and Bayesian mean and variance based
model checking approaches the number of required MSTML files is determined only during
the execution of Mule (i.e. dynamically). To support generating MSTML files on-demand Mule
can take as input the path to a script (in our case Bash script) that simulates a computational
model and stores the resulting output in MSTML files; run Mule with the command line argu-
ment —help for more execution details.

The workflow for generating multiscale spatio-temporal model checker instances was
implemented as described in Fig 7. The main idea behind the implementation is to use two

A Novel Multiscale Spatio-Temporal Meta Model Checking Approach

PLOS ONE | DOI:10.1371/journal.pone.0154847 May 17, 2016 20 / 43



instead of one compilation (or translation) steps. The first compilation step takes a description
of the spatial entity types and measures as input and produces C++ source code as output. The
second compilation step translates the generated C++ source code in binary (i.e. executable)
format. Conceptually this approach is called “meta” because Mule is an abstract multiscale spa-
tio-temporal (meta) model checker that can be instantiated according to case study specific
spatial entity types and measures. From a practical point of view the user modifies only the
description of the spatial entity types and measures, while the source code and the correspond-
ing executables are automatically generated for him/her.

The main advantage of the workflow depicted in Fig 7 is that it enables the considered spa-
tial entity types and measures to be compiled into the model checking executable instead of
being (dynamically) loaded at runtime, which could negatively impact the model checker
performance.

Fig 6. Workflow for creatingmultiscale spatio-temporal model checkingmethodology instances. The workflow comprises two levels, the upper
generic (meta) level, and the lower specific (instance) level. The upper level comprises the multiscale spatio-temporal meta model checking methodology.
Conversely the lower level consists of the specific collections of spatial entity types and measures employed to create multiscale spatio-temporal model
checking methodology instances. For each considered pair (e.g. m) of spatial entity types and spatial measures collections a corresponding multiscale model
checking methodology instance is created. The resulting methodology instances (e.g. m) can then be employed for various case studies (e.g. n) to decide if
computational models (e.g. m,n) are correct relative to corresponding formal specifications (e.g. m,n) or not. Rounded rectangles and arrows having the
same border/line colour correspond to the same collections of spatial entity types and spatial measures.

doi:10.1371/journal.pone.0154847.g006
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Fig 7. Implementation of workflow for generatingmultiscale spatio-temporal model checker instances
according to user-defined spatial entity types and spatial measures. Starting from the problem one tries to solve,
an xml file is created describing the collections of spatial entity types and spatial measures of interest. These
collections are then verified with respect to relevant constraints captured by an xsd file; see http://mule.
modelchecking.org/standards for the latest version of the xsd file. If the xml file verification fails then the specification
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Mule was implemented as an offline model checker and takes as input model simulation
traces rather than the computational models used to generate them. Using trace analysis each
model simulation trace is evaluated against the PBLMSTL specification. The trace analysis
results corresponding to multiple model simulation traces are used by the employed model
checking approach to determine if the PBLMSTL specification holds for the model.

The main advantage of implementing Mule as an offline model checker is that it is decoupled
from the specific modelling formalisms employed to encode the computational models. Conse-
quently Mule can be employed to verify computational models encoded using various modelling
formalisms provided that the corresponding computational models satisfy the constraints of an
MSSpDES model without requiring the explicit translation of the computational models to
MSSpDES. In addition given that Mule takes simulation traces (i.e. time series data) as input it
can be employed to evaluate PBLMSTL specifications both against time series data generated in
silico or recorded in vitro. Conversely the main disadvantages of Mule are that the computa-
tional models need to be constructed and simulated using external tools, and the model simula-
tion output needs to be stored in or translated to csv format. To generate model simulations on
demandMule needs to be able to execute the model simulator from the command line.

In contrast to Mule inline approximate probabilistic model checkers (e.g. COSMOS [74],
PLASMA [75], PRISM [76], UPPAAL-SMC [77], Ymer [78]) are integrated modelling and ver-
ification environments that can be employed not only to verify, but also to construct and simu-
late computational models. In addition inline model checkers are usually more efficient than
their offline counterparts, because model simulations can be generated on-demand, in-memory
and potentially stopped early (i.e. as soon as the considered logic statement is accepted/
rejected). However inline model checkers typically require explicitly encoding computational
models in the model checker specific modelling formalism, and they can not be employed to
evaluate formal specifications against time series data recorded in vitro.

Both the source code and the executable corresponding to the Mule instance employed
throughout this paper are made freely available online at http://mule.modelchecking.org; this
Mule instance is defined with respect to the collection of spatial entity types SETconsidered and
spatial measures SMconsidered. Moreover a corresponding Docker image has been created pro-
viding a self-contained environment for executing/updating model checker instances which
can be run on all major operating systems without additional setup (except installing the freely
available software Docker).

Results
We illustrate the applicability of the model checker based on four multiscale systems biology
case studies published in the literature. The case studies were chosen such that the correspond-
ing computational models are of different types (i.e. deterministic/hybrid/stochastic), span dif-
ferent levels of organization (e.g. cellular/organ) and are encoded using different modelling
formalisms (e.g. ordinary differential equations/cellular automata) and software (e.g. Mor-
pheus/NetLogo); see Table 3 for a brief comparison of the multilevel computational models
considered.

Since Mule is implemented as an offline model checker and all approximate probabilistic
model checking algorithms employed here (see Table 2) are defined relative to simulation

of the spatial entity types and measures needs to be updated accordingly. Otherwise the xml file is employed by a C+
+ source code generator/translator written in Python to generate the corresponding Mule source files based on a set of
predefined templates. The source files are compiled to produce an executable version of the corresponding Mule
instance. This instance can then be employed to verify corresponding computational models.

doi:10.1371/journal.pone.0154847.g007
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traces, the computational models M1–M4 were not explicitly translated to an MSSpDES repre-
sentation. Instead the computational models encoded using high-level modelling formalisms
were simulated and the simulation output was stored in MSTML files. These MSTML files
were then provided as input to the model checker Mule. There are two main reasons for
employing the computational models encoded in high-level modelling formalisms (as devel-
oped by their original authors) instead of MSSpDES. First of all simulating an MSSpDES
computational model on a computer requires defining an MSSpDES operational semantics,
which was not given here. Secondly approximations inherent to the translation of computa-
tional models between different modelling formalisms could potentially impact the outcome of
the model checker execution.

In case of the deterministic continuous-state computational model M1 an alternative
approach, which is not considered here, would have been to translate M1 into a stochastic dis-
crete-state computational model. Using the approach described by Wilkinson [79] and under
the assumption that the volume of the media containing the species in the model is known,
concentrations can be converted into discrete numbers of molecules, and deterministic into
stochastic kinetic rate constants. The main reason for not translating M1 into a stochastic
model is that we want to illustrate that Mule can be employed to verify existing deterministic
continuous-state computational models relative to PBLMSTL specifications without the need
to initially alter the models. The probability of a PBLMSTL specification to hold for the deter-
ministic continuous-state model M1 is either 1 (i.e. true) or 0 (i.e. false).

The natural language and corresponding formal specifications, against which the models
were verified, have been derived from the original papers introducing the case studies. Quotes
from the original papers have been employed to create initial natural language statements
describing the expected system behaviour. The initial natural language statements were then
rephrased to match the constructs and structure typical to formal PBLMSTL statements; the

Table 3. Consideredmultilevel systems biology computational models against which the proposedmodel checkingmethodology and implemen-
tation were validated.

M1 M2 M3 M4

Description Rat cardiovascular system
dynamics

Uterine contractions of
labour

Xenopus laevis cell cycle Acute inflammation of
the gut and lung

Model type Deterministic Deterministic Hybrid Stochastic

Modelling
formalism(s)

Ordinary differential equations
(ODE)

Cellular automata (CA) ODEs + Cellular Potts model (CPM) Agent based modelling
(ABM)

Modelling
software

JSim Mathematica Morpheus NetLogo

Explicit spatial
representation

N Y Y Y

Levels of
organization

Cellular + Organ system Cellular + Tissue Intracellular + Cellular Cellular + Tissue
+ Organ

Case study
reference

[13] [14] [15] [16]

Model download
link

http://virtualrat.org/sites/
default/files/downloads/
Workflow_Model_Files_

12April2012.zip

http://s3-eu-west-1.
amazonaws.com/files.
figshare.com/1720626/

Supporting_Information_S1

http://imc.zih.tu-dresden.de/wiki/
morpheus/doku.php?id=examples:
multiscale#odes_in_cpm_cellscell_

cycle_and_proliferation

http://bionetgen.org/
SCAI-wiki/images/7/7d/
GutLungAxis2.1.nlogo

Each model (M1–M4) has an associated description and type (i.e. deterministic, stochastic or hybrid), was encoded using specific modelling formalisms

and software, represents space explicitly or not (Y—Yes, N—No), spans different levels of organization, and has a corresponding reference paper and

download link.

doi:10.1371/journal.pone.0154847.t003
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resulting statements are called rephrased natural language statements. Finally the rephrased
natural language statements were manually mapped into corresponding PBLMSTL statements.
Where insufficient information was available (e.g. probabilities) the numeric values employed
in the formal specification are quantitative approximations of the corresponding natural lan-
guage descriptions (e.g. with high probability) 0.9). The main purpose of the PBLMSTL
statements considered is to illustrate the expressivity of the methodology and not to predict
previously unknown biologically relevant properties. For reproducibility purposes the mapping
between quotes from the original papers, derived natural language statements and correspond-
ing PBLMSTL specifications is documented in the supplementary materials.

The model checking approach employed to verify the deterministic computational models
(M1 and M2) was probabilistic black-box because it does not place a lower bound on the
required number of model simulations and therefore is suitable for computational models
which are simulated only once. Conversely for the verification of the hybrid (M3) and stochas-
tic (M4) computational models improved frequentist statistical hypothesis testing was
employed setting the values of both input parameters α (i.e. probability of type I errors) and β
(i.e. probability of type II errors) to 5%. Therefore the number of model simulations considered
for the verification of computational models M3 and M4 was variable and computed relative to
the values of the input parameters α and β, respectively fixed and was equal to one for compu-
tational models M1 and M2.

All approximate probabilistic model checking approaches supported by Mule (see Table 2)
were previously introduced by other authors and are not directly dependent on PBLMSTL.
Therefore a comparison between the different model checking approaches, although interest-
ing, goes beyond the scope of this paper.

The computational models have been simulated, analysed and verified using the same regu-
lar desktop computer (Linux x64, Intel Core i5-2500 CPU @1.6 GHz, 16 GB DDR3 RAM
memory). To assess the performance of the approach execution times have been recorded for
all relevant steps of the model checking workflow.

Finally, for comparison purposes, the case studies and the corresponding computational
models will not be described individually but in parallel considering the steps of the model
checking workflow (i.e. model construction, multiscale spatio-temporal analysis, formal speci-
fication, model checking).

Model construction
Rat cardiovascular system dynamics. The cardiovascular system comprises the heart,

blood and blood vessels, and is the organ system responsible for delivering oxygen and nutri-
ents to, and removing waste products from the entire organism. Its dynamics changes in case
of a transient increase of the thoracic pressure (e.g. by performing the Valsalva manoeuvre)
which leads to reduced blood flow in the right atrium, reduced cardiac output and decreased
aortic pressure [13].

In order to describe the behavioural changes of the cardiovascular system during the Val-
salva manoeuvre Beard et al. built a multiscale non-spatial ODE model [13] by integrating two
previously existing models. The first model is an abstract representation of the cardiovascular
system [80]. Conversely the second model encodes the baroreflex mechanism [81] which is
employed to maintain the blood pressure of an organism at approximately constant levels. One
of the main advantages of the integrated multiscale model is that it enables relating changes at
the entire cardiovascular system level with changes at the baroreflex mechanism level and vice
versa, which was not possible when employing the constituent models separately. The hierar-
chical organization of the resulting model is encoded by theMA graph depicted in Fig 8.

A Novel Multiscale Spatio-Temporal Meta Model Checking Approach

PLOS ONE | DOI:10.1371/journal.pone.0154847 May 17, 2016 25 / 43



For verification purposes the numeric state variables considered at the organ system scale
are the thoracic pressure and the heart rate, and the aortic pressure at the cellular scale.

Uterine contractions of labour. Although it is known that usually during human labour
regions across the entire uterus contract in a coordinated fashion the underlying mechanisms
by which an initial local contraction propagates to the entire organ level are not fully under-
stood [14].

One hypothesis is that a positive feedback loop is created between the tissue level contrac-
tions and the intrauterine pressure as follows: An initial tissue level contraction increases the
intrauterine pressure and adds tension to the neighbouring regions, which in response start to
contract, thus increasing the intrauterine pressure even further and adding tension to their cor-
responding neighbouring regions which also start to contract, and the entire process is repeated
until all contractible regions across the entire organ are recruited.

In order to test this hypothesis Young and Barendse developed a corresponding predictive
deterministic computational model [14]. The model was encoded as a cellular automaton in
Mathematica and spans two levels of organization, the organ level for the uterus, and the tissue
level for the uterine regions; see Fig 9 for the correspondingMA graph.

At the organ (i.e. uterus) scale the numeric state variable considered is the intrauterine pres-
sure and space is encoded explicitly as a 4 × 4 grid, where each grid position represents a tissue
(i.e. uterine region). Conversely at the tissue level there is no explicit representation of space
and the recorded numeric state variables are the contractile, burst and refractory activities of
the uterine regions.

Fig 8. MA graph representing the multiscale organization of the rat cardiovascular system dynamics
computational model.

doi:10.1371/journal.pone.0154847.g008

Fig 9. MA graph representing the multiscale organization of the uterine contractions of labour computational model.

doi:10.1371/journal.pone.0154847.g009
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Xenopus laevis cell cycle. The cell cycle is a fundamental biological process which is
responsible for the replication/division of cells and is involved in the development and partial
renewal of organisms. Its complexity is usually proportional to the complexity of the consid-
ered organism. Therefore it is studied in lower and less complex organisms such as the Xenopus
laevis frog.

To gain a better understanding of the Xenopus laevis embryonic cell cycle and how it affects
cellular population growth the developers of the modelling software Morpheus [82] built a cor-
responding multiscale computational model [83]. The computational model describes how
three proteins CDK1, Plk1 and APC regulate the cell cycle at the intracellular level using ODEs
[15], and how cells divide and are displaced in 2D space at the cellular level using a CPM. The
correspondingMA graph is depicted in Fig 10.

At the cellular level space is represented explicitly as a 52 × 52 grid recording the spatial dis-
tribution of the population of cells. Conversely at the intracellular level there is no explicit
representation of space and the numeric state variables considered are the concentrations of
CDK1, Plk1 and APC.

Acute inflammation of the gut and lung. There is no single definition of inflammation in
the literature [84] but here we will interpret it as the response of a biological system to bodily
damaging stimuli. Depending on the intensity of the stimulus an inflammatory response initiated
in one organ can propagate to other organs and eventually lead to multiple organ failure [16].

To gain a better understanding of the relation between inflammatory responses and multi-
ple organ failure, G. An [16] built a multiscale agent-based computational model using the soft-
ware NetLogo which describes how the inflammation of either the gut (i.e. gut ischemia) or
lung (i.e. pneumonia) could potentially lead to the failure of both organs. The levels of organi-
zation considered in the computational model are cellular (for representing endothelial and
epithelial cells), tissue (for representing the organ luminal space, the blood vessel luminal
space, and the endothelial and epithelial layers), and organ (for representing the gut and lung);
see Fig 11 for the correspondingMA graph.

The organism level is not modelled explicitly and the corresponding vertex (Organism,
Human) was added to theMA graph in Fig 11 only to ensure that its structure is tree-like. At
the organ level space is not represented explicitly and the numeric state variables considered
represent the amount of solute which leaked into the gut and lung. Conversely at the tissue
level space is represented explicitly as a 31 × 31 grid where each grid position represents a cell.
The tissue level numeric state variables considered for both gut and lung are the total concen-
tration of cytoplasm and cell wall occludin, and the total cell damage by-product. At the cellu-
lar level the numeric state variables considered encode the level of ischemia for both gut and
lung endothelial cells.

Fig 10. MA graph representing the multiscale organization of the Xenopus laevis cell cycle computational model.

doi:10.1371/journal.pone.0154847.g010
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Multiscale spatio-temporal analysis
The computational models M1–M4 were simulated and the simulation results were translated
to MSTML.

The computational model simulation end time was computed as per Definition 1, S5 Text
considering the PBLMSTL statements against which each computational model was verified.

The translation of the simulation results to MSTML comprises multiple steps. First of all the
model simulation output is converted to csv format in order to ensure that the time series data
provided as input to the multiscale spatio-temporal analysis module is represented in a uni-
form manner. Secondly an MSTML subfile is generated for each considered time point,
numeric state variable and spatial region comprising one or multiple grid positions. In the end
all subfiles are merged into a single MSTML file. The main difference between the csv and cor-
responding MSTML file is that for each time point the former records the values associated to
entire discretised spatial domains, whereas the latter only captures the properties of the
detected spatial entities. The main advantage of storing to disk the results of the csv to MSTML
translation, and providing MSTML instead of csv files as input to the model checker is reusabil-
ity. MSTML files can be employed for the evaluation of different PBLMSTL specifications in
separate executions of the model checker without the need to run the csv to MSTML transla-
tion each time.

Execution times for the model simulation and subsequent translation steps corresponding
to all computational models are given in Table 4.

The most time consuming step for the rat cardiovascular system dynamics (i.e. 37.22s) and
the acute inflammation of the gut and lung (i.e. 329.6s) case studies was the model simulation
due to the large number of time points considered (i.e. 30001), and the stochastic nature and
high complexity associated with the model. Conversely the most time consuming step for the
uterine contractions of labour (i.e. 25.15s) and Xenopus laevis cell cycle (i.e. 12.06s) case studies
was generating the MSTML subfiles due to the spatial regions which have been automatically
detected and analysed for each spatial state variable considered.

The least time consuming step for all case studies was converting the model simulation out-
put to csv format.

Fig 11. MA graph representing the multiscale organization of the acute inflammation of the gut and lung computational model.

doi:10.1371/journal.pone.0154847.g011
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Formal specification
The generated MSTML files representing the behaviour of the computational models and the
correspondingMA graphs are employed during the evaluation of the formal specifications
described in natural language in Table 5. The equivalent PBLMSTL specifications for the rat
cardiovascular system dynamics, the uterine contractions of labour, the Xenopus laevis cell
cycle and the acute inflammation of the gut and lung case studies are given in S1, S2 and S3
Files, respectively S4 File.

Throughout natural language specifications are translated to PBLMSTL such that the i-th
natural language statement corresponds to the i-th PBLMSTL statement.

Model checking
Each computational model has been verified against the relevant PBLMSTL statements 500
times, where each PBLMSTL statement was stored in a separate file. The main reason for
repeating the model verification procedure 500 times for each computational model and
PBLMSTL statement is to compute the variation of the model checker execution time between
runs, and the variation of the number of MSTML files considered for the hybrid (M3) and sto-
chastic (M4) computational models. Results obtained for each of the 500 model checker execu-
tions and PBLMSTL statements corresponding to the computational models M1, M2, M3 and
M4 are given in S6, S7 and S8 Texts, respectively S9 Text. The output of the statistical analysis
of the model checking results is summarized in Table 6.

Empirical evidence shows that all computational models are correct relative to the formal
specifications derived from the original papers introducing the models.

Table 4. Model simulation and analysis execution times for the rat cardiovascular system dynamics,
the uterine contractions of labour, the Xenopus laevis cell cycle, and the acute inflammation of the gut
and lung case studies.

Execution time (seconds)

M1 M2 M3 M4

Model simulation 37.22 1.13 1.79 329.6

Convert simulation output to csv format 0.33 0.02 1.31 2.62

Generate MSTML subfiles 25.52 25.15 12.06 64.82

Merge subfiles into single MSTML file 31.21 0.44 1.66 2.88

The steps considered are model simulation, conversion of the simulation output to csv format, generating

an MSTML subfile for each considered time point, numeric state variable and spatial region comprising one

or multiple grid positions, and merging subfiles into a single MSTML file. Depending on the computational

model type (i.e. deterministic/stochastic/hybrid) and the formal specification against which it was verified,

the number of considered model simulations, and time points per model simulation differed. Computational

models are distinguished by their model id (i.e. M1–M4). The execution time of the deterministic

computational models M1 and M2 was computed by simulating the models and analysing the resulting

model simulation output one time. Conversely the execution time of the hybrid (M3) and stochastic (M4)

computational models was computed as the average execution time of 1500, respectively 500 repeated

runs of the model simulation and model simulation output analysis steps. The number of time points

recorded for each model simulation was 30001 for computational model M1, 330 for M2, 103 for M3, and

1000 for M4. The number of time points was fixed due to two reasons. First of all the model simulation time

interval considered was bounded. Secondly the model simulators recorded state changes considering a

fixed user-defined simulation time step size (chosen by the original model authors).

doi:10.1371/journal.pone.0154847.t004
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Due to the deterministic nature of computational models M1 and M2, the corresponding
model checking results were obtained by considering a single MSTML file, and therefore were
identical across all 500 model checker executions. The main difference between the PBLMSTL
statements considered is that in case of statements 1, 2, 4 and 6 the estimated probability p for
them to hold, computed as #true MSTML divided by #total MSTML, was p = (1 / 1) = 1,
whereas for the PBLMSTL statements 3 and 5 it was p = (0 / 1) = 0. However since the associ-
ated probabilistic specification for the PBLMSTL statements 1, 2, 4 and 6 was p> 0.9 (i.e.
1> 0.9), and p< 0.1 (i.e. 0< 0.1) for the PBLMSTL statements 3 and 5, all PBLMSTL state-
ments hold.

Conversely in case of the hybrid (M3) and stochastic (M4) computational models the model
checking results were obtained by considering multiple MSTML files. Moreover the number of
MSTML files against which the corresponding PBLMSTL statements evaluated true varied
between model checker executions (e.g. see Table 6, row corresponding to SId 7). However the
result of the model verification procedure was always the same (see Table 6, column 3).

The average model checker execution times corresponding to the verification of the deter-
ministic computational models M1 and M2 were smaller than for the hybrid, respectively

Table 5. Natural language descriptions of the formal specifications employed for the rat cardiovascu-
lar system dynamics, the uterine contractions of labour, the Xenopus laevis cell cycle, and the acute
inflammation of the gut and lung case studies.

MId SId Description

1 1 The probability is greater than 0.9 that after initiating the Valsava manoeuvre (time = 5000 ms)
the thoracic pressure increases from the baseline value -4 to 16 for 10 seconds (time interval
[5001 ms, 14999 ms]), and then drops back to the baseline value -4.

2 The probability is greater than 0.9 that during the initial phase of the response (time interval
[5001 ms, 6500 ms]) the aortic pressure increases and the heart rate decreases.

3 The probability is less than 0.1 that after the initial response phase (time interval [5001 ms,
6500 ms]) the aortic pressure continues to increase or stay constant, respectively the heart
rate continues to decrease or stay constant throughout the remainder of the Valsava interval
(time interval [6501 ms, 14999 ms]).

2 4 The probability is greater than 0.9 that the intrauterine pressure increases/decreases with the
contractile activity of uterine regions.

5 The probability is less than 0.1 that the intrauterine pressure decreases when the entire uterus
experiences an action potential burst.

6 The probability is greater than 0.9 that the intrauterine pressure decreases when the entire
uterus is in the refractory period.

3 7 The probability is greater than 0.9 that whenever the concentration of CDK1 reaches very high
levels (in our case >96% of its maximum value) all cells will divide.

8 The probability is greater than 0.9 that whenever the average concentration of APC increases
and reaches its local maximum value no cell will divide.

9 The probability is greater than 0.9 that the average concentrations of CDK1, Plk1 and APC
increase and then decrease (i.e. oscillate) over time at least three times.

4 10 The probability is greater than 0.9 that if the level of cytoplasm occludin in the lung decreases
then eventually the number of ischemic endothelial lung cells will increase.

11 The probability is greater than 0.9 that always an increase of the cell damage by-product in the
gut will lead to an increase of the cell damage by-product in the lung.

12 The probability is greater than 0.9 that if the level of cell wall occludin in the gut decreases
then eventually the amount of solute leaking in the gut lumen will increase.

Each model is identified by an id (column “MId”) and has an associated set of natural language statements.

Conversely each natural language statement has a corresponding id (column “SId”) and description

(column “Description”).

doi:10.1371/journal.pone.0154847.t005
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stochastic computational models M3 and M4. This is due to the difference in the number of
MSTML files considered which was one for computational models M1 and M2, and ≊28 for
computational models M3 and M4. Moreover the variation in the average model checker exe-
cution times between the computational models M1 and M2, respectively M3 and M4 is due to
the difference in the number of time points considered per model simulation which was 30001
for M1 and 330 for M2, respectively 103 for M3 and 1000 for M4. Average model checker exe-
cution times corresponding to the same computational model but different PBLMSTL state-
ments were approximately equal throughout because most of the execution time is spent on
reading the MSTML file(s) from disk and not the evaluation of the PBLMSTL statements.

By storing the PBLMSTL statements corresponding to a computational model in separate
files each MSTML file read by the model checker from disk is evaluated against only one rather
than all PBLMSTL statements. Therefore in order to reduce the average model checker execu-
tion time all PBLMSTL statements corresponding to the same computational model could be
written into a single file. A comparison between average execution times obtained for 500
model checker executions considering all PBLMSTL statements written into single, respectively
multiple separate files are given in Table 7. Regardless of the computational model considered
the average model checker execution time was approximately three times smaller when storing
PBLMSTL statements in single rather than multiple separate files. The main reason for this is
that the total number of MSTML files read from disk, which takes up most of the model

Table 6. Statistical analysis of the model checking results for the rat cardiovascular system dynamics, the uterine contractions of labour, the
Xenopus laevis cell cycle, and the acute inflammation of the gut and lung case studies.

MId SId % true PBLMSTL #total MSTML #true MSTML #false MSTML Execution time

μ σ μ σ μ σ μ σ

1 1 100 1 0 1 0 0 0 17.67 0.12

2 100 1 0 1 0 0 0 17.61 0.13

3 100 1 0 0 0 1 0 17.8 0.36

2 4 100 1 0 1 0 0 0 0.55 0.01

5 100 1 0 0 0 1 0 0.54 0.01

6 100 1 0 1 0 0 0 0.54 0.01

3 7 100 28.79 2.04 28.61 1.62 0.19 0.44 35.35 2.44

8 100 28 0 28 0 0 0 34.29 0.09

9 100 28 0 28 0 0 0 35.36 0.99

4 10 100 28 0 28 0 0 0 87.39 0.72

11 100 28 0 28 0 0 0 90.27 2.23

12 100 28 0 28 0 0 0 87.03 0.65

Entries in the “MId” and “SId” columns represent the numeric identifiers associated with each computational model and its corresponding PBLMSTL

statements. The “% true PBLMSTL” column describes what percentage of the 500 model checker executions concluded that the PBLMSTL statement is

true. “#total MSTML” represents the total number of MSTML files evaluated for the PBLMSTL statement during a single model checker execution;

columns “#true MSTML” and “#false MSTML” represent the number of MSTML files for which the PBLMSTL statement was evaluated true, respectively

false, during a single model checker execution. “Execution time” records the average runtime in seconds for each model checker execution. “μ” and “σ”

represent the mean and standard deviation. Due to the deterministic nature of computational models M1 and M2 only one simulation trace was employed

for their verification (see table rows corresponding to MId 1 and MId 2, table column 4). Conversely the number of simulation traces considered for the

verification of computational models M3 and M4 was equal to 
28 (see table rows corresponding to MId 3 and MId 4, table column 4), and was computed

as a function of the input parameters α and β of the improved statistical hypothesis testing model checking approach. The model simulation traces

employed for the verification of computational models M3 and M4 were chosen randomly from the collection of 1500, respectively 500 simulation traces

generated to compute the average execution times given in Table 4.

doi:10.1371/journal.pone.0154847.t006
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checker execution time, was reduced by a factor equal to the number of PBLMSTL statements
considered (i.e. 3).

The model checker execution times given in Tables 6 and 7 were measured when providing
pre-generatedMSTML files as input toMule. However Mule can be additionally employed to ver-
ify computational models by generating MSTML files on demand. In order to measure the model
checker execution time when all MSTML files are generated on-demand the computational
model M3 was verified 500 times relative to the corresponding PBLMSTL statements stored in a
single file, without providing any pre-generated MSTML files as input. The average execution
time of the 500 runs was 317.7s i.e.
9 times more than when providing pre-generatedMSTML
files as input (i.e. 36.3s). The large difference in execution time is due to the fact that when gener-
ating MSTML files on-demandMule needs to wait for the MSTML files to be generated (i.e. for
the computational model to be simulated and the model simulation output to be translated to
MSTML) before evaluating the PBLMSTL specification against them. Therefore there is a model
checker execution time overhead when verifying computational models using on-demand gener-
atedMSTML files. The magnitude of the execution time overhead depends on the number of
MSTML files against which the PBLMSTL specification is evaluated, and the time required to
generate a newmodel simulation and translate the model simulation output to MSTML.

A comparison between the average execution times recorded for simulating the model,
translating the output to MSTML and verifying it using model checking is given in Fig 12.

The most time consuming step in the model checking workflow for both the cardiovascular
system dynamics and acute inflammation of the gut and lung case studies is the model simula-
tion. This is due to the large number of time points considered in case of the former, and the
high complexity associated with the stochastic computational model in case of the latter. Con-
versely for the uterine contractions of labour case study the most time consuming step in the
model checking workflow is generating the MSTML subfiles due to the additional need to auto-
matically detect and analyse spatial regions of three types (i.e. corresponding to the contractile,
burst and refractory activities) for each simulation time point. In contrast, the most time con-
suming step in the model checking workflow for the Xenopus laevis cell cycle case study is
model checking due to the need to evaluate each PBLMSTL statement against multiple
MSTML files. The least time consuming step in the model checking workflow for all case stud-
ies is converting the simulation output to csv format.

For reproducibility purposes theMA graph, the pre-generated MSTML file(s), the formal
PBLMSTL specification, and the excerpts from the referenced papers used to write the formal
specification for each case study are made available as supplementary materials; see Table 8 for

Table 7. Comparison of averagemodel checker execution times when PBLMSTL statements corre-
sponding to a computational model are stored in a single, respectively multiple separate files.

MId Execution time (seconds)

Single file Separate files

1 17.9 53.07

2 0.56 1.63

3 36.3 105

4 87.51 264.68

The “MId” column records the numeric identifiers associated with each computational model. Average

model checker execution times corresponding to PBLMSTL statements stored in a single, respectively

multiple separate files are given in columns “Single file” and “Separate files”.

doi:10.1371/journal.pone.0154847.t007
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details. Due to file size constraints only a subset of the total number of generated MSTML files
was made available for the Xenopus laevis cell cycle (see S3 Dataset) and the acute inflamma-
tion of the gut and lung (see S4 Dataset) case studies; the complete datasets are made freely
available online at http://mule.modelchecking.org/case-studies.

Discussion
The need for reasoning about how systems evolve over multiple temporal and spatial scales has
been previously emphasized in the literature. For instance Van de Weghe et al. [85] have

Fig 12. Average execution times (measured in seconds) corresponding to the verification of the rat cardiovascular system dynamics, the
uterine contractions of labour, the Xenopus laevis cell cycle, and the acute inflammation of the gut and lung computational models. Execution
times were recorded for the computational model simulation, converting the output to csv format, generating MSTML subfiles for each considered time
point, numeric state variable and spatial entity, merging the subfiles into a single MSTML file, and model checking.

doi:10.1371/journal.pone.0154847.g012
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defined a theoretical framework which enables describing and analysing how geographical phe-
nomena observed at higher scales are reflected at lower scales and vice versa. However there is
a lack of corresponding model checking approaches for computational models of such systems.

To the best of our knowledge the only related multiscale model checking approach which
explicitly distinguishes between multiple spatial scales without (initially) accounting for time
was introduced by Grosu et al. [86] for detecting patterns in images. The multiscale representa-
tion of space was created by recursively splitting a spatial domain in quadrants (a finite number
of times) and representing the resulting hierarchy as a quadtree. A formal logic called Linear
Spatial Superposition Logic (LSSL) and a corresponding model checking algorithm were intro-
duced in order to encode specifications relative to spatial subdomains along a linear path
through the quadtree. More recently both the formal logic and corresponding model checking
algorithm were extended by Gol et al. [87] to account for branching paths through quadtrees
(Tree Spatial Superposition Logic), and by Haghighi et al. [88] to account for the evolution of
the quadtrees over time (SpaTel). Although efficient for pattern detection (and generation)
these approaches could be potentially too restrictive for reasoning about general multiscale sys-
tems since only one spatial domain is considered and the relationship between consecutive lev-
els/scales is fixed. Moreover it is not possible to describe how spatial entities potentially
spanning multiple quadrants of the spatial domain, and their properties change over time.

In this paper we have introduced a novel multiscale spatio-temporal meta model checking
methodology which enables automatically verifying multilevel computational models of bio-
logical systems relative to specifications describing the desired/expected system behaviour.

Our approach is generic and supports multilevel computational models of biological sys-
tems encoded using various high-level modelling formalisms (e.g. CPMs, ABMs) because it is
defined relative to time series data and not the models used to produce them. This is illustrated
by the four case studies which were formally encoded using ODEs (rat cardiovascular system
dynamics), CAs (uterine contractions of labour), CPMs (Xenopus laevis cell cycle), ABMs
(acute inflammation of the gut and lung) or combinations thereof.

Although the model checker is flexible regarding the modelling formalism employed to
encode the computational models it requires that the model simulation output is translated to
the standard MSTML format. During the translation process non-spatial state variables (e.g.
concentrations) are mapped directly from their native format to MSTML. Conversely in case
of spatial state variables the multiscale spatio-temporal analysis module is additionally exe-
cuted for automatically detecting emergent spatial entities (e.g. clusters) and computing their
properties (e.g. area).

The model checker can be adapted automatically to case study specific spatial entity types
(e.g. 3D spatial structure) and/or properties (e.g. minimum distance to a fixed point) not cov-
ered by our multiscale spatio-temporal analysis module. External analysis tools can be
employed to automatically detect and analyse these case study specific spatial entities, and to

Table 8. Availability of theMA graph, the generated MSTML file(s), the formal PBLMSTL specification, and the excerpts from the referenced papers
used to write the formal specification for each case study.

MId MA graph MSTML file(s) PBLMSTL specification Excerpts from referenced papers

1 S5 File S1 Dataset S1 File S10 Text

2 S6 File S2 Dataset S2 File S11 Text

3 S7 File S3 Dataset S3 File S12 Text

4 S8 File S4 Dataset S4 File S13 Text

The “MId” column records the numeric identifiers associated with each computational model.

doi:10.1371/journal.pone.0154847.t008
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convert the output to the MSTML format. The corresponding instance of the multiscale spa-
tio-temporal meta model checker can be generated automatically based on a configuration file
without the need to modify the implementation by hand.

The set of MSTML files representing the model behaviour can be generated either before or
during the evaluation of a PBLMSTL specification. In case of the latter the model checker must
be executed with an additional parameter representing the path to an external program which
runs model simulations on demand, translates the output to MSTML and stores the resulting
files in a predefined location. The overhead of generating MSTML files during (i.e. on demand)
rather than before the evaluation of the PBLMSTL specification depends on the number of
required MSTML files and the time required to simulate the computational model and trans-
late the output to MSTML.

We have illustrated the applicability and flexibility of the model checker Mule by verifying
four systems biology computational models previously published in the literature relative to
formal specifications derived from the original papers introducing the models. Although only
the probabilistic black box (see rat cardiovascular system dynamics and uterine contractions of
labour case studies) and frequentist statistical model checking algorithms (see Xenopus laevis
cell cycle and acute inflammation of gut and lung case studies) were employed here, additional
frequentist (i.e. based on Chernoff-Hoeffding bounds) and Bayesian (i.e. hypothesis testing,
mean and variance estimate based) model checking algorithms are supported.

The scalability of the entire model verification workflow depends on the scalability of the
model simulation, multiscale spatio-temporal analysis and model checking steps. The execu-
tion time of the model simulation depends on the complexity of the system under consider-
ation. Conversely the execution times of both the multiscale spatio-temporal analysis and the
model checker depend on the size of the simulation output. In addition, the model checker exe-
cution time also depends on the formal specification. Our expectation is that scaling up to
more complex systems will lead to an increase of the computational model complexity but not
necessarily the size of the simulation output and/or formal specification. Therefore the
expected scalability bottleneck of the entire model checking workflow is the model simulation
and not the model verification step. This is supported by empirical evidence obtained from the
case studies; the ratio between the maximum and minimum execution times for the model sim-
ulation step was ≊290, ≊5 for the multiscale spatio-temporal analysis, and ≊156 for model
checking. In addition it would be possible to speed up the model checking step by evaluating
MSTML files against the formal specification in parallel rather than sequentially as it is done
now.

To enable computational modellers to easily adopt our approach for the verification of mul-
tilevel computational models of biological systems the model checker Mule (source code,
binary, Docker image) and relevant supplementary materials are made freely available online
via the official web page http://mule.modelchecking.org.

Building on our model checking methodology we could consider the following extensions
in the future. First of all it is assumed throughout that computational models are translatable to
an MSSpDES representation which means that any computational model encoded using a
potentially incompatible high-level modelling formalism will be translated to a corresponding
MSSpDES representation subject to potential approximation errors (e.g. consider continuous
computational models). Alternative representations could be employed instead. Secondly,
although our methodology is automatically reconfigurable according to case study specific spa-
tial entity types and measures, there is a need for the corresponding spatio-temporal analysis
tools to be developed. The spatio-temporal analysis modules described here are currently
restricted to pseudo-3D spatial entity types and measures, but could be extended in the future
for other numbers of dimensions. Thirdly the efficiency of Mule could be improved by
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supporting on-the-fly model checking. However this means that all computational models con-
sidered would need to be explicitly translated to a common (e.g. MSSpDES) representation
before being verified. Fourthly the efficacy of the methodology was tested only against in silico
generated time series data, but our expectation is that it could be employed for analysing exper-
imental time series data as well. Moreover since the methodology is not restricted to biological
case studies, non-biological case studies could be additionally considered in order to test the
limitations of the approach and potentially identify new features which could be included in
forthcoming versions. Finally the efficacy of the multiscale model checking approach could be
assessed in the future in the context of robustness analysis, parameter estimation/synthesis,
and model construction problems.

Conclusions
In this paper we have defined a multiscale spatio-temporal meta model checking methodology
which enables the automatic verification of multilevel computational models with respect to
how both numeric (e.g. concentrations) and spatial (e.g. area) properties change over time con-
sidering multiple levels of organization.

The approach was implemented in our model checking software Mule which is made freely
available online. To encourage potential contributions (e.g. extensions) the source code is
hosted in a public GitHub repository. For flexibility purposes Mule supports both frequentist
and Bayesian, estimate and statistical hypothesis testing based model checking approaches.

We have illustrated the applicability of the model verification approach using four represen-
tative systems biology case studies published in the literature, namely the rat cardiovascular
system dynamics, the uterine contractions of labour, the Xenopus laevis cell cycle and the acute
inflammation of the gut and lung.

Our approach enables computational modellers to construct reliable multilevel computa-
tional models of biological systems in a faster manner than it is done currently. These compu-
tational models could then be potentially translated into systems medicine to provide patient
specific predictions on the evolution of diseases and their treatment across multiple levels of
organization.
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