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Abstract: Respiratory diseases provide an attractive target for gene silencing using small nucleic 

acids since the respiratory epithelium can be reached by inhalation therapy. Natural surfactant 

appears to facilitate the uptake and distribution of these types of molecules making aerosolized 

nucleic acids a possible new class of therapeutics. This article will review the rationale for the 

use of External Guide Sequence (EGS) in targeting specifi c mRNA molecules for RNase 

P-mediated intracellular destruction. Specifi c destruction of target mRNA results in gene-specifi c 

silencing similar to that instigated by siRNA via the RISC complex. The application of EGS 

molecules specifi c for infl uenza genes are discussed as well as the potential for synergy with 

siRNA. Furthermore, EGS could be adapted to target other respiratory diseases of viral etiology 

as well as conditions such as asthma.

This article will review the use of External Guide Sequence (EGS) directed gene expres-

sion silencing which promotes messenger RNA (mRNA) cleavage by RNase P, and 

the potential applications of this technology to treatment and prophylaxis of infl uenza 

and other respiratory diseases such as post viral exacerbations of asthma (Dreyfus et al 

2004; Nyce 1997; Nyce and Metzger 1997; Popescu 2005; Trian et al 2006; Ulanova 

et al 2006). Gene silencing with RNase P is based upon the discovery that the ubiquitous 

RNA enzyme RNase P, required for processing of precursor transfer RNA (pre-tRNA) 

to the mature transfer RNA (tRNA) can also be programmed to degrade mRNA (Baer 

et al 1988; Gopalan et al 2002; Guerrier-Takada et al 1988; Guerrier-Takada et al 1989; 

Guerrier-Takada and Altman 2000; Raj and Liu 2003). Since RNase P recognizes the 

structure of pre-tRNA and certain conserved sequence elements of that structure 

(Figure 1A), a single stranded RNA termed EGS, can be designed to bind non-

covalently to target mRNA resulting in a bimolecular structure that resembles pre-tRNA 

and is recognized and cleaved by RNase P (Figure 1B). EGSs, as a therapeutic agent, 

fall into the category of oligonucleotides – respiratory diseases as a whole may be 

particularly amenable to gene silencing using small nucleic acids since the respiratory 

epithelium is accessible by inhalation delivery and appears to spontaneously take up 

these types of molecules (Finotto, Buerke et al 2001; Finotto, De Sanctis et al 2001; 

Massaro et al 2004; Moschos et al 2007; Nyce 1997; Thomas et al 2007).

EGS, a short single-stranded RNA, binds by Watson-Crick base-pairing to target mRNA 

and directs it to RNase P (Guerrier-Takada and Altman 2000). The bimolecular structure 

of EGS and mRNA forms a substrate for site specifi c cleavage of the mRNA moiety 

and inactivation of the mRNA target (Figure 2). After cleavage of the target, the EGS is 

released and can bind new target, thereby facilitating additional cycles of target cleavage. 

The rate of scissile bond cleavage is limited primarily by the concentrations of EGS and 
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Figure 1 (A) The structure of pre-tRNA (Gln): The structure of precursor transfer RNA (pre-tRNA), a typical substrate for RNase P. RNase P is an abundant RNA enzyme 
that processes a precursor tRNA transcript through cleavage of a 5′ leader sequence from the transcript. Following processing, the tRNA can accept an amino acid and func-
tion in protein synthesis. (B) A synthetic external guide sequence (EGS, highlighted) derived from the structure of pre-tRNA (Gln, Figure 1A) bound to target mRNA forms a 
pre-tRNA (Gln)-like structure resulting in cleavage of a non-natural substrate mRNA (eg, target). RNase P recognizes the structure as precursor RNA and cleaves the mRNA 
(depicted as scissors). Thus an EGS can be designed that binds to a target mRNA through altered stem sequences maintaining a conserved stem and loop structure resembling 
a tRNA precursor. The EGS mRNA hybrid is then recognized as a substrate for RNase P.

A B

Figure 2 EGS can be minimized to approximately 32 nucleotides of single stranded nuclease resistant RNA by incorporation of modifi ed bases conserving the T stem loop 
necessary for recognition by RNase P.  The yellow highlighted nucleotides correspond to regions in the target sequences homologous to the EGS. The pink highlighted regions 
are 2′-O-methyl modifi ed nuclease resistant nucleotide moieties. The minimized EGS contains only the T stem-loop structure. Other sequences such as the variable and anti-
codon loops of tRNA are not required for cleavage by RNase P but may affect binding affi nity.
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mRNA species complementary to the EGS in the nucleus and the 

binding affi nity (Km) of the bimolecular structure to RNase P, 

which for the native pre-tRNA is a relatively low 9 nM (Ziehler 

et al 2000) RNase P concentrations are high because it is utilized 

for generation of tRNA in all cell types with a nucleus and active 

protein synthesis, thus this molecule is not rate-limiting in the 

reaction (Doersen et al 1985; Koski et al 1976; Robertson et al 

1972). In HeLa cells, it is estimated there are 20,000 copies of 

RNase P per cell (Bartkiewicz et al 1989).

EGS can be expressed from viral or other expression 

systems in different cell types and directed at different tar-

gets (Dreyfus et al 2004; Kovrigina et al 2005; Zhang and 

Altman 2004, Kovrigina et al 2003; Guerrier-Takada and 

Altman 2000; Plehn-Dujowich and Altman 1998; Li et al 

2006; Barnor et al 2004; Zhu et al 2004; Kitano et al 2000; 

Endo et al 2001; Kraus et al 2002; Hnatyszyn et al 2001). 

Alternatively, EGS can be transiently expressed following 

high copy number transfection or electroporation of plasmid 

containing an RNA Pol III promoter driving the EGS sequence 

(Dreyfus et al 2004; Rangarajan et al 2004). For therapeutic 

applications in humans such as for asthma or infl uenza, EGS 

can be chemically synthesized as nuclease resistant small 

molecules (Ma et al 1998, 2000; Zhu et al 2004), avoiding the 

need for vector and promoter sequences (Figure 3). Transient 

transfection of these nuclease resistant molecules circumvents 

the risk of somatic gene mutations which could lead to malig-

nant transformation of recipient cells when viruses or virally 

derived DNA sequences are used.

In a research setting, using EGS expressed at high copy 

number in vivo from vectors is more convenient and cost 

effective for screening large numbers of constructs than using 

stably transfected cell lines or transfection of chemically syn-

thesized EGS (Dreyfus et al 2004). We described a relatively 

simple screening assay in which EGS and reporter genes 

are transiently electroporated into a well characterized and 

publicly available B-lymphoblastoid cell line that expresses 

a functional IL-4 receptor to demonstrate the ability of EGS 

to silence IL-4 signaling using the human IL-4 promoter 

fused to the luciferase gene. We have also used a Jurkat T 

lymphoblastoid cell line expressing both functional IL-4and 

adenosine receptors important mediators of asthma and other 

respiratory diseases (Georas et al 1998), to confi rm these 

results. In this type of in vitro cellular assay, EGS potency and 

specifi city are assessed by silencing of a luciferase reporter 

Figure 3 Comparison of (A) EGS directed targeting of mRNA to RNase P with (B) small double-stranded RNA (dsRNA) or regulatory short hairpin RNA (shRNA) directed 
targeting of mRNA to RISC. Both pathways require a nucleotide guide sequence – for RNase P, EGS is the guide while for RISC, the antisense strand of a double-stranded small 
interfering RNA (siRNA) is incorporated into the RISC complex. siRNAs can be directly introduced into the cell or are generated by the enzyme, Dicer from short hairpin 
RNA generated from a DNA template or from dsRNA. In this view, the EGS that binds to target mRNA and forms a substrate recognized by RNase P is directly analogous by 
function to the antisense strand of the 21–23 nucleotide siRNA that is incorporated into RISC and guides Slicer mediated mRNA cleavage. Both RNase P and the argonaute 
protein Slicer introduce a single cleavage site in the target – the cleaved mRNA is recognized as abnormal and further degraded by cellular nucleases.
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gene. Moreover, the assay can be scaled up and automated 

for large numbers of candidate EGS.

The relevance of IL-4/13 receptor as a target for EGS or 

other gene silencing has been reviewed previously (Dreyfus 

et al 2004). The effects of active EGS that are RNase P depen-

dent can be distinguished from non-specifi c effects of the EGS 

on reporter expression since they are decreased by mutation 

of the EGS T loop required for cleavage by RNase P. Some 

interesting conclusions are evident regarding potency and 

specifi city of the anti-IL4 receptor EGS in this type of assay 

(Dreyfus and Fuleihan, unpublished observations). Two EGS 

molecules designed to target two distinct regions in the IL-4/13 

common receptor mRNA each independently exhibited RNase 

P dependent inactivation of IL-4 signaling. Of the two EGSs, 

one which targets a site near the start codon of the IL-4/13 

common receptor mRNA is more potent than another EGS 

targeting a sequence located more distal to the start codon 

even though both target sequences are similarly accessible 

based on digestion by nuclease T1 in vitro. Also, an EGS tar-

geting the murine homologue of the human IL-4/13 receptor 

chain was still able to cause RNase P dependent inactivation 

of the human target despite the presence of mismatches in 2 

of 11 nucleotides. However, these mismatches resulted in a 

greater than 50% decrease in target site inactivation when 

tested in tissue culture.

Thus, RNase P dependent EGS targeting is dependent on 

multiple factors related to target site accessibility and confor-

mation in vivo – factors that are not entirely predictable using 

sequence based algorithms or in vitro methods. Targets can 

be cleaved in vivo even if signifi cant mismatches are present 

between EGS and target although this cleavage is less effi cient 

than correctly paired EGS. Methods such as DNA microarray 

analysis could be used to look for evidence of off target/non-

specifi c effects of EGS. Once an optimal candidate EGS or 

multiple EGS are identifi ed using an unbiased automated 

process capable of screening large numbers of randomized 

or otherwise modifi ed EGS, these optimized EGS would then 

be further characterized in vitro and in vivo in human primary 

cells and animal models prior to human clinical trials. In the 

absence of a readily available reporter gene for monitoring 

EGS activity in vivo, a reporter gene could be constructed 

which expresses the target gene mRNA fused upstream of the 

luciferase mRNA so that cleavage of the target mRNA would 

proportionately reduce luciferase expression.

For in vivo applications, EGS delivery methods must be 

optimized to permit suffi cient concentrations of EGS to enter 

the respiratory tract and gain access to cells of the respira-

tory epithelium as nuclease resistant small molecules with 

minimal non-specifi c or pro-infl ammatory properties. To 

accomplish this, an inhaler could be optimized for delivery 

of EGS in a transfection reagent composed of lipids. The 

concentration of EGS in the cell nuclei will be the limiting 

factor in the rate of EGS-directed target cleavage. Since EGS 

molecules are RNA oligonucleotides, many of the issues 

encountered in delivering siRNA are applicable to EGS. In 

the case of siRNA, published data suggest a therapeutic effect 

against infl uenza even with the administration of unmodifi ed 

RNA duplex by hydrodynamic tail vein injection in mice 

(Tompkins et al 2004; Larson et al 2007; Herweijer and 

Wolff 2007; Bradley et al 2005).

RNAi is an evolutionarily conserved expression silenc-

ing pathway which also plays a role in antiviral defense, 

particularly against those viruses with an RNA genome that 

replicate in the cytoplasm. However, RNA viruses such as 

infl uenza and vaccinia have developed means of undermin-

ing the RNAi pathway (Li and Ding 2005; Schott et al 2005; 

Schutz and Sarnow 2006). Viral proteins often target the 

enzymes in RISC, thereby attenuating the RNAi pathway 

rather than directly targeting the regulatory RNA mediator 

molecules. While the role of RNase P in antiviral defense has 

not specifi cally been explored, it is interesting to note that a 

putative RNase P RNA gene has been identifi ed in camel-

pox and vaccinia viruses, members of the orthopoxviruses 

(Yang et al 2005). These RNase P molecules were found to 

be enzymatically inactive and a role for these RNA enzymes 

in the viral life cycle has yet to be established.

We suggest that synergy may be possible between 

gene silencing with EGS/RNase P and gene silencing with 

siRNA/RNAi. As shown in Figure 3, gene silencing with 

EGS and RNase P and gene silencing with siRNA and 

the RNA-induced silencing complex (RISC) share similar 

characteristics. In both cases a small RNA sequence with 

complementarity to the target serves as a guide to cleavage 

of the mRNA by an endogenous RNase. Both schemes result 

in the cleavage of many targets per guide sequence. In the 

RNase P mediated gene silencing pathway, the small single 

stranded RNA is termed an EGS, while with RISC, the RNA 

is termed siRNA. In contrast, antisense technology utilizes 

modifi ed DNA oligonucleotides which act pleiotropically 

at the level of transcription, splicing, protein synthesis and 

can also activate RNase H resulting in destruction of the 

complementary mRNA (Monia et al 1996; Monia et al 1993; 

Lima et al 1992; Chan et al 2006).

What then are the relative advantages and disadvantages 

of the RNase P pathway compared to RNAi? Advantages of 

gene silencing with EGS/RNase P may include more rapid 
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onset of action than siRNA/RNAi (Zhang and Altman 2004). 

Experiments using EGS and shRNA expressed from identical 

vectors against an identical target suggest that the onset of 

action of EGS can be detected within 24 hours while under 

identical conditions, shRNA effects were evident only after 

48 hours. If this 24 hour difference in onset of action is a 

general phenomenon that distinguishes the two, it could be 

highly signifi cant for therapeutic applications. For example, 

in the treatment of respiratory viral infections such as infl u-

enza, a difference in onset of action of 24 hours could result 

in signifi cantly different outcomes in viral titer as well as 

severity of symptoms and complications. In addition, where 

a gene silencing strategy is used for prophylactic purposes 

following exposure to virus, a 24 hour difference in onset 

of action could be highly signifi cant since viral replication 

peaks within 48 hours of exposure.

Another potential advantage is that EGS is essentially 

single-stranded. Thus, Toll receptor 3 recognizing short, 

double-stranded RNA would not be expected to be activated 

(Kariko, Bhuyan et al 2004; Kariko, Ni et al 2004; Akira 

2006; Matsukura et al 2006).

Another important point of comparison between EGS 

and siRNA is potency and specifi city which are related, but 

not identical issues. A less potent drug can have a similar 

effi cacy to a more potent drug if a higher concentration of 

the less potent compound is used. However, where there are 

signifi cant off-target effects, increasing dosage will almost 

certainly lead to more non-specifi c side-effects such as infl am-

matory responses or the triggering of pro-apoptotic proteins 

such as p21 in the case of siRNA (Bridge et al 2003; Jackson 

et al 2003; Jackson and Linsley 2004; Scacheri et al 2004). At 

the current time, very little is known about the specifi city of 

either siRNA or EGS under in vivo conditions and particularly 

in the infl ammatory setting predicted to be elicited by a viral 

infection such as infl uenza, or a chronic infl ammatory disease, 

such as asthma. Further experiments using comprehensive 

methods such as DNA microarrays and proteomics will be 

required to conclusively resolve issues of specifi city of both 

siRNA and EGS in specifi c in vivo applications.

Limited in vitro evidence suggests siRNA appear equi-

potent to EGS if one can design the EGS based on RNase 

accessibility. However, an EGS targeted to an identical site 

as siRNA may or may not be as potent. This is due primarily 

to the accessibility of the EGS to its target site. For RISC, 

these rules are less well understood because of the involve-

ment of helicases which interact with RISC and functions 

in the modulation of the secondary structure of the target 

mRNA and/or RISC loading (Bernstein et al 2001; Robb 

and Rana 2007). The availability of premade cocktails of 

siRNA as well as the widespread use of siRNA render this 

the method of choice for gene expression silencing in life 

sciences discovery. However, in many applications, it is also 

preferable to use a second, independent method, to validate 

results. In this context, EGS may be particularly useful given 

its specifi city and relative ease of design and use. Finally, 

EGS may be the tool of choice where effective and specifi c 

siRNAs cannot be designed.

Once a target is validated, EGS can be optimized through 

unbiased randomization procedures leading to perhaps 100-

fold or more increased potency against a specifi ed mRNA 

target with only small changes in the EGS sequence (Yang 

et al 2006; Zhou et al 2002). EGS optimization would not be 

expected to increase non-specifi c infl ammatory and/or pro-

apoptotic responses in vivo however, this remains to be tested. 

siRNA, in contrast, cannot be optimized beyond the point at 

which the enzyme Slicer, a component of RISC, becomes 

rate-limiting (Koller et al 2006). In the context of infl uenza 

treatment, infl ammation may have a benefi cial additive or 

synergistic effect with siRNA but could also exert detrimental 

effects leading to the development of acute lung injury (ALI) 

or adult respiratory distress syndrome (ARDS) in the case of 

reassorted zoonotic strains. Additionally, post-viral exacer-

bations such as asthma may also be promoted by siRNA 

induced infl ammatory responses. It would probably be most 

fair to say that the relative potency and specifi city of EGS vs 

siRNA in vivo for treatment of disease cannot be determined 

on theoretical grounds because of the many interacting and 

unknown variables, but will require direct comparisons of the 

two therapies against a particular target when this is possible. 

It is certainly plausible that there will be some genes or tissues 

for which EGS silencing is more potent and specifi c in vivo, 

and other genes for which the opposite is found, which would 

suggest a rationale for using both drugs to target a gene of 

interest in therapeutic applications.

A clear advantage of siRNA is the ability to inactivate 

viruses such as the respiratory pathogens RSV (Respiratory 

Syncytial Virus) and rhinovirus that replicate in the cell cyto-

plasm (Phipps et al 2004; Strayer et al 2005; Kong et al 2007). 

Since RNase P is only present in the cell nucleus, pathogens 

whose transcripts reside exclusively in the cell cytoplasm 

cannot be targeted directly. However, a number of viruses 

and intracellular pathogens rely on host proteins for key steps 

in their life cycle (Elliott et al 2007; Fauci 1996; Fauci and 

Challberg 2005; Gu et al 2004). Where the identity of such 

proteins is known, it may be possible to target these using 

EGS. Furthermore, the pathogenicity of these viruses may 
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occur through induction of cellular infl ammatory cytokines 

such as interferon or IL-13 (Liu et al 2005); inactivation of 

these virally triggered cytokines by EGS or inhibition of the 

NF-κB transcription factor which acts as a master switch, 

might still be an effective immunotherapy for these cytoplas-

mic pathogens. Using EGS, it may be possible to differen-

tially inactivate specifi c subunits of NF-κB which would still 

allow other subunits to engage in transcriptional activation. 

Alternatively, the receptors for the pathogens could also be 

silenced with EGS (Barth, Liang et al 2006; Barth, Schnober 

et al 2006; Julg and Goebel 2005; Weber et al 2006; Lederman 

et al 2006), preventing infection or reducing spread and virus 

load in an ongoing infection. Since the pathogenesis of infl u-

enza as well as RSV involves modulation of cytokines such 

as decreased expression of interferon, and increased synthesis 

of IL-4 and IL-13 that play a role in post viral exacerbations 

of asthma (Elliott et al 2007; Oh et al 2002; Minor et al 1976; 

Singh and Busse 2006; Tekkanat et al 2001; Wang et al 2004; 

Yasuda et al 2005), it is likely that a combination of anti-viral 

and anti-cytokine therapies may be required for effi cacy in 

both infl uenza and post viral asthma.

Perhaps the most intriguing possibility is that EGS and 

siRNA gene silencing may synergize since they use different 

mechanisms to inactivate target mRNA yet utilize similar or 

identical methods of delivery. Figure 4 depicts a scheme by 

which synergy might be attained by the co-expression of EGS 

and short hairpin RNA if expressed from DNA or EGS and 

siRNA if administered as RNA oligonucleotides. Advances 

in delivery of one modality will almost certainly benefi t 

the delivery of the other in a particular disease process. We 

hypothesize that for pharmacological applications against 

human respiratory diseases such as infl uenza and asthma, as 

well as other diseases which are accessible to either modal-

ity, some combination of EGS and siRNA may be optimal 

in terms of onset of action, specifi city, and potency.
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