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Environmental contaminants in ambient air pollution pose a serious risk to long-term
metabolic health. Strong evidence shows that prenatal exposure to pollutants can
significantly increase the risk of Type II Diabetes (T2DM) in children and all ethnicities,
even without the prevalence of obesity. The central nervous system (CNS) is critical in
regulating whole-body metabolism. Within the CNS, the hypothalamus lies at the
intersection of the neuroendocrine and autonomic systems and is primarily responsible
for the regulation of energy homeostasis and satiety signals. The hypothalamus is
particularly sensitive to insults during early neurodevelopmental periods and may be
susceptible to alterations in the formation of neural metabolic circuitry. Although the
precise molecular mechanism is not yet defined, alterations in hypothalamic
developmental circuits may represent a leading cause of impaired metabolic
programming. In this review, we present the current knowledge on the links between
prenatal pollutant exposure and the hypothalamic programming of metabolism.

Keywords: prenatal environmental exposures, air pollution, hypothalamic development, neuroinflammation,
metabolic programming, metabolic syndrome, diabetes
INTRODUCTION

Air pollution is one of the leading environmental concerns and poses a significant risk to the health
of people around the world, despite advancements in medicine and technology. According to the
World Health Organization, around 7 million deaths were prematurely caused by air pollution per
year, including both ambient outdoor pollution and household pollution (1, 2). Of those deaths in
2016, the majority (4.2 million) were caused by outdoor air pollution including particulate matter
(PM) (3, 4), ozone, nitrogen and sulfur dioxide, and carbon monoxide (5). Exposures to air
pollution during early life and adulthood have been shown to propagate adverse health effects (6–
13). Still, less is known about the impact of early-life exposures during gestation and the neonatal
period on metabolic syndrome (14). A growing body of literature suggests that environmental
contaminants can predispose to metabolic syndrome and disease, which have steadily increased in
recent decades and are projected to continue rising (8, 15–20). While an exact mechanism
linking pollutant exposures with metabolic programming remains unclear, a combination of
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factors likely determines the predisposition to impaired
metabolism. Here we discuss a few of the possible routes by
which air pollution could be contributing to metabolic
disruption in offspring (Figure 1).
THE DEVELOPMENTAL PROGRAMMING
OF THE HYPOTHALAMUS

In the CNS, the hypothalamus is the main region critical for the
regulation of whole-body metabolism (21, 22). The hypothalamus is
comprised of nuclei containing distinct neuronal populations that
produce neuropeptides critical for the regulation of body core
temperature, metabolic rate, satiety signals, sexual dimorphism
and reproduction, circadian rhythm, energy homeostasis, and
glucose metabolism (22–24). Recent studies in vertebrate genetic
models have demonstrated that the development of hypothalamic
neurocircuitry can be influenced by various nutritional and
environmental cues in early life (25, 26). In humans, connectivity
of a subset of these pathways occurs during gestation, while in
rodents, refinement of connections occurs in early postnatal life
(25). The rodent hypothalamus develops during a relatively long
period, beginning early in gestation and continuing during the
postnatal period (27). The developing hypothalamus is therefore
exposed to two distinct environments: one in utero (around mid-
gestation to birth) and the other extra utero (27–29). These
developmental windows represent important intervals of
vulnerability during which alterations in the maternal
environment may lead to abnormal hypothalamic development
and subsequent metabolic alterations.

The arcuate nucleus of the hypothalamus (ARC) contains pro-
opiomelanocortin (POMC) neurons that produce the anorexigenic
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peptide melanocyte-stimulating hormone (MSH) and neurons that
co-express the orexigenic peptides neuropeptide Y (NPY) and
agouti-related protein (AgRP), which regulate food intake and
energy expenditure (30–32). The POMC and NPY/AgRP neurons
project to the paraventricular hypothalamic nucleus (PVN) and
lateral hypothalamus (LH), as well as regions outside the
hypothalamus, to regulate energy homeostasis and nutrient intake
(22). Developmental abnormalities of these hypothalamic
neurocircuits are associated with alterations in body weight,
metabolic imbalance, chronic stress, and obesity (33).
Importantly, the interaction of hypothalamic neurons with
neighboring glial cells (especially astrocytes and microglia) is
critical for sensing hormonal changes and various metabolites.
Impairments in these interactions can have an impact on
hypothalamic physiology and dysfunction in the context of
systemic metabolism and metabolic disease.
GLIAL ROLE IN HYPOTHALAMIC
DEVELOPMENT

Microglia, the resident parenchymal myeloid cells of the CNS,
have been shown to play a vital role in hypothalamic
development (34). Microglia are remarkably sensitive to
external environmental stressors such as ozone, diesel exhaust,
air pollution, and environmental contaminants (35–38) (39),
causing them to interact with neighboring neurons to control
their local environment through the modulation of inflammatory
pathways (40–42). During both prenatal and postnatal
development, microglia play a critical role in cross-talk
between the nervous and immune systems and in many
developmental processes (43). Activation of the immune
FIGURE 1 | Prenatal air pollution exposure induces hypothalamic and metabolic dysfunction.
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system during pregnancy or early life has been shown to exert
long-term effects on the wiring of neural circuits and may
contribute to the etiology of neurodevelopmental and
metabolic disorders (44–46). In humans, microglia colonize the
developing brain between weeks 4 and 24 of gestation (47) while
in rodents, it begins around embryonic day 8 (E8) (48). By birth,
microglia normally transition from an amoeboid to a ramified
“surveillant” state and remain this way until subjected to an
immune challenge (49). Maternal exposure to persistent stressors
during pregnancy can lead to maternal immune activation
(MIA), forcing fetal microglia to remain activated, also known
as microglial priming (50, 51). Upon subsequent immune
challenges later in life, these cells can inappropriately react
with excessive cytokine release as a result of immune memory
(51). The early embryonic development of immune-sensing
microglia potentially plays a role in the sensitivity of the
developing CNS (52). The distribution and function of
embryonic microglia in the developing brain was covered in
detail elsewhere (53). While the role of microglia in the
developmental stages of hypothalamic neurocircuits is still
emerging, embryonic microglia can influence gliogenesis
within the developing hypothalamus (54). Specific depletion of
microglia in mice during embryonic development caused a
decrease in hypothalamic POMC neurons postnatally and
accelerated weight gain in early postnatal life (34), emphasizing
the necessity of microglia for the development of the
hypothalamic satiety signals. Hypothalamic embryonic
microglia are very sensitive to insults and can coordinate
innate immune response following an insult via microglial
TAM receptors (55), providing additional insights into the role
of microglia in hypothalamic developmental programing.

Astrocytes, the most abundant glial cell type in the brain, are
largely produced during gliogenesis (53). Astrocyte development
begins around E18 and lasts until roughly P7 in mice, although
adult astrocytes retain the ability to divide and differentiate (53, 56).
Microglia have been proposed to influence the transition from
neurogenesis to astrogenesis (57). Like microglia, astrocytes
significantly regulate synaptogenesis, mostly postnatally in mice,
by secreting factors such as brain-derived neurotrophic factor
(BDNF) and glypican 4 and 6 (Gpc4 & Gpc6) and through the
generation of lipids (58–60). Under normal physiologic conditions,
astrocytes support the nutritional needs of the neurons by
producing and shuttling metabolites such as lactate and ketone
bodies (61, 62). More recently, astrocytes have been proposed to
help maintain the integrity of the blood-brain barrier (63, 64) and
synaptic transmission between neurons through the protection of
gap junctions (64). Hypothalamic astrocytes sense glucose and fatty
acids and express receptors for several peripheral hormones such as
leptin and insulin (65). During development, hypothalamic
astrocytes express unique clusters of genes critical for growth and
development (66). Microglia and astrocytes are in constant
crosstalk, thereby influencing the activity of one another. Early-
life microglial activation as a result of pollution exposure may
thereby alter astrocyte function later in life (67), inducing
the activation of astrocytes and microglia and subsequent
neuroinflammation (58). Considering the critical roles microglia
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and astrocytes play during hypothalamic development,
understanding the interaction between these cells and their
responsiveness to the early-life insults, can provide insights into
the pathogenesis of metabolic disease.
HYPOTHALAMIC RESPONSE TO
POLLUTANTS: NEUROINFLAMMATION
AND ALTERED DEVELOPMENT

A growing body of evidence now implicates that exposure to air
pollutants and toxins leads to hypothalamic neuroinflammation
and subsequent metabolic dysregulation (55, 68–71). For
example, when pregnant mice were exposed to diesel exhaust
(DE) inhalation from E9-17, the fetal brains of the offspring
showed altered cytokine and chemokine levels at E18, including
increased pro-inflammatory IL-6 and decreased anti-
inflammatory IL-10 (71). In adulthood, DE-exposed offspring
fed a high-fat diet (HFD) had increased microglial activation in
several brain regions, including the hypothalamus, indicative of
long-term microglial priming from the prenatal exposure (71).
Additionally, DE-exposed offspring demonstrated increased
weight gain, energy intake, and insulin levels, either before or
after HFD feeding, with males exhibiting a more severe
phenotype (71). Thus, prenatal DE exposure triggers
neuroinflammatory responses during gestation that lead to
microglial priming, predisposing offspring to adult diet-
induced metabolic imbalance and neuroinflammation (71, 72).
Similarly, male offspring of pregnant dams treated with
intermittent doses of diesel exhaust particles (DEP) from E2-17
demonstrated increased expression of IL-1b in serum and brain
tissue following an immune challenge with LPS (69). However,
only male offspring of DEP-exposed dams exhibited exaggerated
weight gain, insulin resistance, and anxiety-like behavior when
challenged with HFD compared with male control offspring (69).
In support, we have previously demonstrated that maternal
exposure to inhaled benzene throughout pregnancy was
associated with hyperglycemia, insulin resistance, reduced
energy expenditure, and increased hepatic inflammation in the
adult male offspring (73). Similarly, exposure to benzene in
adulthood was also associated with a metabolic imbalance in
male but not female mice (74).

Harmful environmental conditions can pose a serious threat
to the development of hypothalamic neurocircuits (75–80).
Exposing rats to various endocrine-disrupting polychlorinated
biphenyls (PCBs) during gestation (77) and a subsequent
postnatal immune challenge (78), alters hypothalamic
neuropeptide gene expression and cytokine levels in the serum
in a sexually dimorphic manner (78). During gestation,
hypothalamic microglia also show strong sensitivity to
exposure to the endocrine-disrupting chemical (EDC)
bisphenol A (BPA). In mouse studies, offspring prenatally
exposed to BPA had early hypothalamic neurogenesis (81),
altered embryonic microglia (82), reduced anorexigenic
hypothalamic projections, central leptin resistance, and a
delayed postnatal leptin surge (79). Similarly, BPA exposure in
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pregnant dams induced a significant increase in microglia
numbers and the expression of inflammatory genes in the fetal
hypothalamus (83). Thus, gestational BPA exposure in mice
negatively impacts the development of embryonic hypothalamic
microglia, associated with increased microglia numbers,
expanded microglial process ramification, and increased
numbers of microglial phagocytic cups (82). Studies in rats
have also demonstrated the influence of exposure to toxins on
postnatal hypothalamic development through lactation (84–86).
A recent review presented a series of experiments where rats were
exposed to a nicotine level equivalent to heavy smokers during
lactation (84). Nicotine-exposed male offspring exhibited
increased body weight, adiposity, insulin resistance, and central
leptin resistance in adulthood (86, 87). However, the time frame
and the route of exposure may differentially impact the metabolic
outcomes in young animals and animals exposed to nicotine in
adulthood (88). At PN180, nicotine-exposed male offspring had
increased expression of a-MSH, corticotrophin-releasing
hormone (CRH), and NPY along with decreased cocaine- and
amphetamine-regulated transcript (CART) in the PVN (86).
Additionally, nicotine-exposed offspring had increased
hypothalamic microgliosis and astrogliosis (84, 89). When
offspring were exposed to cigarette smoke during lactation, this
resulted in impaired development of hypothalamic circuits
leading to hyperphagia, obesity, and neuroinflammation in the
adult offspring (85).
MECHANISMS LINKING HYPOTHALAMIC
METABOLIC PROGRAMMING
AND POLLUTION

How can air pollution and specific particles exert deleterious
effects on the hypothalamus during development? It is becoming
increasingly accepted that pollution triggers an inflammatory
response in peripheral tissues that is associated with an elevation
in cytokine secretion. In turn, circulating cytokines produced in
systemic inflammation can enter the brain, causing
neuroinflammation and neurotoxicity (90, 91).

Maternal inflammation and maternal immune activation
(MIA) are known to be harmful to a developing fetus (44, 92–
96). A recent study indicates that exposure of pregnant African
American women to air pollution was associated with
inflammation in the mothers by mid-pregnancy (97). This
study focused on ambient exposure to BTEX (benzene,
toluene, ethylbenzene, and xylene) and measured maternal
inflammatory markers during the second trimester. A positive
association was found between the levels of BTEX exposure and
inflammatory cytokines IL-1b and TNF-a (97). Maternal
exposure to benzene during pregnancy was found to be
associated with low birth weight and head circumference (98–
100). As shown in rodent models, gestational immune activation
can disrupt hypothalamic neurocircuits of maternal care
behavior (101), alter the hypothalamic epigenome in the
offspring (102), and decrease hypothalamic dopamine
neurotransmission (103). Additionally, evidence from rodents
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has shown that maternal inflammation can result in altered
offspring metabolism, such as increased food intake, body
weight, and impaired insulin sensitivity (104). Thus, it is likely
that maternal exposure to pollution via alterations in
hypothalamic developmental circuits may contribute to
metabolic disease in the offspring.

A key factor that must be considered when determining how
the maternal environment influences the offspring is the
placenta. The placenta is a vital organ that acts to provide a
supportive and protective environment for the developing fetus
and as a point of interaction between the mother and fetus (105).
However, while some molecules are not able to cross the placenta
and act directly on the fetus, they can potentially exert indirect
influence via inflammation or hypoxia (106). Modulation of
placental function by maternal inflammation could, in turn, alter
the environment of the fetus and possibly impact its
development (107). A pilot study looking at the effects of
household air pollution (HAP) on pregnant Nigerian women
found that exposure to air pollution was associated with
increased markers of chronic hypoxia in the placenta, which
was implicated as a mechanism for adverse pregnancy outcomes
associated with HAP (108). Conversely, molecules with the
ability to cross the placenta can directly interact with the fetus
and lead to adverse health effects on brain development (106).
Various toxins and chemicals can cross the placenta, as indicated
by measurable levels in umbilical cord serum, including multiple
organohalogen compounds (OHCs) such as polybrominated
diphenyl ethers (PBDEs), phencyclidine (PCP), and
polychlorinated biphenyls (PCBs) (109, 110). Other chemicals
with the known ability for transfer are BPAs, nicotine from
tobacco smoke, phthalate monoesters, and the polycyclic
aromatic hydrocarbon (PAH) benzo(a)pyrene (81, 82, 111).
BPAs have been found in human placental tissue, umbilical
cord blood, and fetal plasma (112–114). Volatile organic
compounds (VOCs) such as benzene, ethylbenzene, xylene,
carbon tetrachloride, and chloroform can also cross the
placenta during pregnancy and have an impact on the
developing fetus (115). Once the pollutants and particles reach
the developing brain, there is considerable debate as to what are
the precise mechanisms of toxicity. One potential mechanism by
which gestational exposure to pollutants may cause impaired
health outcomes is via neuroinflammation mediated by the
activation of the brain’s innate immune system in response to
an inflammatory challenge, which leads to adverse neural
adaptations and neurotoxicity (40, 41, 116). Developmental
abnormalities in the hypothalamus and neuroendocrine system
induced by air pollution (117) and the stimulated innate
immunity in the brain can provide a potential mechanistic link
for peripheral chronic disease susceptibility.

Given the chronic nature of human exposure to
environmental toxins over an entire lifetime, including the
critical periods of hypothalamic development, this could alter
later life metabolism, contributing to metabolic disease (29).
Although there is a lack of information on the hypothalamic
consequences of pollutant exposure in humans, epidemiological
studies indicate that air pollution increases the risk of metabolic
July 2022 | Volume 13 | Article 938094
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disease, which may be worsened by poor lifestyle choices such as
lack of exercise, alcohol consumption, and obesity (118).
Observational studies in humans have linked exposures to
various pollutants including PM 2.5 and ozone with higher
rates of T2DM in populations across the globe (119–123).
Healthy mothers living near busy streets at preconception had
increased fasting blood glucose levels, suggesting that air
pollution exposure contributes to metabolic imbalance (124).
Disturbances in hypothalamic development could result in
metabolic impairments, which may explain why rising cases of
childhood diabetes are associated with highly polluted areas.
CONCLUSION AND FUTURE
PERSPECTIVES

As the onset of metabolic disorders steadily increases in children
and young adults, there is a great need to understand this
etiology. Significant associations have been found between
prenatal exposure to environmental pollutants and the
heightened risk for metabolic impairments (69, 71, 73, 125).
One potential mechanism is an increase in neuroinflammation,
particularly affecting the hypothalamus. This is especially
relevant considering the known neurotoxicity of air pollutants.
Here, we propose a current gap highlighting the susceptibility of
the hypothalamus during sensitive perinatal periods and how
environmental insults may impact the hypothalamic
programming of metabolism. Neuroinflammation may have a
larger effect on hypothalamic development than previously
thought, thus predisposing future generations to metabolic
syndrome. Further research is needed to elucidate the
molecular mechanisms that predispose offspring to metabolic
disease. While it is clear that some particles and compounds can
cross the placenta and have an impact on fetal development, the
direct effect of these pollutants on hypothalamic development is
Frontiers in Endocrinology | www.frontiersin.org 5
unclear. Similarly, the direct or indirect impact of pollution-
triggered maternal inflammation on the offspring’s metabolic
health remains to be defined. While previous studies have
assessed the outcomes of prenatal pollution on brain
development, few have focused on the role of hypothalamic
developmental circuits during fetal development on the later life
metabolic outcomes. Finally, as research into prenatal pollution-
induced neuroinflammation as a potential cause for metabolic
dysfunction is limited, studies looking into therapeutic
interventions remain scarce. Overall, significant challenges
remain in understanding how pollution exposures impact fetal
neurodevelopment and later life metabolism.
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