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Abstract 

Background: Lung cancer is the leading cause of cancer-related death in most western countries in both, males and 
females, accounting for roughly 20–25% of all cancer deaths. For choosing the most appropriate therapy regimen a 
definite diagnosis is a prerequisite. However, histological characterization of bronchoscopic biopsies particularly with 
low tumor cell content is often challenging. Therefore, this study aims at (a) determining the value of DNA methyla-
tion analysis applied to specimens obtained by bronchoscopic biopsy for the diagnosis of lung cancer and (b) at com-
paring aberrantly CpG loci identified in bronchoscopic biopsy with those identified by analyzing surgical specimens.

Results: We report the HumanMethylation450-based DNA methylation analysis of paired samples of bronchoscopic 
biopsy specimens either from the tumor side or from the contralateral tumor-free bronchus in 37 patients with defi-
nite lung cancer diagnosis and 18 patients with suspicious diagnosis. A differential DNA methylation analysis between 
both biopsy sites of patients with definite diagnosis identified 1303 loci. Even those samples were separated by the 
set of 1303 loci in which histopathological analysis could not unambiguously define the dignity. Further differential 
DNA methylation analyses distinguished between SCLC and NSCLC. We validated our results in an independent 
cohort of 40 primary lung cancers obtained by open surgical resection and their corresponding controls from the 
same patient as well as in publically available DNA methylation data from a TCGA cohort which could also be classi-
fied with high accuracy.

Conclusions: Considering that the prognosis correlates with tumor stage at time of diagnosis, early detection of 
lung cancer is vital and DNA methylation analysis might add valuable information to reliably characterize lung cancer 
even in histologically ambiguous sample material.
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Background
In oncology, a reliable diagnosis of a cancer and a defi-
nite differentiation between benign and malignant pro-
cesses is a prerequisite for choosing the most appropriate 
therapy modality. In the suspicion of lung cancer, it is 
regularly attempted to confirm the diagnosis from one 

or more biopsies obtained by bronchoscopy. However, 
histological characterization of bronchoscopic biopsies 
particularly of early tumor stages with low tumor cell 
content and putatively altered histology e.g. due to other 
precursor lesions or inflammatory processes is often 
challenging. Therefore, additional tools to support detec-
tion and diagnosis of lung cancer are desirable.

DNA methylation is an epigenetic modification 
of the DNA which is mandatory for regulating and 
adapting gene activity as well as for differentiation 
and development [1, 2]. Aberrant DNA methylation 
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patterns are characteristic for both hematopoietic 
malignancies as well as solid tumors, including lung 
cancer [3]. Several research groups and international 
consortia (e.g. TCGA) have characterized epigenetic 
alterations in lung cancer in detail [4]. Some authors 
also speculated about the putative application of these 
data to develop tools such as DNA methylation-based 
panels for diagnostic purposes [5]. Nevertheless, most 
of these analyses have been performed using surgically 
resected lung cancer specimens of high quality and/or 
high tumor cell content. Though the use of such sur-
gically resected samples of high purity is rational for 
understanding the biology of malignant cells and, in 
particular, for identifying putative therapeutic targets, 
the samples do not necessarily reflect the situation in 
initial diagnostics. The histology of biopsy specimens 
e.g. collected during bronchoscopy, is often more dif-
ficult to assess as compared to primary tumor speci-
mens. This is reflected e.g. in a lower overall amount 
of available tissue and/or a lower tumor cell content, 
which both can render detection and characteriza-
tion of tumor cells sometimes challenging. On the 
other hand, for the detection of a malignancy aberrant 
DNA methylation patterns of microenvironmental 
cells might also be considered valuable for diagnosis—
as long as these are characteristic for the malignant 
tumor. Indeed, epigenetic alterations in non-malignant 
cells of the microenvironment have been described 
before [6]. Consequently, the sample material used for 
building a classifier should be considered thoroughly 
in advance.

In order to address these particularities inherent to 
bronchoscopic biopsies as compared to primary lung 
cancers, this study focuses on characterizing altered 
DNA methylation patterns in tumor-containing as 
compared to matched normal specimens collected 
during bronchoscopy also available to pathologists for 
performing diagnosis. The study also included bron-
choscopic samples in which it was difficult by con-
ventional pathology to reach a diagnosis. Moreover, 
the results were compared with data collected from 
an independent set of high quality specimens of sur-
gically resected primary tumors. These latter samples 
were subjected to macrodissection to further increase 
the tumor cell fraction to identify DNA methylation 
patterns characteristic or common for both kinds of 
specimens. Additionally, a common set of aberrantly 
methylated loci has been identified. We speculate 
that the analysis of such a set of loci might supple-
ment diagnostics of challenging cases of lung cancer in 
future. Nevertheless, this study does not aim at estab-
lishing a distinct clinical biomarker panel.

Results
To identify recurrent epigenetic alterations in lung can-
cer and to reveal their putative benefit for diagnostics, 
HumanMethylation450 BeadChip analyses were per-
formed on biopsy samples collected during bronchos-
copy (further called: "biopsy samples"), lung cancer 
specimens of surgically resected primary tumors (further 
called "surgical specimens") and corresponding normal 
lung control specimens collected from the same patients 
(Additional file 2: Fig. S1).

While surgically resected tumor specimens usually 
contain plenty of tumor cells allowing a reliable histo-
logical diagnosis, analyses of biopsy samples more often 
suffer from low sample quality, e.g. due to low tumor cell 
content or putatively altered histology, making diagnosis 
more difficult and error-prone. To address the question 
whether DNA methylation analysis might add reliability 
to classical diagnostics of demanding cases, paired biopsy 
samples (i.e. from a supposedly tumor-containing and a 
supposedly tumor free contralateral bronchus) were col-
lected from 55 patients during bronchoscopy. All sam-
ples were subsequently surveyed by experienced lung 
pathologists using standard histopathological procedures 
(Additional file  6: Table  S1). In a total of 74 of the 110 
biopsies, definite histopathological diagnosis could be 
reached (37 lung cancer specimens and 37 controls with 
definite diagnosis). In a total of 36 specimens, no definite 
diagnosis could be reached (13 lung cancer specimens 
and 23 nonmalignant samples without definite diagno-
sis), predominantly due to a low tumor cell content of the 
specimens. These cases are further classified as “indefi-
nite” or “uncertain diagnosis”. Accordingly, 37 of the 55 
patients received a definite diagnosis. DNA methylation 
values obtained using the HumanMethylation450 Bead-
Chip of a subset of 13 CpG loci were verified by perform-
ing 608 bisulfite pyrosequencing reactions in 24 DNA 
samples isolated from 5 adenocarcinomas, 7 squamous 
cell carcinoma and 12 controls. The overall Pearson’s cor-
relation coefficient between both techniques was 0.89, 
which demonstrates high correlation of DNA meth-
ylation values determined by independent techniques 
(Additional file 3: Fig. S2 and Additional file 7: Table S2).

Aberrant DNA methylation profiles in paired biopsy 
specimens
Differential DNA methylation analysis (DMA) of the 
paired biopsies with a definite diagnosis available from 
37 patients identified 1303 loci (paired Wilcoxon test, 
FDR < 1 × 10–6, delta.beta > 0.25) aberrantly methyl-
ated in cancer-cell containing samples as compared to 
tumor-free samples. A subsequent hierarchical clus-
ter analysis of these 1303 loci including all 110 biopsies 
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clearly separated the specimens with definite infiltration 
by cancer cells from the corresponding control samples 
with high specificity and sensitivity (Fig.  1). In the 36 
samples labeled as “indefinite diagnosis” by histopatho-
logical investigation, the assumption of the pathologist 
could be verified in the vast majority of samples (32 of 

36, 89%). Comparing the pathologist assumption and the 
outcome of the DNA methylation analysis, the Cohen’s 
kappa coefficient ranged from 0.76 (taking the uncertain 
diagnosis into account only; Cohens κuncertain = 0.76) to 
0.93 (including all 110 samples; Cohens κoverall = 0.93). 
Only two samples with uncertain diagnosis (P05140125T 

Fig. 1 Hierarchical cluster analyses of DNA methylation data.  A Wilcoxon paired test statistics (FDR < 1 × 10–6, delta. beta > 0.25) applied to DNA 
methylation data of paired biopsies identified 1303 loci aberrantly methylated in tumor samples (red boxes on top of the heatmap) as compared to 
the corresponding controls (light green boxes). 34 of the remaining 36 specimens with an uncertain diagnosis (dark green boxes: supposed benign; 
orange boxes: supposed tumor containing) which were excluded from the statistical test clustered together with their counterparts with certain 
diagnosis. Two samples with doubtful diagnosis clustered “between” benign and malignant specimens. heatmap: blue: low, yellow: high DNA 
methylation. For presentation, mean methylation of each locus was normalized to zero (mean = 0)
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and P10130074T) histologically considered most likely 
as benign clearly clustered with the tumor-containing 
samples. Interestingly, patient P10130074T presented 
clinically as stage 4 lung carcinoma without histological 
confirmation, whereas specimen P05140125T turned out 
being a metastasis of a renal carcinoma by a second his-
tological evaluation. Thus, both tumors, which have been 
histologically misclassified as non-malignant were cor-
rectly identified by the epigenetic approach.

In turn, two uncertain diagnosis samples suspicious for 
being cancerous clustered between benign and malig-
nant samples, both of these were collected from the same 
patient (P09130061). These samples could not definitely 
classified as malignant or benign, neither by histology 
nor by DNA methylation analysis.

A more detailed analysis revealed that of the 1303 dif-
ferentially methylated loci, only 63 loci were hypomethyl-
ated in the cancer-cell containing biopsies as compared 
to the corresponding controls. These loci were located in 
36 known genes encoding for e.g. transcription factors 
(ZNF423, PEG3, E2F6), chromosome associated pro-
teins (DCTN2, ZNF423, CSPP1), cell adhesion proteins 
(SIRPB1) and apoptosis controlling factors (CASP8). 
Strikingly, four genes belong to the olfactory receptor 
family (OR8H2, OR8K1, OR2M7 and OR4K5). The 63 
hypomethylated CpG loci were enriched for localization 
in the first exon (OR: 6.88, p = 2.55 × 10–06,  chi2-test) but 
depleted for CGIs (OR: 0, p = 2.52 × 10–07,  chi2-test) and 
DNaseI hypersensitive sites (OR: 0.12, p = 0.02,  chi2-test).

In contrast, the hypermethylated loci in tumor con-
taining biopsies mapped to 555 genes. A gene ontology 
search demonstrated that these genes contributed to 
known tumor and signaling pathways, i.e. to the TGF-
beta signaling pathway (CREB, FBN1, GDF5, PITX2, 
RGMA, SMAD3, THSD4), the RAS signaling path-
way (ABL1, INSR, NTRK1, PIK3CA, PIK3R1, PIK3R2, 
RAPGEF5, ZAP70), the TNF signaling pathway (DAB2, 
MAP3K14, MAPK14, PIK3CA, PIK3R1, PIK3R2, RIPK1, 
TNFAIP3, VCAM1) or apoptosis (CAPN1, DAB2IP, 
ITPR2, LMNA, MAP3K14, NTRK1, PIK3CA, PIK3R1, 
PIK3R2, RIPK1, TP53AIP1). In general, hypermethyl-
ated loci were found enriched for gene bodies (OR: 1.27, 
p = 2.67 × 10–4,  chi2-test), 5′UTRs (OR: 1.38, p = 0.02, 
 chi2-test), CGIs (OR: 1.15, p = 0.02,  chi2-test), enhancers 
(OR: 2.48, p = 5.78 × 10–59,  chi2-test) and DNaseI hyper-
sensitive sites (OR: 1.71, p = 6.31 × 10–14,  chi2-test).

Therapy of lung cancer besides clinical presentation 
and increasingly mutational findings relies on histo-
pathologic subtyping [7] into SLCL, AC and SQC. To 
study, whether DNA methylation of biopsy samples from 
bronchoscopy might add to this subtyping we in the first 
step investigated differential DNA methylation of lung 
cancer entities in our cohort by performing an ANOVA 

analysis. Due to limited sample numbers in the differ-
ent groups (Additional file  6: Table  S1), we focused on 
SCLC, AC and SQC. Hierarchical cluster analysis of the 
identified 300 differentially methylated loci (σ/σmax > 0.25, 
FDR < 1 × 10–6, ANOVA; corresponding to 170 indi-
vidual genes) resulted in two major branches separat-
ing SCLC from NSCLC (AC and SQC) samples with 
the exception of two samples (Fig.  2a, Additional file  9: 
Table  S3; Cohens κ = 0.86). These two have been classi-
fied previously as SCLC but belong to the set of speci-
mens with an uncertain histological diagnosis (76701 and 
P10130072, Additional file  6: Table  S1). However, these 
samples show a DNA methylation pattern different from 
the one of other SCLC samples but identical to those of 
the NSCLC specimens, suggesting a misclassification of 
these biopsies based on the initial histological screening. 
In a second approach we focused on the clinically most 
relevant groups of NSCLC, AC (n = 13 samples in the 
biopsy cohort) and SQC (n = 18). Applying a t-test sta-
tistic to identify loci differentially methylated between 
these entities revealed 15 CpG loci (q < 0.05, σ/σmax > 0.55; 
cg00129651, cg00370229, cg00400827, cg01188578, 
cg06922248, cg09451235, cg11965913, cg12861034, 
cg17178900, cg18367631, cg20395967, cg20668644, 
cg20691436, cg22061831, cg26631039) corresponding 
to nine individual genes (ARHGEF4, CALML3, GLI2, 
HADHA, MIR663, PM20D1, PRKAR1B, RAPGEFL1, 
ZDHHC1). Considering these loci only, a hierarchical 
cluster analysis of the methylation values separated AC 
from SQC (Fig. 2b).

Aberrant DNA methylation profiles in surgical lung cancer 
specimens and comparison to biopsy specimens
To compare the results obtained from bronchoscopic 
biopsy samples with high quality specimens usually used 
in numerous other studies on lung cancer and to further 
validate our findings, we in addition collected an inde-
pendent sample cohort of surgical cancer specimens. 
In all these samples a firm histopathologic diagnosis 
could be reach (Additional file 6: Table S1). To minimize 
putative corruption of DNA methylation data in malig-
nant cancer cells due to adjacent non-malignant cells of 
the tumor microenvironment, tumor cell content was 
increased by macrodissection (resulting tumor cell con-
tent > 80%). In parallel, matched tumor-free control sam-
ples were isolated from the same surgically removed 
tissue.

In a first approach we investigated how the panel of 
1303 CpG loci obtained from the DMA of the paired 
bronchoscopic biopsy samples described above per-
formed on the independent cohort of surgically 
resected specimens. Based on the methylation sta-
tus of these loci all surgical specimens were correctly 
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separated into tumoral and normal by both hierarchi-
cal cluster analysis and PCA (Fig.  3a, b). Therefore, 
the DMA results of the biopsy samples could be fully 
validated using the independent cohort of surgically 

obtained primary specimens (κ = 1). Additionally, 
we applied the set of 1303 loci to a DNA methylation 
data set provided by the TCGA including more than 
800 lung cancer samples (439 AC and 369 SQC) and 

Fig. 2 Differential DNA methylation analysis to separate tumor entities. a After performing an ANOVA (FDR < 1 × 10–6, σ/σmax > 0.25) a hierarchical 
cluster analysis of the 300 resulting loci separated SCLC and NSCLC specimens in biopsy samples. Boxes on top of the heatmap: yellow boxes: 
SCLC, red boxes: AC, blue boxes: SQC. Methylation values are presented without further normalization (avg.beta values). b Furthermore, a t-test 
statistic (FDR < 0.05, σ/σmax > 0.55) separating AC and SQC in biopsy specimens with certain diagnosis resulted in 15 loci. This set of loci separates 
both entities in the biopsy cohort in a subsequent hierarchical cluster analysis. Boxes on top of the heatmap: red boxes: AC, blue boxes: SQC. For 
presentation, mean methylation of each locus was normalized to zero (mean = 0). Heatmap: blue: low, yellow: high DNA methylation
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26 non-malignant controls (see materials). Although 
this data set contains only information of 1162 of the 
1303 loci, both, a subsequently performed PCA (Fig. 4) 
or hierarchical cluster analysis (Additional file  4: Fig. 
S3) separated lung cancer and control samples with 
only a minor number of exceptions. This further con-
firmed the results of our analysis of surgical specimens. 

Depending on the selected branch of the cluster analy-
sis, the agreement between histological and epigenetic 
diagnosis is almost perfect (κ = 0.87, Cohens kappa 
comparing the diagnostic outcome of histological and 
DNA methylation based analyses).

Further analyses in particular of the data set obtained 
from the surgical specimens as well as a comparison 

Fig. 3 Hierarchical cluster analyses and principal component analysis of surgical specimens. 1303 differentially methylated loci identified by a DMA 
of paired biopsies were analyzed in the surgical specimens’ data set by performing a hierarchical cluster analysis (a) or PCA (b). Heatmap and PCA: 
red boxes/spheres: tumor samples, green: control tissue samples; heatmap: yellow: high, blue: low DNA methylation values
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with the results obtained from bronchoscopic biopsies 
is provided in the Additional file 1: Supplement.

Discussion
This study aimed at analyzing CpG loci aberrantly meth-
ylated in paired biopsy specimens collected during bron-
choscopy of lung cancer patients, compared to highly 
pure, clinically and histologically well characterized sur-
gical specimens. DNA methylation data were collected 
by array analysis. Reliability of array data was ensured by 
bisulfite pyrosequencing of arbitrary selected loci.

In a first approach, a classical statistical analysis to 
identify aberrantly methylated CpG loci in bronchos-
copy specimens of lung cancer patients and correspond-
ing controls revealed 1303 loci (FDR < 1 × 10–6, delta.
beta > 0.25). This panel of loci separated reliably benign 
from malignant specimens in the biopsy cohort (Cohens 
κoverall = 0.93, even if taking the misclassified cases into 
account), the cohort of surgical specimens (κ = 1) as well 
as in the TCGA sub-cohort (κ = 0.87, although the TCGA 
sub-cohort available contains only information of 1162 
of the 1303 loci). This demonstrates and underlines the 
capability of DNA methylation analysis for diagnosing 
complex clinical lung cancer cases. Interestingly, also sev-
eral challenging specimens which have been misclassified 
by the pathologist have been correctly identified by the 
epigenetic approach.

Only a minority of 63 of the 1303 aberrantly methyl-
ated loci were hypomethylated in cancer samples as com-
pared to controls. The 36 genes corresponding to these 
loci included several transcription factors with a known 
impact on carcinogenesis (i.e. ZNF423, PEG3 and E2F6), 
chromosome associated proteins like CSpp1 or several 
members of the olfactory receptor family. Low expres-
sion of the transcription factor ZNF423 induces growth 
of tumor cells and correlates with a poor clinical outcome 
in neuroblastoma patients [12, 13]. Furthermore, by per-
forming a motif analysis of tumor-specific methylated 
regions in SCLC Kalari et  al. identified an enrichment 
of binding sites for several transcription factors includ-
ing ZNF423 supposing a functional role of this factor in 
lung cancer [14]. PEG3 is supposed to affect cell prolif-
eration and apoptosis mediated by p53. This factor, which 
is expressed only from the paternally inherited allele acts 
as tumor suppressor in ovarian cancers as well as in glio-
mas [15, 16]. Also E2F6 acts as transcription regulator. 
Overexpression of E2F6 in combination with deregula-
tion of distinct other factors has been suggested as bio-
marker for AC and SQC in peripheral blood [17]. The 
chromosome associated protein CSPP1 regulates cell-
cycle progression, spindle organization [18] and regulates 
cytokinesis. However, its impact in lung cancer remains 
yet unclear. Interestingly, four of the 36 hypomethylated 
genes belonged to the olfactory receptor family (OR8H2, 
OR8K1, OR2M7 and OR4K5). These are members of the 
family of G-protein-coupled receptors. While their spe-
cific function in many tissues, including lung tissue, is 
still speculative, they have been shown to be involved in 
numerous cellular processes including cell–cell recogni-
tion, migration, proliferation and apoptosis [19]. Never-
theless, other members of the olfactory receptor family 
have already been shown to play a role in cancer includ-
ing lung carcinomas. OR51E1 for example has been 
suggested as target for diagnosis in somatostatin recep-
tor-negative lung carcinoids [20], whereas OR3A4 pro-
motes cisplatin resistance of non-small cell lung cancer 
[21].

The vast majority of loci were hypermethylated as 
compared to controls. In particular CGIs, enhancers and 
5′UTRs were affected by hypermethylation, which is in 
line with other reports [8]. Interestingly, we found sev-
eral relevant pathways (i.e. the TGFbeta, RAS, TNF or 
apoptosis signaling pathways) in tumors affected by aber-
rantly methylated genes, which might propose a func-
tional impact of the altered DNA methylation in these 
cases. Deregulation of TGFbeta signaling has been corre-
lated with EMT transition, cell migration and invasion in 
lung cancer [9] whereas TNF signaling is being expected 
playing a major role in inflammation-induced cancer 
and disturbances in the RAS signaling in lung cancer are 

Fig. 4 Principal component analysis of TCGA data on lung cancer. 
TCGA DNA methylation data of 1163 CpG loci present in both, 
the TCGA data set as well as the set of 1303 differentially loci were 
subjected to a PCA (unsupervised). Red spheres: AC samples 
(n = 439), blue spheres: SQC samples (n = 369), green spheres: control 
tissue samples (n = 26)
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long known [10]. Interestingly, TNF has even been sug-
gested as biomarker for NSCLC [11]. Numerous genes 
found aberrantly methylated in this study contribute 
to these signaling pathways and are well known to play 
a role in lung cancer as well as in carcinogenesis in gen-
eral. For example SMAD3 is a member of the TGFbeta 
signaling pathway. It acts as tumor suppressor and regu-
lates cell proliferation. An effect of SMAD3 in smoking 
induced resistance to chemotherapy as well as the attenu-
ation of the tumor suppression function of TGFbeta in 
lung cancer has been shown [22, 23]. Like SMAD3, also 
PITX2 is a member of the TGFbeta signaling pathway. It 
belongs to the bicoid class of homeodomain proteins and 
is involved in the development of several organs. PITX2 
has been shown to enhance progression of lung adeno-
carcinoma [24]. Furthermore, the DNA methylation sta-
tus of PITX2 and SHOX2 has been suggested to predict 
the outcome in patients with NSCLC [25]. ABL1 is a pro-
tooncogene that encodes a protein tyrosine kinase. ABL1 
contributes to the RAS signaling pathway and is involved 
in a variety of cellular processes with an impact on car-
cinogenesis, including cell differentiation, cell adhesion 
and division. Somatically mutated ABL1 has been sug-
gested to be essential for the survival of NSCLC cells 
[26]. Furthermore, ABL1 can promote metastasis of lung 
cancer cells carrying also EGFR or KRAS mutations [27]. 
Another member of the RAS signaling pathway, PIK3CA 
encodes for the catalytic subunit of the Phosphatidylin-
ositol 3-kinase. It has been described to be oncogenic. 
After reviewing several publications that investigated the 
impact of PIK3CA on lung cancer, Wang et al. concluded 
that PIK3CA mutation may not only affect lymph node 
metastasis but might also serve as prognostic factor in 
NSCLC. Additionally, smoking may be correlated with an 
increase in PIK3CA expression [28]. Besides the catalytic 
subunit we also found the phosphoinositide-3-kinase 
regulatory subunits 1 and 2 to be aberrantly methylated 
in tumor specimens of our biopsy cohort. Both subunits 
have been shown to play a role in malignancies includ-
ing lung cancer [29, 30]. Consequently, the results of this 
study are in line with current reports in the literature.

A subsequently performed ANOVA including 
malignant specimens only revealed 300 loci separat-
ing SCLC from AC and SQC, corresponding to 170 
genes (σ/σmax > 0.25, FDR < 1 × 10–6, Cohens κ = 0.86). 
According to the KEGG Mapper nine of these genes 
contribute to pathways in cancer, i.e. AKT3, APPL1, 
AXIN1, CTBP2, GNG4, NFE2L2, NOTCH1, NOTCH3 
and PDGFA. AKT3 increases migration and metasta-
sis in cancer cells [31], while a knockdown of this gene 
induces mitochondrial dysfunction [32]. APPL1 regulates 
cell proliferation and migration in malignant cells [33] 
and AXIN1 acts as a negative regulator of the WNT1 

pathway. Hypermethylation of this gene with clinical 
significance in lung cancer has been already reported 
before [34]. CTBP2 affects the WNT in NSCLC cells 
[35] and furthermore activates TGF-beta signaling [36], 
while NFE2L2 encodes a transcription factor which has 
been recurrently reported being altered in NSCLC [37]. 
Finally, members of the NOTCH receptor family are 
important regulators of cell interactions. Alterations have 
been reported in multiple cancers, including lung cancer 
but also in other lung diseases [38]. Besides the KEGG 
cancer pathway, also genes contributing to other signal-
ing pathways like the notch signaling pathway (p < 0.0001, 
Bayes Factor: 6) were affected.

In summary, our results indicate that DNA methyla-
tion analysis might be a promising supplementary tool to 
characterize biopsy specimens that do not allow diagno-
sis based on pathological findings alone.

Conclusions
Lung tissue biopsies collected during bronchoscopy of 
limited quality and low or undefined tumor cell content 
can pose challenges in establishing a definite diagnosis. 
In our hands DNA methylation proofed of high value not 
only to detect tumor cell DNA present in the sample but 
also to determine the tumor entity.

Furthermore, our data indicate that panels of CpG 
loci built on high quality sample material might be less 
favorable when analyzing biopsy samples with low tumor 
cell content or of low quality (see Additional file 1). This 
might make an impact on future studies building or 
applying diagnostic DNA methylation panels.

Methods
Tissue specimens
55 paired biopsy specimens of lung cancer patients from 
suspicious (tumor) lesions as well as corresponding 
tumor free control tissues (mostly from the contralat-
eral bronchi) were collected during bronchoscopy. All 
samples underwent extensive histological examination 
by trained pathologists for diagnosis as well as for esti-
mating tumor cell content. In this study, we intentionally 
included also numerous paired biopsies (n = 18) with at 
least one sample showing an uncertain histological pat-
tern resulting into a difficult and (without further inves-
tigations and clinical information) uncertain diagnosis. 
In these cases the pathologists made a decision based on 
their experience and only the material available.

As part of a second, independent and unmatched 
sample cohort, surgically resected lung tumor tissue 
specimens as well as matched tumor-free control tissue 
samples of 15 patients suffering from adenocarcinomas 
(AC) and 18 patients with squamous cell carcinomas 
(SQC) who underwent surgery with curative intent were 
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collected. Tumor specimens have been macrodissected 
to enrich tumor cell content. Tumor cell content > 80% 
has been confirmed by trained pathologists. The results 
from all histological analyses are presented in Additional 
file 6: Table S1. Ethical permission was obtained from the 
University of Lübeck through the Biomaterialbank North 
(Ref. 12-220 and Ref. 12-238). Subsequent DNA isola-
tion and bisulfite conversion was performed as detailed 
in [39].

Methylome analysis
After extraction of the DNA, methylome data was gen-
erated as previously reported using the HumanMethyla-
tion450K BeadChip (Illumina, Inc., San Diego, CA, USA) 
according to the manufacturer’s instruction. This chip 
allows the parallel methylation analysis of 485,577 loci. 
Data was stored in GEO (accession number GSE158075). 
Raw data analysis was performed using the GenomeStu-
dio software package (Illumina, Inc.). CpG loci located 
on gonosomes as well as CpG loci with detection. p-val-
ues > 0.01 were excluded from further analyses. Surgi-
cal and paired biopsy specimens were normalized and 
analyzed separately. After exporting the resulting data, 
Omics Explorer 3.2 (Qlucore, Lund, Sweden) was used 
for subsequent cluster analyses, PCA, machine learn-
ing approaches and data presentation. The Gorilla tool 
[40], GATHER and KEGG tools [41] were used for gene 
ontology analyses, db-string for interaction analyses [42]. 
PERL (ver. 5), Julia (ver. 0.6) as well as R (ver. 3.4.3) were 
used to perform statistical analysis as detailed in the fig-
ure legends and the text and for generating figures. While 
in particular the control samples shared a similar DNA 
methylation pattern, methylation was more heterogene-
ous in malignant samples (most obvious in surgical speci-
mens with high tumor cell content, Additional file 5: Fig. 
S4). For validation purposes we used The Cancer Genome 
Atlas (TCGA) data publically accessible from BROAD 
institute on 439 AC and 369 SQC [43].

Bisulfite pyrosequencing (BSPS)
Bisulfite pyrosequencing was performed for data valida-
tion as detailed in [44]. A list of PCR primers used and 
conditions applied for PCR amplification are provided in 
Additional file 9: Table S4.

Supplementary Information
The online version contains supplementary material available at https ://doi.
org/10.1186/s1314 8-021-01024 -6.

Additional file 1. Supplement. This file contains further analyses in par-
ticular of the data set obtained from the surgical specimens as well as the 
comparison with the results obtained from bronchoscopic biopsies.

Additional file 2. Fig. S1: Cohorts and samples included into the 
study. (A) The first cohort consisted of 110 paired bronchoscopic biopsy 
specimens from 55 patients. From each patient two biopsies have been 
collected, one from the suspicious tumor lesion and another one from 
the contralateral bronchus. Based on the histological examination by 
trained pathologists 37 patients (corresponding to 74 individual biopsies) 
received a definite diagnosis of lung cancer (15 AC, 19 SQC, 3 other lung 
cancer entities). From those also 37 control samples were included. The 
remaining 18 patients (corresponding to 36 individual biopsies) did not 
receive a final diagnosis, 13 biopsies were classified as "tumor suspicious", 
23 as "probably non-malignant". (B) The second sample cohort consisted 
of 32 surgically removed lung cancer specimens. From each specimen 
tumor cells were enriched by macrodissection (tumor cell content 
>80%), resulting in 32 tumor samples (14 AC and 18 SQC). Non-malignant 
lung tissue samples were collected from the periphery of the surgically 
specimens (32 non-malignant control samples). The minimum distance 
between the sampling sites of tumor specimen and control specimen was 
1cm. (C) For in silico analyses a DNA methylation data set provided to the 
public by the TCGA consortium has been used (439 AC-, 369 SQC- sam-
ples and 26 control specimens)

Additional file 3. Fig. S2: Validation of DNA methylation values col-
lected by HumanMethylation450 BeadChip (HM450 BC) using bisulfite 
sequencing (BSPS). For verifying results obtained by array analysis, 13 
CpG loci were selected and BSPS assays were designed. These loci were 
subsequently analyzed in both malignant and benign samples of surgical 
and biopsy specimens. Overall 608 BSPS reactions were performed for 
HM450 BC data verification. Afterwards, BSPS data was correlated with 
data obtained from HM450 BC analysis by determining the Pearson’s 
correlation coefficient. The results of the overall analysis as well as the 
analysis of four specimens’ subgroups are shown. Additional BSPS assays 
succeeded to validate loci differentially methylated between SQC and 
AC as determined by HM450 BC analysis (data not shown). Data sets 
from the following CpG loci were included: cg04415798, cg23322933, 
cg18103859, cg05877497 (24 surgical specimens and 24 biopsy samples: 
12 tumors, 12 controls each); cg22620090, cg06809252 (24 surgical 
specimens: 12 tumors, 12 controls and 22 biopsy samples: 11 tumors, 11 
controls), cg13588800, cg20052718, cg17839237, cg24446548 (34 surgical 
specimens: 17 tumors, 17 controls and 24 biopsy samples: 12 tumors, 12 
controls), cg02391713 (24 surgical specimens: 12 tumors, 12 controls), 
cg00240432 and cg14782672 (34 surgical specimens: 17 tumors, 17 
controls).

Additional file 4. Fig. S3: Hierarchical cluster analyses of TCGA data on 
lung cancer. 1162 of the 1303 differentially methylated loci identified in 
the DMA of paired biopsies of which methylation data are available in 
the TCGA data set, were analyzed in the TCGA data set by performing a 
hierarchical cluster analysis. heatmap: red boxes: AC samples, blue boxes: 
SQC samples, green boxes: control tissue samples; heatmap: yellow: high, 
blue: low DNA methylation values.

Additional file 5. Fig. S4: Correlation matrix of DNA methylation data col-
lected from 40 surgical tumor specimens and their corresponding control 
using the HumanMethylation450 BeadChip. DNA methylation data of all 
surgical specimens included into this study were subjected to correlation 
analysis by first calculating Pearson’s correlation coefficient for each com-
bination of sample pairs and subsequently building a correlation matrix. 
Red bar below and right of the matrix: tumor samples, green bar: controls. 
Matrix and bar below of the matrix: blue: low correlation coefficient, yel-
low high correlation coefficient. While control samples are characterized 
by high homogeneity of their methylation values, the tumor methylome 
is highly heterogeneous.

Additional file 6. Table S1: Table of surgical specimens (1st sheet) and 
paired biopsies (2nd sheet) included into this study. Additional clinical 
information known to the authors is included.

Additional file 7. Table S2: Results of the analysis of 608 individual BSPS 
reactions to validate methylation values collected by HM450 BC and 
comparison to array data. See also Additional file 3: Fig. S2.

Additional file 8. Table S3: ANOVA to identify loci differentially methyl-
ated between AC, SQC and SCLC.

https://doi.org/10.1186/s13148-021-01024-6
https://doi.org/10.1186/s13148-021-01024-6
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Additional file 9. Table S4: Table of primers and primer sequences for 
performing bisulfite pyrosequencing (BSPS). The annealing temperature 
[°C] applied is shown (Tm).
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