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Abstract
This paper proposes a modified BFGS formula using a trust region model for solving non-

smooth convex minimizations by using the Moreau-Yosida regularization (smoothing)

approach and a new secant equation with a BFGS update formula. Our algorithm uses the

function value information and gradient value information to compute the Hessian. The Hes-

sian matrix is updated by the BFGS formula rather than using second-order information of

the function, thus decreasing the workload and time involved in the computation. Under suit-

able conditions, the algorithm converges globally to an optimal solution. Numerical results

show that this algorithm can successfully solve nonsmooth unconstrained convex

problems.

Introduction
Consider the following convex problem:

min
x2Rn

f ðxÞ; ð1Þ

where f : Rn ! R is a possibly nonsmooth convex function. In general, this problem has been
well studied for several decades when f is continuously differentiable, and a number of different
methods have been developed for its solution Eq (1) (for example, numerical optimization
method [1–3] etc, heuristic algorithm [4–6] etc). However, when f is a nondifferentiable func-
tion, the difficulty of solving this problem increases. Recently, such problems have arisen in
many medical, image restoration and optimal control applications (see [7–13] etc). Some
authors have previously studied nonsmooth convex problems (see [14–18] etc).
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Let F : Rn ! R be the so-called Moreau-Yosida regularization of f, which is defined by

FðxÞ :¼ min
z2Rn

f ðzÞ þ 1

2l
k z � x k2

� �
; ð2Þ

where λ is a positive parameter and k � k denotes the Euclidean norm. The problem Eq (1) is
equivalent to the following problem

min
x2Rn

FðxÞ: ð3Þ

It is well known that the problems Eqs (1) and (3) of the solution sets are the same. As we
know, one of the most effective methods for problems Eq (3) is the trust region method.

The trust region method plays an important role in the area of nonlinear optimization, and
it has been proven to be a very efficient method. Levenberg [19] and Marquardt [20] first
applied this method to nonlinear least-squares problems, and Powell [21] established a conver-
gence result for this method for unconstrained problems. Fletcher [22] first proposed a trust
region method for composite nondifferentiable optimization problems. Over the past decades,
many authors have studied the trust region algorithm to minimize nonsmooth objective func-
tion problems. For example, Sampaio, Yuan and Sun [23] used the trust region algorithm for
nonsmooth optimization problems; Sun, Sampaio and Yuan [24] proposed a quasi-Newton
trust region algorithm for nonsmooth least-squares problems; Zhang [25] used a new trust
region algorithm for nonsmooth convex minimization; and Yuan, Wei andWang [26] pro-
posed a gradient trust region algorithm with a limited memory BFGS update for nonsmooth
convex minimization problems. For other references on trust region methods, see [27–35],
among others. In particular, for the problem we address in this study, as we can compute the
exact Hessian, the trust region method could be very efficient. However, it is difficult to com-
pute the Hessian at every iteration, which increases the computational workload and time.

The purpose of this paper is to present an efficient trust region algorithm to solve Eq (3).
With the use of the Moreau-Yosida regularization (smoothing) and the new quasi-Newton
equation, the given method has the following good properties: (i) the Hessian makes use of not
only the gradient value but also the function value and (ii) the subproblem of the proposed
method, which possesses the form of an unconstrained trust region subproblem, can be solved
using existing methods.

The remainder of this paper is organized as follows. In the next section, we briefly review
some basic results in convex analysis and nonsmooth analysis and state a new quasi-Newton
secant equation. In section 3, we present a new algorithm for solving problem Eq (3). In section
4, we prove the global convergence of the proposed method. In section 5, we report numerical
results and present some comparisons for the existing methods to solve problem Eq (1). We
conclude our paper in Section 6.

Throughout this paper, unless otherwise specified, k � k denotes the Euclidean norm of vec-
tors or matrices.

Initial results
In this section, we first state some basic results in convex analysis and nonsmooth analysis. Let

yðz; xÞ ¼ f ðzÞ þ 1

2l
k z � x k2;

and denote p(x): = argminz 2 Rn θ(z, x). Then, p(x) is well defined and unique, as θ(z, x) is
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strongly convex. By Eq (2), F can be rewritten as

FðxÞ ¼ f ðpðxÞÞ þ 1

2l
k pðxÞ � x k2:

In the following, we denote g(x) =rF(x). Some important properties of F are given as follows:

1. F is finite-valued, convex and everywhere differentiable with

gðxÞ ¼ rFðxÞ ¼ x � pðxÞ
l

: ð4Þ

2. The gradient mapping g : Rn ! R is globally Lipschitz continuous with modulus λ, i.e.,

k gðxÞ � gðyÞ k� 1

l
k x � y k; 8x; y 2 R

n: ð5Þ

3. x solves Eq (1) if and only ifrF(x) = 0, namely, p(x) = x.

It is obvious that F(x) and g(x) can be obtained through the optimal solution of argminz 2 Rn

θ(z, x). However, the minimizer of θ(z, x), p(x) is difficult or even impossible to solve for
exactly. Thus, we cannot compute the exact value of p(x) to define F(x) and g(x). Fortunately,
for each x 2 R

n and any � > 0, there exists a vector pα(x, �) 2 R
n such that

f ðpaðx; �ÞÞ þ 1

2l
k paðx; �Þ � x k2 � FðxÞ þ �: ð6Þ

Thus, we can use pα(x, �) to define respective approximations of F(x) and g(x) as follows, when
� is small,

Faðx; �Þ :¼ f ðpaðx; �ÞÞ þ 1

2l
k paðx; �Þ � x k2 ð7Þ

and

gaðx; �Þ :¼ x � paðx; �Þ
l

; ð8Þ

The papers [36, 37] describe some algorithms to calculate pα(x, �). The following remarkable
feature of Fα(x, �) and gα(x, �) is obtained from [38].

Proposition 2.1 Let pα(x, �) be a vector satisfying Eq (6), and Fα(x, �) and gα(x, �) are
defined by Eqs (7) and (8), respectively. Then, we obtain

FðxÞ � Faðx; �Þ � FðxÞ þ �; ð9Þ

k paðx; �Þ � pðxÞ k� ffiffiffiffiffiffiffi
2l�

p
; ð10Þ

and

k gaðx; �Þ � gðxÞ k�
ffiffiffiffiffi
2�

l

r
: ð11Þ

The relations Eqs (9), (10) and (11) imply that Fα(x, �) and gα(x, �) may be made arbitrarily
close to F(x) and g(x), respectively, by choosing the parameter � to be small enough.

Second, recall that when f is smooth, the quasi-Newton secant method is used to solve prob-
lem Eq (1). The iterate xk satisfiesrfk + Bk(xk+1 − xk) = 0, whererfk =rf(xk), Bk is an approxi-
mation Hessian of f at xk, and the sequence of matrix {Bk} satisfies the secant equation as
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follows.

Bkþ1sk ¼ yk; ð12Þ

where yk =rfk+1−rfk and sk = xk+1 − xk. However, the function values are not exploited in Eq
(12), which the method solves by only using the gradient information. Motivated by the above
observations, we hope to develop a method that uses both the gradient information and func-
tion information. This problem has been studied by several authors. In particular, Wei, Li and
Qi [39] proposed an important modified secant equation by using not only the gradient values
but also the function values, and the modified secant is defined as

Bkþ1sk ¼ nk; ð13Þ

where νk = yk + βk sk, fk = f(xk),rfk =rf(xk), and bk ¼ ðrfkþ1þrfkÞT skþ2ðfk�fkþ1Þ
kskk2

. When f is twice

continuously differentiable and Bk+1 is updated by the BFGS formula [40–43], where Bk = I is a
unit matrix if k = 0, this secant Eq (13) possesses the following remarkable property:

fk ¼ fkþ1 þrf Tkþ1sk þ
1

2
sTk Bkþ1sk

This property holds for all k. Based on the result of Theorem 2.1 [39], Eq (13) has an advantage
over Eq (12) in this approximate relation.

The newmodel
In this section, we present a modified BFGS formula using trust region model for solving Eq
(1), which is motivated by the Moreau-Yosida regularization (smoothing), general trust region
method and the new secant Eq (13). First, we describe the trust region method. In each itera-
tion, a trial step dk is generated by solving an adaptive trust region subproblem, in which the
values of the gradient of F(x) at xk and Eq (13) are used:

min qkðdÞ ¼ gaðxk; �kÞTd þ 1

2
dTBkd;

s:t: k d k� Dk;

ð14Þ

where the scalar �k> 0 and Δk describe the trust region radius.
Let dk be the optimal solution of Eq (14). The actual reduction is defined by

Are dk :¼ Faðxk; �kÞ � Faðxk þ dk; �kþ1Þ; ð15Þ

and we define the predict reduction as

Pre dk :¼ �gaðxk; �kÞT �
1

2
dT
k Bkdk: ð16Þ

Then, we define rk to be the ratio between Are dk and Pre dk

rk :¼
Are dk

Pre dk
: ð17Þ

Based on the new secant Eq (13) and with Bk+1 being updated by the BFGS formula, we pro-
pose a modified BFGS formula. The Bk+1 is defined by

Bkþ1 :¼
Bk; if sTk nk � 0;

Bk � Bksks
T
k
Bk

sT
k
Bksk

þ nknk
T

nkT sk
; if sTk nk > 0;

ð18Þ
8<
:
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where sk = xk+1 − xk, yk = gα(xk+1, �k+1) − gα(xk, �k), νk = yk + βk sk and

bk ¼
ðgaðxkþ1; �kþ1Þ þ gaðxk; �kÞÞTsk þ 2ðFaðxk; �kÞ � Faðxkþ1; �kþ1ÞÞ

k sk k2
;

if k = 0, then Bk = I, and I is a unit matrix.
We now list the steps of the modified trust region algorithm as follows.

Algorithm 1.

Step 0. Choose x0 2 R
n, 0 < σ1 < σ2 < 1, 0 < η1 < 1 < η2, λ > 0, 0� ε� 1, Δmax � Δ0 > 0

is called the maximum value of trust region radius, B0 = I, and I is the unit
matrix. Let k: = 0.
Step 1. Choose a scalar �k+1 satisfying 0 < �k+1 < �k, and calculate pα(xk, �k),

gaðxk; �kÞ ¼ xk�paðxk ;�kÞ
l . If xk satisfies the termination criterion kgα(xk, �k)k � ε,

then stop. Otherwise, go to Step 2.
Step 2. dk solves the trust region subproblem Eq (14).
Step 3. Compute Are dk, Pre dk, rk using Eqs (15), (16) and (17).
Step 4. Regulate the trust region radius. Let

Dkþ1 :¼

Z1Dk; if rk < s1;

Dk; if s1 � rk � s2;

minfZ2Dk;Dmaxg; if rk > s2:

8>>><
>>>:

Step 5. If the condition rk � σ1 holds, then let xk+1 = xk + dk, update Bk+1 by Eq
(18), and let k: = k + 1; go back to Step 1. Otherwise, let xk+1: = xk and k: =
k + 1; return to Step 2.

Similar to Dennis and Moré [44] or Yuan and Sun [45], we have the following result.
Lemma 1 If and only if the condition sTk nk > 0 holds, Bk+1 will inherit the positive property of

Bk.
Proof “) ” If Bk+1 is symmetric and positive definite, then

sTk Bkþ1sk ¼ sTk Bk �
Bksks

T
k Bk

sTk Bksk
þ nknk

T

nkTsk

� �
sk

¼ sTk Bksk �
sTk Bksks

T
k Bksk

sTk Bksk
þ sTk nknk

Tsk
nkTsk

¼ sTk nk
> 0:

“(” For the proof of the converse, suppose that sTk nk > 0 and Bk is symmetric and positive defi-
nite for all k� 0. We shall prove that xT Bk+1 x> 0 holds for arbitrary x 6¼ 0 and x 2 R

n by
induction. It is easy to see that B0 = I is symmetric and positive definite. Thus, we have

xTBkþ1x ¼ xTBkx �
xTBksks

T
k Bkx

sTk bksk
þ xTnknk

Tx
nkTsk

¼ xTBkx �
ðxTBkskÞ2
sTk Bksk

þ ðxTnkÞ2
nkTsk

:

ð19Þ

Because Bk is symmetric and positive definite for all k� 0, there exists a symmetric and positive

definite matrix B
1
2
k such that Bk ¼ B

1
2
kB

1
2
k. Thus, by using the Cauchy-Schwartz inequality, we
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obtain

ðxTBkskÞ2 ¼ xTB
1
2
kB

1
2
ksk

h i2
¼ B

1
2
kx

� �T

B
1
2
ksk

� �� �2

�
				
				B1

2
kx

				
				
2				
				B1

2
ksk

				
				

¼ B
1
2
kx

� �T

B
1
2
kx

� �
B

1
2
ksk

� �T

B
1
2
ksk

� �
¼ ðxTBkxÞðsTk BkskÞ:

ð20Þ

It is not difficult to prove that the above inequality holds true if and only if there exists a real

number γk 6¼ 0 such that B
1
2
kx ¼ gkB

1
2
ksk, namely, x = γk sk.

Hence, if Eq (20) strictly holds (and note that sknk
T > 0), then from Eq (19), we have

xTBkþ1x > xTBkx �
ðxTBkskÞ2
sTk Bksk

þ ðxTnkÞ2
nkTsk

¼ ðxTnkÞ2
nkTsk

> 0:

Otherwise, ðxTBkskÞ2 ¼ ðxTBkxÞðsTk BkskÞ; then, there exists γk such that x = γk sk. Thus,

xTBkþ1x ¼ ½ðgkskÞTnk�2
nkTsk

¼ g2ks
T
k nk > 0:

Therefore, for each 0 6¼ x 2 R
n, we have xT Bk+1 x> 0. This completes the proof.

Lemma 1 states that if sTk nk > 0, then the matrix sequence {Bk} is symmetric and positive
definite, which is updated by the BFGS formula of Eq (18).

Convergence analysis
In this section, the global convergence of Algorithm 1 is established under the assumption that
the following conditions are required.

Assumption A.

1. Let the level set O

O ¼ fx 2 R
njFaðx; �Þ � Faðx0; �Þ; 8x0 2 R

ng:

2. F is bounded from below.

3. The matrix sequence {Bk} is bounded on O, which means that there exists a positive con-
stantM such that

k Bk k� M 8k:

4. The sequence {�k} converges to zero.

Now, we present the following lemma.
Lemma 2 If dk is the solution of Eq (14), then

Pre dk ¼ qkð0Þ � qkðdkÞ �
1

2
k gaðxk; �kÞ k min Dk;

k gaðxk; �kÞ k
k Bk k

� �
: ð21Þ
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Proof Similar to the proof of Lemma 7(6.2) in Ma [46]. Note that the matrix sequence {Bk} is
symmetric and positive definite; then, we present dc

k to be a Cauchy point at iteration point xk,
which is defined by

dc
k ¼ �mk

Dk

k gaðxk; �kÞ k
gaðxk; �kÞ;

where mk ¼ min kgaðxk ;�kÞk3
Dkgaðxk ;�kÞTBkgaðxk ;�kÞ

; 1
n o

. It is easy to verify that the Cauchy point is a feasible

point, i.e., kdc
kk � Dk.

If kgaðxk ;�kÞk3
Dkgaðxk ;�kÞTBkgaðxk ;�kÞ

> 1, then

k gaðxk; �kÞ k3 > Dkg
aðxk; �kÞTBkg

aðxk; �kÞ;

and

dc
k ¼ � Dk

k gaðxk; �kÞ
gaðxk; �kÞ:

Thus, we obtain

Pre dc
k ¼ �qk � Dk

k gaðxk; �kÞ k
gaðxk; �kÞ


 �

¼ �gaðxk; �kÞT � Dk

k gaðxk; �kÞ k
gaðxk; �kÞ


 �

� 1

2
� Dk

k gaðxk; �kÞ k
gaðxk; �kÞ


 �T

Bk � Dk

k gaðxk; �kÞ k
gaðxk; �kÞ


 �

¼ Dk

k gaðxk; �kÞ k
k gaðxk; �kÞ k2 � 1

2

D2

k

k gaðxk; �kÞ k2
gaðxk; �kÞTBkg

aðxk; �kÞ

� 1

2
Dk k gaðxk; �kÞ k

� 1

2
k gaðxk; �kÞ k min Dk;

k gaðxk; �kÞ k
k Bk k

� �
:

Otherwise, we have dc
k ¼ � kgaðxk ;�kÞk2

gaðxk ;�kÞTBkgaðxk ;�kÞ
gaðxk; �kÞ. Thus, we obtain

Pre dc
k ¼ �gaðxk; �kÞ � k gaðxk; �kÞ k2

gaðxk; �kÞTBkgaðxk; �kÞ
gaðxk; �kÞ

 !

� 1

2
� k gaðxk; �kÞ k2
gaðxk; �kÞTBkgaðxk; �kÞ

gaðxk; �kÞ
 !T

Bk � k gaðxk; �kÞ k2

gaðxk; �kÞTBkgaðxk; �kÞ
gaðxk; �kÞ

 !

¼ 1

2

k gaðxk; �kÞ k4
gaðxk; �kÞTBkgaðxk; �kÞ

� 1

2

k gaðxk; �kÞ k2

k Bk k

� 1

2
k gaðxk; �kÞ k min Dk;

k gaðxk; �kÞ k
k Bk k

� �
:

MBFGS TRM for NSCM

PLOSONE | DOI:10.1371/journal.pone.0140606 October 26, 2015 7 / 15



Let dk be the solution of Eq (14). Because qkðdc
kÞ � qkðdkÞ, we have

Pre dk ¼ qkð0Þ � qkðdkÞ �
1

2
k gaðxk; �kÞ k min Dk;

k gaðxk; �kÞ k
k Bk k

� �
:

This completes the proof.
Lemma 3 Let Assumption A hold true and the sequence {xk} be generated by Algorithm 1. If

dk is the solution of Eq (14), then

jAre dk � Pre dkj ¼ oðk dk k2Þ: ð22Þ

Proof Let dk be the solution of Eq (14). By using Taylor expansion, Fα(xk + dk, �k+1) can be
expressed by

Faðxk þ dk; �kþ1Þ ¼ Faðxk; �kÞ þ gaðxk; �kÞTdk þ
1

2
dT
k Bkdk þ oðk dk k2Þ; ð23Þ

Note that with the definitions of Are dk and Pre dk and by using Eq (23), we have

jAre dk � Pre dkj ¼ jFaðxk; �kÞ � Faðxk þ dk; �kþ1Þ þ qkðdkÞj
¼ oðk dk k2Þ:

The proof is complete.
Lemma 4 Let Assumption A hold. Then, Algorithm 1 does not circle in the inner cycle

infinitely.
Proof Suppose, by contradiction to the conclusion of the lemma, that Algorithm 1 cycles

between Steps 2 and 5 infinitely at iteration point xk, i.e., rk< σ1 and that there exists a scalar ρ
> 0 such that kgα(xk, �k)k � ρ. Thus, noting that 0< η1 < 1, we have

k dk k� Dk ¼ Zk1D0 ! 0; for k ! 1:

By using the result Eq (22) of Lemma 3 and the definition of rk, we obtain

jrk � 1j ¼ jAre dk � Pre dkj
jPre dkj

� 2oðk dk k2Þ
k gaðxk; �kÞ k min Dk;

k gaðxk; �kÞ k
k Bk k

� �! 0; for k ! 1:

which means that we must have rk � σ1; this contradicts the assumption that rk < σ1, and the
proof is complete.

Based on the above lemmas, we can now demonstrate the global convergence of Algorithm
1 under suitable conditions.

Theorem 1 (Global Convergence). Suppose that Assumption A holds and that the sequence
{xk} is generated by Algorithm 1. Let dk be the solution of Eq (14). Then, lim

k!1 infkgkk ¼ 0 holds,

and any accumulation point of xk is an optimal solution of Eq (1).
ProofWe first prove that

lim
k!1

inf k gaðxk; �kÞ k¼ 0: ð24Þ

Suppose that gα(xk, �k) 6¼ 0. Without loss of generality, by the definition of rk, we have

jrk � 1j ¼
				 Faðxk þ dk; �kþ1Þ � Faðxk; �kÞ � qkðdkÞ

qkðdkÞ
				: ð25Þ
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Using Taylor expansion, we obtain

Faðxk þ dk; �kþ1Þ ¼ Faðxk; �kÞ þ gaðxk; �kÞTdk þ
R 1

0
dT
k ½gaðxk þ tdk; �kþ1Þ � gaðxk; �kÞ�dt:

When Δk > 0 and small enough, we have

jFaðxk þ dk; �kþ1Þ � Faðxk; �kÞ � qkðdkÞj

¼
				 12 dT

k Bkdk �
Z 1

0

dT
k ½gaðxk þ tdk; �kþ1Þ � gaðxk; �kÞ�dt

				
� 1

2
Mk dk k2 þ oðk dk kÞ:

ð26Þ

Suppose that there exists ω0 > 0 such that kgα(xk, �k)k � ω0. By contradiction, using Eqs (25)
and (26) and Lemma 2, we have

jrk � 1j �
1

2
Mk dk k2 þ oðk dk kÞ

1

2
k gaðxk; �kÞmin Dk;

k gaðxk; �kÞ k
k Bk k

� �

� MD2

k þ oðDkÞ
o0min Dk;

o0

M

n o
¼ OðDkÞ:

ð27Þ

which means that there exists sufficiently small D̂ > 0 such that Dk � D̂ for each k, and we
have jrk − 1j< 1 − σ2, i.e., rk > σ2. Then, according to the Algorithm 1, we have Δk+1 � Δk.

Thus, there exists a positive integer k0 and a constant ρ0 for arbitrary k� k0 and satisfying

Dk � D̂, for which we have

Dk 6¼ roD̂: ð28Þ

On the other hand, because F is bounded from below, and supposing that there exists an
infinite number k such that rk > σ1, by the definition of rk and Lemma 2, for each k� k0,

Faðxk; �kÞ � Faðxk þ dk; �kþ1Þ
> s1½qkð0Þ � qkðdkÞ�
� s

2
o0min Dk;

o0

M

n o
:

which means that Δk ! 0 for k!1; this is a contradiction to Eq (28).
Moreover, suppose that for sufficiently large k, we have rk < σ1. Then, Dk ¼ Zk1D0, and we

can see that Δk ! 0 for k!1; this is also a contradiction to Eq (28). The contradiction shows
that Eq (24) holds.

We now show that lim
k!1 infkgkk ¼ 0 holds. By using Eq (11), we have

k gaðxk; �kÞ � gðxkÞ k�
ffiffiffiffiffiffi
2�k
l

r
:

Together with Assumption A(iv), this implies that

lim
k!1

inf k gk k¼ 0: ð29Þ
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Finally, we make a final assertion. Let x� be an accumulation point of {xk}. Then, without
loss of generality, there exists a subsequence {xk}K satisfying

lim
k!1;k2K

xk ¼ x�: ð30Þ

From the properties of F, we have

gðxkÞ ¼
xk � pðxkÞ

l
:

Thus, by using Eqs (29) and (30), we have x� = p(x�). Therefore, x� is an optimal solution of
Eq (1). The proof is complete.

Similar to Theorem 3.7 in [25], we can show that the rate of convergence of Algorithm 1 is
Q-superlinear. We omit this proof here (the proof of the Q-superlinear convergence can be
found in [25]).

Theorem 2 (Q-superlinear Convergence) [25] Suppose that Assumption A(ii) holds, that the
sequence {xk} is generated by Algorithm 1, which has a limit point x�, and that g is BD-regular
and semismooth at x�. Furthermore, suppose that �k = o(kg(xk)k2). Then,
1. x� is the unique solution of Eq (1);

2. the entire sequence {xk} converges to x� Q-superlinearly, i.e.,

lim
k!1

k xkþ1 � x� k
k xk � x� k ¼ 0:

Results
In this section, we test our modified BFGS formula using a trust region model for solving non-
smooth problems. The type of nonsmooth problems addressed in Table 1 can be found in [47–
53]. The problem dimensions and optimum function values are listed in Table 1, where “No.”
is the number of the test problem, “Dim” is the dimension of the test problem, “Problem” is the
name of the test problem, “x0” is the initial point, and “fops(x)” is the optimization function
evaluation. Here, the modified algorithm was implemented using MATLAB 7.0.4, and all
numerical experiments were run on a PC with CPU Intel CORE(TM) 2 Duo T6600 2.20 GHZ,
with 2.00 GB of RAM and with the Windows 7 operating system.

Table 1. Problem descriptions for test problems.

No. Dim Problem x0 fops(x)

1 2 Rosenbrock [47] (-1.2, 1.0) 0

2 2 Crescent [47] (-1.5, 2.0) 0

3 2 CB2 [48] (1.0, -0.1) 1.9522245

4 2 CB3 [48] (2.0, 2.0) 2.0

5 2 DEM [49] (1.0, 1.0) -3.0

6 2 QL [50] (-1.0, 5.0) 7.20

7 2 LQ [50] (-0.5, -0.5) -1.4142136

8 2 Mifflin 2 [51] (-1.0, -1.0) -1.0

9 5 Shor [52] (0.0, 0.0, 0.0, 0.0, 1.0) 22.600162

10 50 MXHILB [53] ones(50, 1) 0

11 50 LIHILB [53] ones(50, 1) 0

doi:10.1371/journal.pone.0140606.t001
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To test the performance of the given algorithm for the problems listed in Table 1, we com-
pared our method with the trust region concept (BT) of paper [15], the proximal bundle method
(PBL) of paper [17] and the gradient trust region algorithm with limited memory BFGS update
(LGTR) described in [26]. The parameters were chosen as follows: σ1 = 0.45, σ2 = 0.75, η1 = 0.5,
η2 = 4, λ = 1, Δ0 = 0.5< Δmax = 100 and �k ¼ 1

ð2þkÞ2 (where k is the iterate number). We stopped

the algorithm when the condition kgα(x, �)k � 10 − 6 was satisfied. Based on the idea of [26], we
use the function fminsearch in MATLAB for solving min θ(z, x). Then, we obtained the solution
p(x); moreover, we obtained gα(x, �), which is computed using Eq (8). Meanwhile, we also listed
the results of PBL, LGTR, BT and our modified algorithm in Table 2. The numerical results of
PBL and BT can be found in [17], and the numerical results of LGTR can be found in [26]. The
following notations are used in Table 2: “NI” is the number of iterations; “NF” is the number of
the function evaluations; “f(x)” is the function value at final iteration; “——” indicates that the
algorithm fails to solve the problem; and “Total” denotes the sum of the NI/NF.

The numerical results show that the performance of our algorithm is superior to those of
the methods in Table 2. It can be seen clearly that the sum of our algorithm relative to NI and
NF is less than the other three algorithms. The paper [54] provides a new tool for analyzing the
efficiency of these four algorithms. Figs 1 and 2 show the performances of these four methods
relative to NI and NF of Table 2, respectively. These two figures prove that Algorithm 1 pro-
vides a good performance for all the problems tested compared to PBL, LGTR and BT. In sum,
the preliminary numerical results indicate that the modified method is efficient for solving
nonsmooth convex minimizations.

Conclusion
The trust region method is one of the most efficient optimization methods. In this paper, by
using the Moreau-Yosida regularization (smoothing) and a new secant equation with the BFGS
formula, we present a modified BFGS formula using a trust region model for solving non-
smooth convex minimizations. Our algorithm does not compute the Hessian of the objective
function at every iteration, which decrease the computational workload and time, and it uses
the function information and the gradient information. Under suitable conditions, global con-
vergence is established, and we show that the rate of convergence of our algorithm is Q-

Table 2. Test results.

No. PBL NI/NF/f(x) LGTR NI/NF/f(x) BT NI/NF/f(x) Algorithm 1 NI/NF/f(x)

1 42/45/3.81 × 10−5 —— 79/88/1.30 × 10−10 26/66/4.247136 × 10−6

2 18/20/6.79 × 10−5 10/10/3.156719 × 10−5 24/27/9.44 × 10−5 13/13/2.521899 × 10−5

3 32/34/1.9522245 10/11/1.952225 13/16/1.952225 4/6/1.952262

4 14/16/2.0 2/3/2.000217 13/21/2.0 3/4/2.000040

5 17/19/-3.0 3/3/-2.999700 9/13/-3.0 4/24/-2.999922

6 13/15/7.2000015 19/119/7.200001 12/17/7.200009 9/9/7.200043

7 11/12/-1.4142136 1/1/-1.207068 10/11/-1.414214 2/2/-1.414214

8 66/68/-0.99999941 3/3/-0.9283527 6/13/-1.0 4/4/-0.9978547

9 27/29/22.600162 42/443/22.62826 29/30/22.600160 8/9/22.600470

10 19/20/4.24 × 10−7 12/12/9.793119 × 10−3 —— 23/108/5.228012 × 10−3

11 19/20/9.90 × 10−8 20/63/9.661137 × 10−3 —— 7/7/2.632534 × 10−3

Total 278/298 164/1111 353/412 103/252

doi:10.1371/journal.pone.0140606.t002
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Fig 1. Performance profiles of thesemethods (NI).

doi:10.1371/journal.pone.0140606.g001

Fig 2. Performance profiles of thesemethods (NF).

doi:10.1371/journal.pone.0140606.g002
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superlinear. Numerical results show that this algorithm is efficient. We believe that this algo-
rithm can be used in future applications to solve non smooth convex minimizations.
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