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Abstract

Background: Metabolic engineering aims to design microorganisms that will generate a product of interest at high yield.
Thus, a variety of in silico modeling strategies has been applied successfully, including the concepts of elementary flux
modes (EFMs) and constrained minimal cut sets (cMCSs). The EFMs (minimal, steady state pathways through the system) can
be calculated given a metabolic model. cMCSs are sets of reaction deletions in such a network that will allow desired
pathways to survive and disable undesired ones (e.g., those with low product secretion or low growth rates). Grouping the
modes into desired and undesired categories had to be done manually until now.

Results: Although the optimal solution for a given set of pathways will always be found with the currently available tools,
manual selection may lead to a sub-optimal solution with respect to a metabolic engineering target. A small change in the
selection of modes can reduce the number of necessary deletions while only slightly reducing production. Based on our
recently introduced formulation of cut set calculations using binary linear programming, we suggest an algorithm that does
not require manual selection of the desired pathways.

Conclusions: We demonstrated the principle of our algorithm with the help of a small toy network and applied it to a model
of E. coli using different design objectives. Furthermore we validated our method by reproducing previously obtained
results without requiring manual grouping of modes.
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Introduction

Microorganisms are increasingly used as cell factories to

produce a multitude of chemicals and promise great potential

for many future applications [1–4]. Microorganisms provide many

benefits as production hosts: (i) production of substances that are

basically inaccessible to classical chemical synthesis (e.g., proteins

with specific glycosylation patterns), (ii) production of substances in

a cheaper and more environment friendly way (cheap educts,

processes at room temperature, no need for heavy metal catalysts,

fewer by-products), and (iii) production of bulk chemicals from

renewable resources instead of petroleum-based feedstocks. A

multitude of (genetically engineered) microorganisms are currently

used in industry. There are a few examples where microorganisms

naturally produce a product of interest with sufficient yield, but it

is generally necessary to genetically engineer strains to obtain the

desired properties. These genetic interventions may lead to

optimized channeling of metabolic fluxes towards the product of

interest and/or introduce non-native pathways to enable produc-

tion of foreign components [5–7]. Designing such strains may

occasionally be straightforward, such as overexpressing a gene

involved in the pathway leading to the desired product. However,

multiple, non-intuitive genetic interventions are possible and often

more effective due to the high connectivity of metabolites

(particularly in redox- and energy-metabolism). Thus, a systems

biological analysis approach is needed that considers the metabolic

network structure.

Methods based on constraint-based reconstruction and analysis

(COBRA) have been used successfully to predict complex

intervention strategies in metabolic engineering. COBRA methods

analyze the steady state behavior of an organism using its

stoichiometric matrix as the main input. The stoichiometric

matrix is a comprehensive, organism-specific collection of the

stoichiometry of the biochemical reactions occurring in the

organism of interest. Frameworks such as OptKnock [8] and

RobustKnock [9] allow predicting genetic interventions that

optimize host production capabilities. Both methods couple a

biologically motivated objective (typically maximization of biomass

production) with an engineering objective (e.g., maximize product

yield). As these methods rely on an optimization principle to

describe cellular behavior, they are considered biased [10].

Alternatively, elementary flux mode (EFM) analysis [11,12] can

be used to provide an unbiased view on the steady state capabilities

of an organism [13]. An EFM is a minimal steady state pathway
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through a metabolic network [14,15]. Minimal in this context

means that removing any one reaction participating in the

pathway will block any steady state flux through it. Calculating

the EFMs is computationally expensive [16], as their number

increases exponentially with the number of reactions and is

currently limited to small and medium-scale models [17]. Such

models may already lead to several hundred million EFMs, but

their size is sufficient to describe core metabolism (glycolysis,

pentose phosphate pathway and citrate cycle) and pathways

involved with the product of interest.

One important property of EFMs is that every feasible flux

distribution in the network can be described as a non-negative,

linear combination of EFMs. This suggests that the entire

metabolic space of the system can be represented by the full set

of EFMs. Consequently, an optimal production host can be

designed if EFMs with unfavorable properties, e.g., low produc-

tivity, are removed, while favorable modes with high product yield

are maintained. An undesirable EFM can be removed easily if one

of its participating reactions is deleted. Notice that this strategy

does not rely on any biologically motivated objective in contrast to

OptKnock [8] and RobustKnock [9] but only utilizes an

engineering objective: Find a set of reaction deletions that will

restrict the cell to desirable metabolic states only.

The concept of removing unwanted modes under the condition

that certain modes have to ‘‘survive’’ the intervention is called

constrained minimal cut sets (cMCSs) [18]. When the EFMs are

known and classified into desirable and undesirable modes, not

only one but all possible MCSs leading to a desired state can be

calculated, which usually offers different options for biological

implementation. Successful examples include [12,19–22].

In this study, we address the tedious necessity of manually

selecting modes that should be kept or disabled. cMCSs are

dependent on allocation of the modes, and it is possible that a

‘‘better’’ design (e.g., with fewer deletions) could be found if only

the allocation of the modes is just slightly changed (possibly leading

to marginally worse production). Here we present the formulation

of a binary integer program (BIP) for calculating cMCSs such that

manual mode selection is no longer necessary.

Methods

Introductory Example
Consider the system depicted in Figure 1. The network utilizes

the substrate S to produce biomass (BM), a product of interest (P),

and a by-product (Q). We define the product yield, YP=S as rate of

product formation per substrate uptake rate. Furthermore we

define the substrate-specific productivity (SSP) as product yield

times specific growth rate (biomass flux/substrate uptake flux)

[23]. We are interested in finding a genetic intervention strategy

which allows efficient production of P. To identify desirable

network states we performed an EFM analysis on the network.

The EFMs are listed in Table 1. EFM3 exhibits the maximum

product yield, YP=S~0:5. To optimize production we therefore

considered all other modes to be undesirable as they have smaller

Figure 1. Simple metabolic toy network. The network consists of seven metabolites and seven irreversible reactions. We assume that
metabolites A, B, and C are in steady state. Metabolites S, BM, P, and Q are not subject to the steady state assumption, as they are external
metabolites.
doi:10.1371/journal.pone.0092583.g001

Table 1. Elementary flux modes for the example network in Figure 1.

EFM R1 R2 R3 R4 R5 R6 R7 YBM=S YP=S YQ=S gP

1 1.0 1.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.00

2 1.0 0.0 0.6 0.6 0.0 1.0 0.0 0.6 0.4 0.0 0.24

3 1.0 0.0 0.5 0.0 0.0 0.0 1.0 0.5 0.5 0.0 0.25

4 1.0 0.0 0.0 0.0 0.6 1.0 0.0 0.0 0.4 0.6 0.00

Depicted are the product yield YX=S for biomass (BM), product (P), and side product (Q) as well as the mode’s substrate specific productivity, gP : ~YBM=S|YP=S , for
each mode.
doi:10.1371/journal.pone.0092583.t001
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product yields (see Table 1 and top left panel in Figure 2). Based

on this categorization we set up an intervention which disables all

undesirable functionality in the network (i.e. EFM1, EFM2, and

EFM4) while keeping EFM3 operational. The desired design

requires at least two deletions (R2 and R6). Additionally, a second

MCS with three deletions (R2, R4, and R5) results in the same

design. However, we may ask if it is possible to reduce the number

of deletions if we (slightly) change the partitioning of the EFMs. If

so, what is the best way to re-categorize the EFMs? For example, if

we considered EFM2, EFM3, and EFM4 to be desirable (as their

Figure 2. Phenotypic space of the example network in Figure 1 for different reaction deletions. The y-axis depicts the normalized
product yield (R6+R7), whereas the x-axis shows the normalized specific growth rate (R3). Each dot represents an elementary flux mode (EFM). EFMs
are color coded with respect to gP. The top left panel shows the available space for the unperturbed network. The top right panel shows the
‘‘optimal’’ phenotypic space where only the mode with the highest product yield for the production of P (EFM3, see Table 1) is present. Such a design
can be realized by deleting at least R2 and R6 or R2, R4, and R5. The remaining panels show different phenotypic spaces for different single reaction
deletions (see label in each panel).
doi:10.1371/journal.pone.0092583.g002
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YP=S§0:4) and only EFM1 to be undesirable (as it does not

produce any product), we would require only a single deletion (R2,

see Figure 2). Alternatively, we may ask what is the ‘‘best’’

achievable design with just one deletion. Here, best is meant with

respect to our design objective, e.g., maximizing the minimal

product yield YP,min.

Theory
We have utilized a BIP to calculate cMCSs [24]. In this

formulation an EFM i is represented by a binary vector bi. (b
j
i~1

if there is a flux through the jth reaction of mode i, otherwise

b
j
i~0.) Similarly, a cut set is represented by the binary vector x.

(xj~1 means that reaction j is not affected, whereas zero means it

is knocked out.) To check if an EFM is hit by a cut set, we

calculated the dot-product between bi and x. If bT
i x~jjbijj then

EFM i is not cut by x as none of the reactions contributing to EFM

i is affected [24]. If a cut set hits EFM i then bT
i xƒjjbijj{1. In this

case EFM i is removed from the metabolic capabilities of the

network due to the property of minimality. Only one contributing

reaction needs to be deleted to render a steady state flux through

this mode infeasible. These two conditions can be used to set up an

optimization problem, where x is maximized in such a way that all

desired EFMs obey the former condition, while all undesired

EFMs are subject to the latter constraint [24]. This approach

requires a manual partition of the EFMs into desirable and

undesirable modes.

To avoid this manual partitioning we assign each EFM i a

weight wi. For example, we can use the product yield of each

mode as its weight. In metabolic engineering we are interested in

maximum product yield. To achieve this we typically couple

product formation to growth. That is, we want obligatory

production of the product of interest at any growth rate. Thus,

similar to the RobustKnock approach [9], we search for an

intervention strategy that selects modes such that the minimal

yield of all modes (i.e., minimal weight of all modes) contributing

to the final design will be maximized. This can be formalized

mathematically in a BIP as follows:

max zmin ð1aÞ

s:t: wmax(1{yi)zwiyi
§zmin, i[f1,::,mg, ð1bÞ

bT
i x§jjbijjyi, ð1cÞ

bT
i xƒjjbijj(1zyi){1, ð1dÞ

jjxjj~jjx0jj{D, ð1eÞ

jjyjj§1, ð1fÞ

w~(w1, . . . ,wm)T, wi[<Vi, ð1gÞ

x~(x1, . . . ,xn)T, xj[f0,1gVj, ð1hÞ

y~(y1, . . . ,ym)T, yi[f0,1gVi: ð1iÞ

where m denotes the total number of modes in the unperturbed

network, D is the number of required reaction deletions and

jjx0jj~n represents the total number of reactions in the system.

The binary variable yi indicates whether or not EFM i is selected

for the final design. Due to the constraint (1c), EFM i is kept if

yi~1. Otherwise constraint (1d) guarantees that mode i is

removed. When mode i is deleted it does not contribute to the

maximization problem, as constraint (1b) simplifies to wmax§zmin,

which is always an upper bound if we choose wmax~ max (w).
Finally, constraint (1f) requires that each design consist of at least

one EFM.

We can find alternate solutions to the optimization problem

equation (1) if we exclude any previous solution k by the inequality

[25].

(1{xk)Tx§1, ð2Þ

where 1 denotes an all-one vector.

Table 2. Result of our algorithm when applied to the toy model in Figure 1 (optimization for YP=S).

D MCS EFMs z

1 R2 2,3,4 0.4

1 R3 4 0.4

2 R2,R6 3 0.5

3 R2,R4,R5 3 0.5

Column D contains the number of deletions; MCS lists the deleted reaction(s) for this MCS; EFMs contains the surviving EFMs (numbers correspond to Table 1), and z is
the minimal value for the product yield, YP=S , in the system.

doi:10.1371/journal.pone.0092583.t002
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The BIP in equation (1) calculates cut sets that maximize zmin

for any fixed Df . However, these cut sets may not necessarily be

MCS. To obtain only the ‘‘best’’ MCS, we solve the system

consisting of equation (1) and equation (2) repeatedly starting with

D~1. Additionally we require that at each iteration, k, zmin,k is

either better or equal to the zmin,k{1 of the previous iteration

k{1. If we do not find any other solution, we increase and start

the cycle again until we reach the desired Df . Note that equation

(2) not only excludes previous solutions but also eliminates higher

order cut sets (i.e., cut sets that are supersets of the already

calculated MCS). Thus, this procedure only yields MCSs.

Finally, the conventional BIP formulation for cMCS [25],

where modes are classified manually, is recovered if we assign a

weight of one to all desired modes and a weight of zero to all

undesirable modes.

To illustrate our algorithm we applied it to the toy network

depicted in Figure 1 and optimized for YP=S. The results are

depicted in Table 2.

Implementation
To solve the BIP, we use the IBM ILOG CPLEX Optimizer,

http://www.ibm.com/software/integration/optimization/cplex-

optimizer, for which free academic licenses are available. We used

the specialized CPLEX’ feature populate [26] to speed up the

calculation of alternate optima, which allows for efficient

generation of multiple solutions with one function call. Our

implementation of the algorithm in C is available from the authors

on request.

Results

In the previous section we described our approach to determine

cMCSs without preselecting modes. Now we apply our method to

optimize anaerobic ethanol production from glucose in E. coli

using the metabolic model by Trinh et al. [20]. Under these

conditions, the model contains 47 metabolites and 59 reactions

that give rise to 5,010 EFMs.

Optimization for Substrate Specific Productivity (SSP)
We aimed to design the ‘‘most efficient’’ ethanol producing E.

coli strain. Here, efficiency, gP, is understood to be synonymous to

the SSP and defined for each EFM as the product of its ethanol

yield, YEtOH=S, times its growth rate (biomass yield, YBM=S), each

normalized with respect to glucose-uptake. It is useful to use

weights that depend on both product yield and growth rate to

optimize the time-space yield of the fermentation process. We use

the efficiency as weights in our analysis and maximized the

minimum efficiency of the engineered E. coli as function of the

required reaction deletions using our approach (see Table 3 and

Figure 3).

We found that the minimum efficiency differed from zero only

for three and more deletions. That is, it is impossible to allow for

up to two deletions and not to include an inefficient (i.e. gP~0)

mode in the set of desired modes. Zero efficiency modes produce

either no product or no biomass or neither.

At least 10 deletions are required to reach the largest possible

minimum efficiency. At this stage only four EFMs with identical

overall stoichiometry survive the intervention. The following

solutions lead to the same optimum and only restrict the solution

space further (four surviving modes to one surviving mode, see

Table 3). However, the maximum number of surviving modes did

not decrease with increasing cardinality of the MCSs. While the

decrease can be observed as a general trend, there were two

exceptions at D~6 and D~8. In contrast, the minimum number

of surviving EFMs monotonically decreased with cardinality of the

MCSs.

On our machine (2 CPUs: Intel Xeon X5650 2.67 GHz (six

cores each), OS: Ubuntu 12.04) it took about 30 minutes to

calculate all 37828 MCSs listed in Table 3 using 10 threads.

Figure 3 depicts a projection on biomass and ethanol flux of the

total phenotypic space for the E. coli model used in our

Figure 3. Phenotypic space for the E. coli model. Each circle represents one or more modes (indicated by size) with the respective flux value for
ethanol secretion and biomass production, both normalized to glucose uptake. Color coding represents efficiency, defined as the product of ethanol
yield (R_ETOHT2r/R_GLCpts) and specific growth rate (R_BIOt/R_GLCpts). The boxes envelop the solution space obtained for OptKnock [8] and the
best solution for each deletion obtained by our algorithm (3–8 deletions). Note that while OptKnock gives different solutions for each number of
deletions, the phenotypic space of these solutions remains the same.
doi:10.1371/journal.pone.0092583.g003
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calculations. All 5,010 modes are represented by circles according

to ethanol yield (normalized to glucose uptake) and specific growth

rate (normalized to glucose uptake). Modes with identical values

for both were grouped. The size of the circles corresponds to the

number of modes included in these groups. The solution spaces for

our method are depicted as colored polygons on the right hand

side of the figure, showing the increase in minimal efficiency with

each step (see also Table 3). For comparison we show the

OptKnock [8] solution space (Figure 3, red dashed-dotted line).

Note that although the EFM spectra may differ at each additional

knockout, the overall solution space computed by OptKnock is the

same for all solutions with three to eight deletions. Only the

deletion of a ninth reaction leads to a state where minimal specific

ethanol production is always above zero independent of growth

rate.

Figure 4 shows the span for each maximum and minimum value

(ethanol flux, biomass production flux and efficiency) obtained by

our algorithm. It clearly shows that the minimum efficiency

calculated by our method increases with each increase in the

number of deletions.

Optimization for Efficiency with Inclusion of ‘‘Essential’’
Modes

We have now optimized for efficiency without any consider-

ation of cellular maintenance. Maintenance requirements can be

included in our algorithm in the form of ‘‘essential’’ modes.

Essential EFMs are modes that must be included in the final design

(either all of them or at least n of them) independent of the

objective function or any weighting. Thus, essential modes must

remain unaffected by the cMCS. The enhanced algorithm can be

found in Supporting Information S1.

We chose the experimentally verified design used by Trinh et al.

[20] to demonstrate the principle. The design by these authors

consisted of 12 EFMs, eight of which had zero growth but

maximum ethanol flux and two of the eight provided maintenance

energy. We used our enhanced algorithm, optimized for efficiency

and excluded those eight zero-efficiency modes from the analysis.

That is, we considered those eight EFMs to be essential of which at

least one had to remain in the final, engineered solution space.

The smallest solution we found had five deletions (see Figure 5, top

panel). We also found a solution with six deletions (see Figure 5,

bottom panel), which consisted of the four most efficient modes

plus all eight ‘‘essential’’ modes. This design corresponded to the

one used by Trinh et al. [20]. Note that Trinh et al. [20] used seven

deletions for their design. However, it was already pointed out in

[18,24] that the minimal number of deletions for this layout is six.

Note that we manually selected the eight EFMs with the highest

ethanol production (two of which produce maintenance energy) to

be essential for simplicity. However, we detected all maintenance

modes (or any desired subset thereof) automatically and populated

the set of essential modes with them.

Importantly, we achieved the same result when optimizing for

ethanol yield using equation (1) (data not shown). In that case we

used the mode’s ethanol yield as weights, whereas a selection of

‘‘essential’’ modes was not necessary. The definition of the design

objective (i.e., maximization of minimal ethanol secretion) suffices

to recover Trinh et al.’s design.

Discussion

cMCSs have recently been introduced to predict minimal

intervention strategies for the rational design of cell factories

[18,24]. Desirable and undesirable network states are identified

based on an EFM analysis, and a cMCS problem is set up, which

can be efficiently solved [25]. However, the predicted MCSs will

obviously depend on the categorization of the EFMs. In this report

we presented a modified approach based on BIP, which avoids the

necessity of grouping the modes. Instead, the selection of modes

and the calculation of MCSs is automatically and optimally

regulated with respect to a user defined objective. Here, we used

Figure 4. Results for efficiency optimization. Ethanol secretion
per glucose uptake (lower panel), biomass production per glucose
uptake (middle panel) and efficiency (ethanol/glucose times biomass/
glucose) (top panel). Our algorithm shows a continuous increase in
minimum efficiency with the number of deletions, but does not reach
the theoretical optimum.
doi:10.1371/journal.pone.0092583.g004

Design of NMF

PLOS ONE | www.plosone.org 7 March 2014 | Volume 9 | Issue 3 | e92583



maximizing the minimum SSP, gP, as the design criterion, among

others. Maximizing the minimum of an objective is reminiscent of

the RobustKnock approach [9], which aims for a strict growth

coupling of byproduct formation. That is, maximizing the

minimum guarantees that the product of interest is formed

independent of growth rate. This optimization strategy is in

contrast to OptKnock [8] and similar methods, which aim to

maximize production but do not account for possible competing

pathways. The different optimization strategies explain why we do

not see a change in the available overall solution space of

OptKnock over a wide range of the number of deletions compared

to the results of our approach presented here (see Figure 3).

However, our approach is indifferent to the nature of the

objective. We can formulate a similar BIP using the OptKnock

objective as well. However, our method is a single level

optimization problem, whereas those of OptKnock and Robust-

Knock are bi-level optimization problems. We based our

optimization on a preceding EFM analysis, which characterized

the complete phenotypic space, whereas OptKnock and Robust-

Knock sample the phenotypic space with a second, inner

optimization problem using an additional, biologically motivated

objective.

Figure 5. Metabolic space for optimizing the efficiency with the condition of keeping at least one ‘‘essential’’ mode of eight
[located at (0,2)]. Best result for five deletions (top) and six deletions (bottom).
doi:10.1371/journal.pone.0092583.g005
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The main advantage of our reformulation of the BIP in

comparison to previous work [18,24] is use of a user-defined

objective, which avoids the need to manually select desired and

undesirable network states. Suppose we identified 12 desirable

EFMs, while the rest was undesirable (see Figure 5, bottom panel),

calculated all MCS, and found that at least six deletions were

required. Is it possible to further reduce the number of knockouts if

we could reclassify the modes? Our approach was able to answer

this question (see Figure 5, top panel). Because we optimize the

partitioning of the EFMs based on a linear optimization principle

to reach the optimum, we ensured that no better solution exists.

However, alternate solutions may exist and can be calculated by

applying equation (2). In principle we can address the same

problem with the conventional cMCS formulation [18,24].

We select modes, calculate all MCSs, reclassify the modes

naively, repeat the analysis and check if the cardinality of these

new MCS is smaller than the previously calculated ones. In the

worst case we would have to check every possible classification of

modes, which is computationally exhaustive if we use the

conventional cMCS formulation. However, our reformulation

achieves the same thing but is computationally more efficient.

Although we only used model-intrinsic values as weights in this

study (the ethanol yield and the SSP, we are free to choose any

weights. Any user-defined distribution of weights can be used, for

example to gradually favor a group of modes over others, without

imposing a strict ‘‘desired’’ or ‘‘undesired’’ criterion. In contrast,

we recover the conventional formulation by assigning binary

weights to all desirable and undesirable EFMs [24]. To capture

both aspects, the strict partitioning and the favoring of modes, our

modified approach also allows for ‘‘essential’’ modes. These are

desirable modes that are obligatorily included in the engineered

design. Modes that provide maintenance energy could be potential

candidates as essential modes in a design. Rather than using

essential modes it is always an option to use a more general

objective. Either way we were able to reproduce the experimen-

tally implemented results by Trinh et al. [20].

Our analysis on maximizing the minimal ethanol yield revealed

that total metabolic capabilities, as measured by the maximum

number of surviving EFMs, did not monotonically decrease with

the cardinality of the intervention set. This refutes a naı̈ve

expectation that the network’s flexibility or robustness decreases

with increasing size of the intervention. Figure 4 indicates that

strain improvement proceeds step-wise and does not correlate with

the number of interventions. We found essentially the same

optimum for three to five deletions with only small variations

between the three situations. The optimum changes significantly at

six deletions and remained more or less unchanged for the next

two interventions.

One computational bottleneck in our method lies in the

preceding EFM analysis. Currently only medium scale metabolic

models can be calculated, as the number of EFMs explodes [16].

However, significant progress on the efficient calculation of EFMs

has been made in recent years [17], which allows for analysis of

realistic models, which have (partly) been tested experimentally

[12,19–21].

In summary, we have presented an alternative, BIP-based

formulation for calculating cMCSs. Rather than manually

identifying favorable and unfavorable network states we used an

objective to guarantee optimal partitioning of the EFMs. We

demonstrated that our approach remains computationally feasible

for current metabolic engineering problems while adding much

more flexibility to the design process.

Supporting Information

Supporting Information S1 Enhanced algorithm that
allows for the inclusion of essential modes, with D, the
set of desired modes, T, the set of undesired (target)
modes, jDj, the number of desired modes, jT j, the
number undesired modes, and n, the number of
essential modes. The general procedure is the same as

explained in the text.

(TEX)
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