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SUMMARY

Mitogen-activated protein kinase kinase signaling is
required for initiation and maintenance of pancreatitis.
Inhibition of this signaling pathway attenuates inflammation
and fibrosis, but also limits organ regeneration.

BACKGROUND & AIMS: Mitogen-activated protein kinase
(MAPK) signaling in the exocrine pancreas has been extensively
studied in the context of pancreatic cancer, where its potential
as a therapeutic target is limited by acquired drug resistance.
However, its role in pancreatitis is less understood. We inves-
tigated the role of mitogen-activated protein kinase kinase
(MEK)-initiated MAPK signaling in pancreatitis to determine
the potential for MEK inhibition in treating pancreatitis
patients.

METHODS: To examine the role of MEK signaling in pancre-
atitis, we used both genetic and pharmacologic approaches
to inhibit the MAPK signaling pathway in a murine model
of cerulein-induced pancreatitis. We generated mice
harboring inducible short hairpins targeting the MEK
isoforms Map2k1 and/or Map2k2 specifically in the pancre-
atic epithelium. We also used the MEK inhibitor trametinib to
determine the efficacy of systemic inhibition in mice with
pancreatitis.

RESULTS: We demonstrated an essential role for MEK
signaling in the initiation of pancreatitis. We showed that both
systemic and parenchyma-specific MEK inhibition in estab-
lished pancreatitis induces epithelial differentiation and
stromal remodeling. However, systemic MEK inhibition also
leads to a loss of the proliferative capacity of the pancreas,
preventing the restoration of organ mass.

CONCLUSIONS: MEK activity is required for the initiation and
maintenance of pancreatitis. MEK inhibition may be useful in
the treatment of chronic pancreatitis to interrupt the vicious
cycle of destruction and repair but at the expense of organ
regeneration. (Cell Mol Gastroenterol Hepatol 2017;3:99–118;
http://dx.doi.org/10.1016/j.jcmgh.2016.09.009)
© 2017 The Authors. Published by Elsevier Inc. on behalf of the AGA
Institute. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Pancreatitis is the most frequent cause for hospitali-
zation for a gastrointestinal disease.1 Repeated bouts
of acute pancreatitis cause a necrosis-fibrosis sequence
leading to chronic pancreatitis (CP), which is characterized by
progressive and potentially irreversible damage to the
pancreas.2 Although some acinar cells are lost during
pancreatitis through necrosis,3 other acinar cells undergo
acinar-to-ductal metaplasia (ADM).4 ADM are proliferative
duct-like structures theoretically capable of regenerating
acinar cells lost in pancreatitis.4–6 ADM induction has been
linked to several mechanisms including ductal ectasia,7

activation of nuclear factor kappa B (NF-kB),8,9 Notch
receptors,10,11 and epidermal growth factor receptor (EGFR).
Activation of EGFR by ectopic ligands has been demonstrated
to drive ADM in ex vivo cultures10,12 and in vivo.12,13

High levels of RAS activity, established through trans-
genic overexpression of oncogenic Kras, are sufficient to
drive CP and ADM.14 This effect is mediated through RAS
activation of NF-kB signaling, which propagates a feed-
forward signaling loop promoting chronic inflammation.15

We and others have demonstrated that endogenously
expressed mutant Kras requires EGFR to achieve sufficient
RAS activity to induce ADM and tumorigenesis.16,17 We also
observed that pharmacologic inhibition of mitogen-activated
protein kinase kinase (MEK) is sufficient to block
KRAS-driven ADM and subsequent tumor formation,17

whereas MEK inhibition of established pancreatic intra-
epithelial neoplasia induces acinar cell redifferentiation.18

Taken together, these data strongly support a key role for
KRAS-MEK signaling in the formation and maintenance of
pancreatic preneoplasia.

http://dx.doi.org/10.1016/j.jcmgh.2016.09.009
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In contrast to tumorigenesis, the role of mitogen-
activated protein kinase (MAPK) signaling in the induction
and persistence of pancreatitis in the absence of oncogenic
Kras is less well-elucidated. Pancreatitis is marked by an
influx of macrophages that can release cytokines such as
tumor necrosis factor-a and RANTES driving ADM by
activation of NF-kB.8 In addition, alternatively activated
macrophages promote the activation of pancreatic stellate
cells, further enhancing the fibroinflammatory response.19 It
has been postulated that stromally derived cytokines and
growth factors are primarily responsible for driving acinar
cell damage and ADM.8 However, expression of EGFR
ligands and EGFR activation is commonly observed in
human CP, and in mice, parenchymal ablation of either EGFR
or ADAM17, the primary EGFR ligand sheddase, prevents
ADM and the stromal response in a cerulein model of
pancreatitis.17 These data collectively suggest that MEK
signaling in epithelial cells, downstream of EGFR activation,
is required for initiation of pancreatitis, including ADM and
the fibroinflammatory response. The possibility that MEK
activity is important for maintaining ADM suggests that
MEK inhibitors may offer a treatment strategy for CP in
human patients, for which there currently are no effective
alternatives.2

Here we have determined that inhibition of MAPK
signaling in cerulein-induced pancreatitis by treatment
with the MEK inhibitor trametinib blocked CP develop-
ment. Furthermore, short-term trametinib treatment of
established pancreatitis restored exocrine tissue and
dramatically reduced inflammation and fibrosis. However,
inhibition of MEK interfered with the restorative capacity
of the organ by blocking cell proliferation. With longer-
term trametinib treatment, loss of organ regeneration
was even more pronounced. By using short hairpin (sh)
RNA mouse models individually targeting both major MEK
isoforms, we found that parenchyma-specific knockdown
of MEK blocked pancreatitis-induced ADM and the asso-
ciated inflammation and fibrosis. Together, these data
show that MEK signaling is a potent driver of the overall
pancreatitis phenotype and is required for limited organ
regeneration.

Results
Blockade of Mitogen-activated Protein Kinase
Signaling Prevents Chronic Pancreatitis

Previously we showed that parenchymal EGFR and its
activation by ADAM17 are required for pancreatic
tumorigenesis,17 attributing this effect to a reduction in
downstream MEK activation. We also found that paren-
chymal ablation of EGFR or ADAM17 blunted all aspects
of experimental pancreatitis.17 However, in each of these
models, EGFR signaling was chronically inhibited before
disease onset, preventing us from examining acute effects.
Here we set out to explore the feasibility of acute MEK
inhibition as a potential treatment for CP. First, we per-
formed immunohistochemistry for phosphorylated extra-
cellular signal–regulated kinase (pERK) on a human
pancreas tissue microarray that included normal and CP
samples (Figure 1A) to determine whether MEK activity is
potentially relevant to human CP. Ten of 12 CP samples
showed pERK positivity in the epithelia and 12 of 12 in
stromal cells. In contrast, 2 of 56 normal pancreas sam-
ples showed pERK positivity in the epithelia and 4 of 56
in the stroma. This ERK activity may be a result of being
normal tissue in close proximity to cancer.

Pancreatitis can be induced in mice by administration
of supramaximal doses of cerulein, a cholecystokinin
ortholog, with the extent of damage determined by the
amount and duration of treatment. Mild treatment
regimens induce symptoms of acute pancreatitis, marked
by acinar cell necrosis and an innate immune response.
A more severe treatment protocol results in a phenotype
more reminiscent of human CP, marked by ADM, fibrosis,
and innate and adaptive immune responses.17 However,
unlike human CP, damage induced by chronic cerulein
treatment resolves over time after cerulein withdrawal.

To investigate whether systemic inhibition of MEK
blocked cerulein-induced pancreatitis in a manner similar to
EGFR gene ablation, we pretreated mice with either the MEK
inhibitor trametinib (T-CP) or vehicle (V-CP) and then
continued this treatment with a cerulein treatment regimen
that elicits a CP-like phenotype (Figure 1B) or saline as a
vehicle control. The efficacy of trametinib treatment was
verified by immunoblotting tissue lysates harvested from
V-CP and T-CP groups, where w60% lower pERK levels
were observed (Figure 1C).

Histologic examination of pancreas tissue demonstrated
that cerulein treatment strongly induced a dropout of acinar
tissue and a gain of fibrotic stroma (Figure 1D). V-CP mice
had w70% loss of acinar cell area, defined by area positive
for amylase by immunohistochemistry (Figure 1E),
compared with saline controls. Loss of acinar cells was
accompanied by gain of a picrosirius-positive fibrotic
stroma (Figure 1F), rich in inflammatory cells. Pancreata
from T-CP animals had dramatically more amylase-positive
acinar tissue compared with vehicle control, as well as
significantly less fibrosis. The fibroinflammatory response
and acinar dropout correlated to organ atrophy associated
with CP, with V-CP pancreata losing 60% of their relative
pancreatic mass compared with saline control (Figure 1G).
In contrast, T-CP mice lost only 35% of relative pancreas
mass compared with saline control. There were no apparent
differences in the tissue of mice treated with trametinib or
vehicle in the absence of cerulein (Figure 1H).

To support the histologic findings, RNA was harvested
from the tissue of V-CP and T-CP mice. Quantitative reverse
transcriptase–polymerase chain reaction (qRT-PCR) was
performed to assess the acinar vs ductal composition of the
pancreas (Figure 1I). As expected, levels of amylase
(Amy2b) were dramatically higher and levels of the ductal
marker cytokeratin 19 (Krt19) were significantly lower in
T-CP pancreata vs V-CP pancreata. Transcripts for the
acinar-specific transcription factors Ptf1a and Mist1
confirmed higher levels of acinar differentiation in T-CP
mice compared with V-CP mice.

Consistent with the epithelial response, examination of
immune cell infiltration in the cerulein-treated tissue
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(Figure 1J and K) revealed that trametinib treatment
strongly attenuated F4/80þ macrophage, Ly6b.2þ

neutrophil, and CD-3þ T-cell influx compared with vehicle
treatment. Trametinib treatment also dramatically
reduced the conversion of isolated acinar cell explants
embedded in Matrigel (Corning, Corning, NY) to ductal
cysts compared with vehicle control (Figure 1L and M),
suggesting that the effects of MEK inhibition are at least in
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part due to effects of the inhibitor on ADM, independent of
inflammation.
Mitogen-activated Protein Kinase Kinase 1 and
Mitogen-activated Protein Kinase Kinase 2
Isoforms Are Redundant in Pancreatitis

The systemic use of trametinib cannot distinguish
between the contributions of the individual MEK1 and
MEK2 isoforms or between parenchymal and stromal ac-
tivities. MEK1 and MEK2 have been shown in several other
systems to have some non-redundant functions,20–25 and we
found prominent ERK activity in both the epithelial and
stromal compartments in human CP (Figure 1A). To more
precisely dissect the contributions of the MEK proteins, we
generated mice in which we could conditionally and inde-
pendently knock down expression MEK1 and MEK2 iso-
forms in vivo. Mice containing shRNAs targeting Map2k1 or
Map2k2 (shMEK1, shMEK2) were cloned under the control
of a Tet operator and knocked in downstream of the Col1A1
locus. These mice were crossed with mice harboring a
Cre-dependent tetracycline transactivator in a background
with the pancreas-specific Ptf1aCre/þ. The shMEK1 and
shMEK2 lines were also interbred to allow simultaneous
knockdown of both MEK isoforms (Figure 2A). Doxycycline-
induced expression of shRNAs resulted in an effective
knockdown of the targeted isoform with no cross reactivity,
whereas the shMEK1/2 mice demonstrated a loss of
expression of both isoforms (Figure 2B). Potent knockdown
of the target MEK isoform was observed with 72 hours of
doxycycline treatment, with the greatest level of knockdown
achieved with 1 week of treatment (Figure 2C). The speci-
ficity of the shRNA expression was confirmed to be confined
to the pancreas of mice harboring all the required trans-
genes by fluorescent imaging (Figure 2D). Importantly,
there was no discernible effect on the normal pancreas from
the knockdown of any of the genes or the expression of a
control shRNA targeting Renilla luciferase (shRen713)
(Figure 2E).

To test the requirement of MEK isoforms on the induc-
tion of CP, shRNA and Ptf1aþ/Cre control mice were treated
chronically with cerulein after activation of shRNA expres-
sion (Figures 3 and 4). Knockdown of either MEK1 or MEK2
alone was indistinguishable from wild-type (WT) and
non-target shRNA control mice, in which the tissue was
Figure 1. (See previous page). MEK inhibition can block the
MAPK in human pancreatitis samples. (B) CP protocol with drug
arrows indicate vehicle or trametinib treatment. (C) Immunoblo
loading control HSP90. The ratio of the band intensities of p
Histologic characterization of tissue remodeling, hematoxylin-e
marker CK19 (brown) and acinar marker amylase (blue), and pic
for all groups. White indicates saline treated; green indicates v
Relative pancreas mass, defined by percentage pancreas weig
trametinib. (H) Relative pancreas mass, defined by percentage
qRT-PCR analysis of acinar markers Amy2b, Ptf1a, and Mist1
rophages (F/480), neutrophils (Ly6B.2), and T-cells (CD3) with r
explants embedded in Matrigel were imaged at Day 0 and Day 5.
by a blinded observer, n ¼ 3. Scale bars ¼ 100 mm for all pane
deviation.
heavily damaged after cerulein treatment (Figure 3B).
However, the knockdown of both MEK1 and MEK2 together
revealed potent inhibition of MAPK activation (Figure 4B)
and led to a significant retention of acinar cell mass, as well
as a marked decrease in the amount of fibrosis and signif-
icant reduction in immune infiltration (Figure 4C–E), similar
to trametinib treatment.

In line with these histologic observations, knockdown
of MEK1/2 led to dramatically higher transcript levels of
acinar differentiation markers as well as decreased Krt19
levels (Figure 4F) and was able to efficiently block the
transdifferentiation of Matrigel-embedded acinar cells to
ductal cysts (Figure 4G and H). Consistent with the results
from trametinib treatment, a significant difference was
seen in the relative pancreatic mass between cerulein-
treated shMEK1/2 mice as compared with rttA controls
(Figure 4I).
Mitogen-activated Protein Kinase Kinase
Inhibition Does Not Block Acute Damage

We had previously observed that EGFR is required for CP
induction but not for the acute cerulein response,17 demon-
strating that the blockadewith chronic treatmentwas not due
to trivial effects on cerulein signaling. It has also been sug-
gested that MAPK inhibition mitigates the acute effects of
cerulein-induced pancreatitis.26 To test whether either tra-
metinib treatment or knockdown might be affecting cerulein
signaling itself, we examined the effect of MEK blockade on
acute pancreatitis. Mice were pretreated with trametinib or
vehicle as before and then concurrently with a cerulein
regimen that would induce acute pancreatitis (Figure 5A).
The acute cerulein treatment resulted in several hallmarks of
acute pancreatitis including edema, necrosis, and an increase
in serum amylase (Figure 5B and C) regardless of inhibitor
treatment. The shRNA mice and control mice were treated
with doxycycline and subjected to the same acute pancreatitis
protocol (Figure 5D). After similar trametinib treatment,
cerulein-treated shMEK1/2mice showed necrosis and edema
and demonstrated no difference in serum amylase levels
compared with cerulein-treated shRNA or control mice
(Figure 5E and F). These data indicate the initial response of
the acinar compartment to cerulein is not blocked by MEK
inhibition through either systemic or parenchymal-specific
means.
onset of CP. (A) Immunohistochemistry for phosphorylated
pretreatment. Black arrows indicate cerulein injection; green
t for levels of phosphorylated MAPK, total MAPK, and the
hosphorylated/total MAPK is indicated under each lane. (D)
osin staining (H&E), dual immunohistochemistry with ductal
rosirius red stain, with respective quantitation (E and F) n � 3
ehicle þ cerulein; yellow indicates trametinib þ cerulein. (G)
ht over body weight, n ¼ 3 for saline and vehicle, n ¼ 6 for
pancreas weight over body weight, n ¼ 4 for all groups. (I)
and ductal marker Krt19. (J) Immunohistochemistry for mac-
espective quantitation (K) n � 3 for all groups. (L) Acinar cell
(M) Acinar to ductal cyst conversion on day 5 was quantitated
ls, 50 mm for insets. Error bars represent mean with standard
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Systemic Inhibition of Mitogen-activated Protein
Kinase Kinase Ameliorates the Pancreatitis
Phenotype but Disrupts Organ Regeneration

Having established that MEK inhibition concurrent
with cerulein treatment blocks the onset of the pancrea-
titis phenotype, we set out to test whether MEK inhibition
can reverse the pancreatitis phenotype. First, we induced
CP in WT mice with cerulein and then continued cerulein
treatment together with either trametinib or vehicle
(Figure 6A) or withdrew them from cerulein treatment
entirely to allow recovery (Figure 6B). Western blotting
confirmed that MAPK activation was reduced in the
trametinib-treated group compared with the vehicle-
treated mice (Figure 6C). Trametinib treatment was suf-
ficient to restore a significant amount of acinar tissue, with
80% of the amylase-positive area compared with the
recovered cohort, whereas the vehicle-treated mice had
less than 50% of the recovered control (Figure 6D and E).
Trametinib treatment also reduced fibrosis compared with
vehicle-treated controls and dramatically lowered the
number of macrophages, neutrophils, and T cells
(Figure 6D and F). However, in trametinib-treated mice the
relative mass of the pancreas did not reach to the same
size as the recovery group (Figure 6G), suggesting that
MEK activity was required not just for maintenance of
ADM but also for the tissue regenerative function of
ADM. We confirmed that trametinib treatment induced
acinar cell redifferentiation by using qRT-PCR analysis
for acinar cell differentiation markers, compared with
vehicle-treated mice. However, transcript levels of the
ductal marker Krt19 remained unchanged between the 2
groups.

Our data to this point were consistent with MEK
inhibition driving the redifferentiation of acinar cells
from ADM. However, ADM is known to be highly prolif-
erative,6 presumably contributing to the restoration of
organ mass. Therefore, reversing the metaplastic state
before sufficient proliferation or blocking epithelial
proliferation globally regardless of differentiation status
may prevent the pancreatic regeneration that would
normally follow cessation of the damaging insult. To
determine whether MEK inhibition blocks the proliferative
capacity of the epithelium, we treated mice with cerulein
for 1 week to establish a modest pancreatitis phenotype
and then treated the mice with trametinib or vehicle for
48 hours to investigate the early effects of MEK inhibi-
tion. To track proliferation, bromodeoxyuridine (BrdU)
was administered 4 hours before death (Figure 7A). Inhi-
bition of MAPK activation was verified by Western blot
(Figure 7B), and BrdU incorporation was measured by
Figure 2. (See previous page). shRNA mouse characterizati
inducible shRNA mice. (B) Western blot for MEK1, MEK2, an
doxycycline-treated mice. (C) Western blot for MEK2 expression
Fluorescent imaging demonstrating shRNA expression specific
tation of tissue from doxycycline-treated mice. Scale bars ¼ 2
protein.
immunohistochemistry (Figure 7C). Indeed, levels of BrdU
incorporation were significantly higher in vehicle-treated
animals compared with trametinib-treated mice
(Figure 7D). In addition, RNA transcript levels of several
acinar markers increased while the levels of Krt19
decreased in the trametinib-treated group (Figure 7E),
which is consistent with the hypothesis that MEK activity
is required for both proliferation and maintenance of the
ADM differentiation state. Further analysis by using
coimmunofluorescence for Ki67, as a marker of prolifera-
tion, the acinar cell marker carboxypeptidase A, and the
ductal marker CK19 revealed that proliferative capacity of
both the epithelial (positive for either) and the stromal/
inflammatory compartments (negative for both) was
reduced by MAPK inhibition (Figure 7F and G). The con-
sequences of anti-proliferative effects of MEK inhibition
were more profound with longer-term cerulein treatment
with MEK inhibition (7 days of cerulein followed by 14
days of combined cerulein and trametinib or vehicle),
resulting in an even more severe loss of pancreatic mass
(Figure 8).
Maintenance of Pancreatitis Requires
Epithelial Mitogen-activated Protein Kinase
Kinase Signaling

We next investigated whether knockdown of paren-
chymal MEK1 and MEK2 was sufficient to reverse the
damage of established pancreatitis. Pancreatitis was
established in shMEK1/2 mice by cerulein treatment. Mice
were then either removed from cerulein treatment and
allowed to recover or continued on cerulein treatment
with and without doxycycline-induced shRNA expression
(Figure 9A–C). The shRNA expressing mice treated with
cerulein demonstrated significant recovery of acinar mass
and decreased levels of fibrosis compared with mice
lacking shRNA expression (Figure 9D and E). This was also
accompanied by a loss of macrophage and neutrophil
infiltration; however, there were more T cells in the mice
expressing shRNA under cerulein treatment compared
with the recovery group (Figure 9F–H). Inhibition of MAPK
activation in the doxycycline-treated mice was verified by
Western blot for pERK (Figure 9I), whereas the induction
of expression of acinar markers and loss of Krt19
expression were verified by qRT-PCR (Figure 9J). No dif-
ferences were seen in mice expressing a control short
hairpin and in mice expressing single short hairpins
targeting MEK1 or MEK2 alone. The relative pancreatic
mass also did not differ between treatment groups (data
not shown).
on. (A) Representative genetic scheme of pancreas-specific
d b-actin of protein lysate from pancreata harvested from
as a function of time from shMEK2 mouse on doxycycline. (D)
ally in the pancreas of shRNA mice. (E) Histologic represen-
00 mm. GFP, green fluorescent protein; RFP, red fluorescent



Figure 3. Knockdown of MEK1, MEK2, or non-target control has no effect on induction of CP. (A) Schematic repre-
sentation of CP protocol after initiation of shRNA expression. (B) Histologic representation of tissue remodeling with respective
quantitation. (C and D) n � 3 for all groups. (E) Immunohistochemistry for macrophage, neutrophil, and T-cell infiltration. (F–H)
Quantitation of respective immunohistochemistry staining; error bars represent mean with standard deviation, n � 3 in all
groups. Scale bars ¼ 100 mm for panels, 50 mm for insets.
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Figure 4. Combined genetic knockdown of MEK1 and MEK2 can prevent onset of pancreatitis. (A) CP protocol after
initiation of shRNA expression. (B) Immunoblot for levels of phosphorylated MAPK, total MAPK, and the loading control
HSP90. The ratio of the band intensities of phosphorylated/total MAPK is indicated under each lane. (C) Representative
histology of each genotype with quantitation for amylase and picrosirius positive tissue (D) and immune cell infiltration (E). Blue
bars represent Ptf1aþ/Cre control mice; red bars indicate shMEK1/2 mice, n � 3 for all comparisons. (F) qRT-PCR analysis of
acinar markers Amy2b, Ptf1a, and Mist1 and ductal marker Krt19, n ¼ 4. (G) Acinar cell explants embedded in Matrigel were
imaged at Day 0 and Day 3. (H) Acinar to ductal cyst conversion on Day 3 as quantitated by a blinded observer, n ¼ 3. (I)
Relative pancreas mass, defined by percentage pancreas weight over body weight, n ¼ 4 for all groups. Error bars represent
mean with standard deviation. Scale bars ¼ 100 mm for panels, 50 mm for insets.
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Figure 5. MEK inhibition does not block induction of pancreatitis by cerulein. (A) Acute pancreatitis treatment protocol
after pretreatment with either MEK inhibitor or vehicle. (B) Representative H&E stains for each inhibitor treatment group.
(C) Serum amylase levels for inhibitor treatments as detected by spectrophotometric activity assay. n ¼ 3 for all groups.
(D) Acute pancreatitis treatment protocol after activation of shRNA. (E) H&E stains for each shRNA treatment group. (F)
Serum amylase levels for shRNA mice as detected by spectrophotometric activity assay. n ¼ 3 for all groups. Scale
bars ¼ 100 mm.
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Cytokine Expression Is Modulated by
Mitogen-activated Protein Kinase Signaling

The observation that blocking MEK signaling affected
not just the epithelium but also the resulting fibroin-
flammatory response led us to examine cytokine produc-
tion in mice treated with cerulein plus trametinib or
vehicle. Whole tissue lysate was harvested from either
untreated mice or mice treated with cerulein to establish
pancreatitis, then concurrently treated with cerulein in
combination with trametinib or vehicle (Figure 10A), and
then examined by using a mouse cytokine array
(Figure 10B). Among the cytokines detected in the array,
the proinflammatory cytokines CXCL1, TNF-a, MCP1,
ICAM1, IL1a, IL16, IL23, CXCL12, CSF1, as well as the
canonically negative regulators TIMP1 and IL1-ra, were
increased in CP and downregulated by trametinib treat-
ment. With the cytokine array results as a guide, we used
qRT-PCR analysis to confirm a significant reduction in
expression of many proinflammatory cytokines in mice
treated with trametinib after establishment of pancreatitis
(Figure 10C) and in mice treated with trametinib before
the induction of CP (Figure 11A). The RNA expression
levels of many of these cytokines were also suppressed in
doxycycline-treated shMEK1/2 mice after the establish-
ment of pancreatitis (Figure 10D and E) or knockdown of
MEK1 and MEK2 before cerulein treatment compared with
Ptf1aCre/þ control mice (Figure 11B). Together, these data
suggest that MEK inhibition, either systemically or in the
parenchyma, prevents the establishment of the proin-
flammatory cytokine-rich microenvironment that exacer-
bates the fibroinflammatory response associated with CP
(Figure 10F), disrupting ADM/inflammatory cell reciprocal
communication in pancreatitis.
Discussion
Pancreatitis is a serious health issue without any effec-

tive treatments. Our earlier studies on the importance of
EGFR activity in pancreatic tumorigenesis strongly impli-
cated EGFR/KRAS/MEK/ERK signaling in the very earliest
stages of tumor formation,17 including those processes also
associated with CP such as ADM. Here we show that MEK
signaling is required not only for the initiation of the
metaplastic process and the associated fibroinflammatory
response but also for maintaining the transdifferentiated,
metaplastic state. These observations closely mirror data
implicating MAPK signaling in both the initiation and
maintenance of metaplasia in the chief cells of the stomach
epithelium,27 illustrating a commonality in the role of MAPK
Figure 6. (See previous page). Trametinib treatment of estab
not of tissue mass. CP protocol with inhibitor or vehicle tr
Immunoblot for levels of phosphorylated MAPK, total MAPK
tensities of phosphorylated/total MAPK is indicated under each
immune cell counts with quantitation (E and F, respectively), n
green bars indicate cerulein þ vehicle treated, and yellow bars
pancreas mass, defined by percentage pancreas weight over b
qRT-PCR analysis of acinar markers Amy2b, Ptf1a, and Mist1
signaling on the plasticity of Mist1 expressing serous
exocrine cells in different organs.28 Genetic or pharmaco-
logic inhibition of MEK activity consistently led to a larger
population of amylase-positive acinar cells, decreased
fibrosis, and an attenuated inflammatory response after the
onset of pancreatitis. However, despite the amelioration of
the common characteristics of pancreatitis pathology,
chronic MEK inhibition also prevented the restoration of
pancreatic mass that would be associated with legitimate
healing.

It has previously been demonstrated that the MAPK
signaling pathway is upregulated in response to damage and
required for adaptive pancreatic growth.29,30 Our data
further suggest that the MEK-ERK signaling axis is also an
important part of the pancreatic wound healing process,
similar to what has been observed in the regeneration of
other gastrointestinal systems. Injury to the gastric mucosa
results in activation of ERK in an EGFR-dependent manner,
initiating the proliferation and migration necessary to begin
the wound healing process.31,32 Furthermore, the EGFR
ligand HB-EGF has also been demonstrated to play an
important role in intestinal restitution after ischemia in a
manner requiring both the MEK-ERK and PI3-kinase path-
ways downstream of EGFR signaling.33

The wound healing process can also be viewed in the
context of tissue regeneration from a progenitor popula-
tion. In Drosophilla EGFR-MAPK signaling is required for
intestinal stem cells to regenerate the midgut epithelium
after bacterial infection.34 EGFR and Notch pathways also
cooperate to initiate proliferation and differentiation of
gastric stem cells in response to injury.35 However, unlike
the intestine, the pancreas lacks a confirmed adult stem
cell population. The proliferative nature of ADM compared
with normal acinar or duct cells, together with the ulti-
mate recovery of an acinar cell population after experi-
mental pancreatitis, has led to the hypothesis that ADM is
involved in the limited tissue regeneration observed on
resolution of the damaging insult.4,6 However, several
studies suggest other sources of restored acinar cells after
injury, including proliferation of other mature acinar
cells,5 proliferation and differentiation of centroacinar
cells,36 transdifferentiation of a duct cell subpopula-
tion,37,38 or expansion of a rare DCLK1-positive cell pop-
ulation.39 Here we show that MEK inhibition after
induction of pancreatitis blocks cell division, yet it in-
creases the relative acinar cell population, suggesting that
the precursors of these new acinar cells are preexisting
rather than being derived from the proliferative expansion
and differentiation of a small subpopulation of cells. The
lished pancreatitis leads to reverse of tissue damage but
eatment (A) or pancreatitis with recovery protocol (B). (C)
, and the loading control b-actin. The ratio of the band in-
lane. (D) Histologic representation of tissue remodeling and
� 3 in all groups. White bars indicate the recovered cohort,
indicate the cerulein þ trametinib treated group. (G) Relative
ody weight, of each treatment group, n ¼ 4 in all groups. (H)
and ductal marker Krt19, n ¼ 3.



Figure 7. MEK inhibition inhibits acinar proliferation in response to tissue damage. (A) Abbreviated CP protocol with
BrdU addition to assay proliferation. (B) Immunoblot for levels of phosphorylated MAPK, total MAPK, and the loading
control b-actin. (C) Histologic representation of tissue by H&E, immunohistochemistry for BrdU incorporation, and quan-
titation of BrdU staining (D), n ¼ 4 for both groups. (E) qRT-PCR analysis of acinar markers Amy2b, Ptf1a, and Mist1 and
ductal marker Krt19, n ¼ 4. (F) Representative immunofluorescence images for DAPI (blue), Ki67 (green), CPA (red), and
CK19 (white). (G) Ki67 quantitated by stromal (CPA–/CK19–) or epithelial (CPAþ and/or CK19þ) compartment. Error bars
represent mean with standard deviation. Scale bars ¼ 100 mm for panels, 50 mm for insets.
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lack of regeneration seen in response to systemic MEK
inhibition can also be, at least in part, a direct effect of
MEK inhibition preventing macrophage recruitment and/
or polarization, an important component of pancreatic
regeneration.40 None of these possibilities are mutually
exclusive, but our data support a model where metaplastic
ducts have the capacity to redifferentiate into acinar cells
and that MEK activity is required for maintaining their
metaplastic state.

The failure to regenerate organ mass clearly suggests a
potentially deleterious consequence to MEK inhibition in
treating pancreatitis. However, unlike experimental
models of pancreatitis where the entire organ is simul-
taneously affected by the damaging agent, human CP
usually manifests as a relatively localized region
of sometimes severe damage and inflammation. Although
MEK inhibition may prevent tissue regeneration in the
afflicted region of the pancreas, we have found no adverse
effects of short-term MEK inhibition on the normal
pancreas. As such, the potential to resolve the pathology
of the affected region, including the inflammation, without
compromising the majority of the organ suggests



Figure 8. Long-term inhibition of MEK results in loss of ameliorative effect. Schematic representation of CP protocol with
inhibitor or vehicle treatment (A) or pancreatitis with recovery protocol (B). (C) Relative pancreas mass of each treatment group,
defined by percentage pancreas weight over body weight, n ¼ 3 for recovery and vehicle and n ¼ 4 for trametinib. (D–F)
Quantitation of respective staining for each group; error bars represent mean with standard deviation, n � 3 for all groups.
Scale bars ¼ 100 mm for panels, 50 mm for insets.
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some promise for MEK inhibition in the treatment of
pancreatitis.
Methods
Mouse Strains

Ptf1aCre/þ and shRen713 mice have been previously
described.41,42 The shMapk2k1 and shMap2k2 mice
were generated by Mirimus Inc (Cold Spring Harbor,
NY) on a mixed background and contained a
ROSA26-CAG-LSL-rtTA3-IRES-mKate2 reverse tetracycline
transactivator.43 WT C57BL/6 mice were obtained from
Jackson Labs (Bar Harbor, ME). Cerulein treatments were
performed on animals between 6 and 12 weeks of age,
with doxycycline treatments started up to 1 week before
treating animals with cerulein. Animal experiments were
conducted in accordance with the Office of Laboratory
Animal Welfare and approved by the Institutional Animal
Care and Use Committees of Stony Brook University, Mayo
Clinic, and the University of Michigan.



Figure 9. Combined knockdown of MEK1 and MEK2 can reverse cerulein-induced damage. Schematic and histologic
representation of pancreatitis with recovery protocol (Recovery) (A), CP protocol (No Dox) (B), or shRNA activation during CP
protocol (Dox) (C). (D–H) Quantitation of respective staining; error bars represent mean with standard deviation, n � 3. (I)
Immunoblot for levels of phosphorylated MAPK, total MAPK, and the loading control HSP90. (J) qRT-PCR analysis of acinar
markers Amy2b, Ptf1a, and Mist1 and ductal marker Krt19; n ¼ 3. Scale bars ¼ 100 mm for panels, 50 mm for insets.
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Figure 11. MEK inhibition prevents expression of inflammatory cytokines. (A) Schematic representation of CP protocol
with inhibitor or vehicle treatment and qRT-PCR analysis of inflammatory cytokines from treated pancreata. (B) Schematic
representation of CP protocol after initiation of shRNA expression in shMEK1/2 compared with Ptf1aþ/Cre controls (Cre) and
qRT-PCR analysis of cytokine expression in treated pancreata. Quantitation of respective staining for each group; error bars
represent mean with standard deviation, n ¼ 3 for all groups.
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Cerulein-induced Pancreatitis, Doxycycline, and
Inhibitor Treatments

Cerulein (American Peptide Company Inc, Sunnyvale,
CA) was dissolved in sterile saline. For chronic pancreatitis,
cerulein was administered to mice twice a day at a
Figure 10. (See previous page). MEK inhibition diminishes le
protocol with drug pretreatment. (B) Immunoblot array of cytokin
cerulein and either vehicle or trametinib. (C) qRT-PCR analysis
cerulein and vehicle or trametinib. (D) CP protocol (No Dox) o
analysis of inflammatory cytokines present in cerulein with or w
nism of amelioration of CP by MEK inhibition.
concentration of 250 mg/kg body weight via intraperitoneal
injection. For acute pancreatitis, mice were given hourly
injections of cerulein for 7 hours at a concentration of 50
mg/kg body weight and then killed after an hour of recovery.
An equal volume of sterile saline was injected as a control.
vels of inflammatory cytokines during pancreatitis. (A) CP
es present in pancreata or untreated mice or mice treated with
of inflammatory cytokines present in pancreata treated with
r shRNA activation during CP protocol (Dox). (E) qRT-PCR
ithout doxycycline-induced shMEK1/2. (F) Potential mecha-
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Trametinib was injected intraperitoneally (Selleck Chem-
icals, Houston, TX) at 1 mg/kg and prepared as previously
described.44 BrdU (Sigma-Aldrich, St Louis, MO) was pre-
pared in saline and injected intraperitoneally at 50 mg/kg 4
hours before death of the animal. Doxycycline was admin-
istered via chow at 200 mg doxycycline per kg of diet (Bio-
Serv, Flemington, NJ).
Histology
Mice were killed by CO2 asphyxiation; then tissue was

quickly harvested and fixed overnight at room tempera-
ture with Z-fix solution (Anatech LTD, Battle Creek, MI).
Tissues were processed by using a Leica (Buffalo Grove,
IL) ASP300S Tissue Processor, paraffin embedded, and cut
into 5-mm sections. Immunohistochemistry was
performed on a Dako Autostainer Plus (Dako North
America, Inc, Carpinteria, CA) or Discovery Ultra XT
autostainer (Ventana Medical Systems Inc, Tucson, AZ)
and counterstaining with hematoxylin. Dual immunohis-
tochemistry for CK19 and amylase was performed
without counterstaining. Picrosirius red staining was
performed per the manufacturer’s instructions (Poly-
sciences, Inc, Warrington, PA). Hematoxylin-eosin staining
was performed by using Mayer’s hematoxylin solution
(Sigma-Aldrich) and Eosin Y (Fisher, Pittsburgh, PA).
Immunofluorescence was performed as previously
described.45 Immunohistochemistry slides were scanned
on a Pannoramic SCAN slide scanner (Perkin Elmer, WA),
and then annotation regions encompassing greater than 1
mm of tissue were processed by using appropriate algo-
rithms for each stain quantified by using Halo software
(Indica Labs, Corrales, NM). Immunofluorescence was
quantified by manual counting of 5 fields per slide from
Table 1.Antibodies Used in This Study

Antibody Company

Amylase Sigma-Aldrich

Anti-RFP Life Technologies

BrdU Abcam

CD3 Abcam

CK19 Develop. Studies Hybridoma Bank

CPA1 R&D Systems

F4/80 ABD Serotec

HSP90 Cell Signaling

Ki67 Vector Labs

Ly-6B.2 ABD Serotec

MEK1 Santa Cruz Biotechnology

MEK2 (N-term) Santa Cruz Biotechnology

Turbo-GFP Thermo Fisher Scientific

b-actin Santa Cruz Biotechnology

p42/44 MAPK Cell Signalling

p42/44 MAPK
(T202/Y204)

Cell Signaling

IF, immunofluorescence; IHC, immunohistochemistry; WB, Wes
images obtained on a Nikon A-1 confocal instrument
at �60 by using NIS-Elements software (Nikon In-
struments, Melville, NY).
Antibodies
The antibodies used in this study are listed in Table 1.

RNA and Protein Harvest From Tissue
Mouse pancreas tissue lysate was obtained by quickly

removing a piece of the pancreas from mice killed by CO2

asphyxiation and snap freezing in liquid nitrogen. The
frozen tissue was then homogenized in either RLTþ buffer
for RNA or RIPA buffer supplemented with ethylenediamine
tetraacetic acid–free protease inhibitor and PhosSTOP
phosphatase inhibitor (Roche, South San Francisco, CA) by
using a Pro 250 Homogenizer (Pro Scientific Inc, Oxford,
CT). Lysate was then cleared by centrifugation and stored at
–80�C. RNA was processed by using an RNEasy Plus kit
(Qiagen, Valencia, CA) following the manufacturer’s
protocol.

Western Blotting
Lysates were quantified by BCA assay (Thermo Fisher

Scientific Inc, Waltham, MA), and equal protein amounts
were run onto sodium dodecylsulfate–polyacrylamide gel
electrophoresis gels. Proteins were transferred from sodium
dodecylsulfate–polyacrylamide gel electrophoresis gels to
Immobilon-FL polyvinylidene difluoride membrane,
blocked, and then incubated with primary antibodies. After
washing, membranes were then incubated in secondary
antibody, washed, and then exposed on autoradiography
film (Bioexpress, Kaysville, UT) with West Pico ECL
Catalog no. Host species Application

A8273 Rabbit IHC

R10367 Rabbit IHC

ab3626 Rat IHC

ab5690 Rabbit IHC

Troma-III Rat IHC, IF

af2765 Mouse IF

MCA497G Rat IHC

4874s Rabbit WB

VP-RM04 Rabbit IF

MCA771G Rat IHC

SC219 Rabbit WB

sc524 Rabbit WB

PA5-22688 Rabbit IHC, WB

sc-47778 Mouse WB

9102 Rabbit WB

4370P Rabbit WB

tern Blot.



Table 2.Sets of Primers Used in This Study

Gene Direction Primer

Hprt1 5’ TCAGTCAACGGGGGACATAAA

Hprt1 3’ GGGGCTGTACTGCTTAACCAG

Tbp 5’ CCCCACAACTCTTCCATTCT

Tbp 3’ GCAGGAGTGATAGGGGTCAT

Il1a 5’ CAAGATGGCCAAAGTTCCTGAC

Il1a 3’ GTCTCATGAAGTGAGCCATAGC

Cxcl12 5’ AGCCAACGTCAAGCATCTGA

Cxcl12 3’ CTTGCATCTCCCACGGATGT

Icam1 5’ TCCGCTGTGCTTTGAGAACT

Icam1 3’ GGCTCAGTATCTCCTCCCCA

Il-23 5’ TGGTTGTGACCCACAAGGAC

Il-23 3’ ATCCTCTGGCTGGAGGAGTT

Cxcl1 5’ CCGAAGTCATAGCCACACTCA

Cxcl1 3’ TTCACCAGACAGGTGCCATC

Ptf1a 5’ CATCGAGGCACCCGTTCAC

Ptf1a 3’ CAACCCGATGTGAGCTGTCT

Il16 5’ ACTTCCAGTGCATCTCAGGC

Il16 3’ CGGATGTCGGCTTACGATGA

Amy2b 5’ AGGAACATGGTTGCCTTCAG

Amy2b 3’ CTGACAAAGCCCAGTCATCA

Ck19 5’ CGCGGTGGAAGTTTTAGTGGG

Ck19 3’ AGGCGAGCATTGTCAATCTGTA

Mist1 5’ CTCGAATCCCCAGTTGGAAGG

Mist1 3’ CTCCGGAGACCCTTTGTCAG

Tnfa 5’ GACGTGGAACTGGCAGAAGAG

Tnfa 3’ TTGGTGGTTTGTGAGTGTGAG

Csf1 5’ GGTGGCTTTAGGGTACAGG

Csf1 3’ GACTTCATGCCAGATTGCC

Ccl2 5’ GGCTCAGCCAGATGCAGTTA

Ccl2 3’ GGACCCATTCCTTCTTGGGG
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(Thermo Fisher Scientific Inc) or scanned on an Odyssey
CLx scanner (LI-COR, Lincoln, NE). Quantitation of Western
blots was performed by using ImageJ (National Institutes of
Health, Bethesda, MD).

Serum Amylase Assay
Mice were killed by CO2 asphyxiation, and blood was

immediately harvested by cardiac puncture. Serum was
separated by centrifugation in Microtainer vials containing a
serum separation polymer (BD, Franklin Lakes, NJ). A
kinetic amylase assay was then performed on a Synergy
plate reader (BioTek, Winooski, VT) by using an amylase
detection reagent according to the manufacturer’s protocol
(Pointe Scientific, Canton, MI).

Whole Animal Imaging
Fluorescence imaging was conducted by using an IVIS

Spectrum (Perkin Elmer, Akron, OH) by using GFP filters.

Mouse Cytokine Array
Tissue lysate was prepared as above, and 100 mg protein

from 2 mice of each treatment group was combined and
analyzed by the mouse cytokine array panel as per the
manufacturer’s instructions (R&D Systems, Minneapolis,
MN).

cDNA Synthesis and Quantitative Polymerase
Chain Reaction

The cDNA was synthesized from isolated RNA with an
iScript cDNA synthesis kit (BioRad, Hercules, CA). Quan-
titative PCR reactions were carried out with FastSyber
master mix on a Viia7 thermocycler (Life Technologies,
Grand Island, NY). Primer sets used for qPCR are listed in
Table 2.

Three-dimensional Acinar Cell Explant Culture
The acinar cell isolation protocol has been previously

described.46 Briefly, the pancreas was harvested and
minced with sterile scissors, digested with Collagenase P
(Roche), passed through polypropylene mesh (Spectrum
Laboratories, Rancho Dominguez, CA), and then pelleted
through an fetal bovine serum gradient. The pelleted cells
were embedded in growth factor reduced Matrigel,
cultured with complete Waymouth’s MB 752/1 medium
(Sigma-Aldrich), and maintained at 37�C in 5% CO2 at-
mosphere. The shRNA and Ptf1aþ/Cre explant cultures
were treated with 10 mg/mL doxycycline hyclate (Sigma-
Aldrich). WT acinar explants were treated with 100 nmol/
L trametinib or dimethyl sulfoxide. After 3 days (Ptf1aþ/Cre

and shRNA mice) or 5 days (WT mice) of culture, the ratio
of acinar to ductal conversion was counted by a blinded
observer as an average of ten �20 fields on a CKX41 light
microscope (Olympus, Waltham, MA).

Statistical Analysis
Statistics were performed by using Graph Pad Prism 6

(Graph Pad Software Inc, La Jolla, CA) by using an unpaired
Student t test for comparison between 2 groups or a
one-way analysis of variance with Tukey multiple compar-
ison test.
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