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Abstract: Protein-mediated membrane fusion is a highly regulated biological process essential
for cellular and organismal functions and infection by enveloped viruses. During viral entry the
membrane fusion reaction is catalyzed by specialized protein machinery on the viral surface. These
viral fusion proteins undergo a series of dramatic structural changes during membrane fusion where
they engage, remodel, and ultimately fuse with the host membrane. The structural and dynamic nature
of these conformational changes and their impact on the membranes have long-eluded characterization.
Recent advances in structural and biophysical methodologies have enabled researchers to directly
observe viral fusion proteins as they carry out their functions during membrane fusion. Here we
review the structure and function of type I viral fusion proteins and mechanisms of protein-mediated
membrane fusion. We highlight how recent technological advances and new biophysical approaches
are providing unprecedented new insight into the membrane fusion reaction.
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1. Introduction

The process of protein-mediated membrane fusion is essential for a range of cellular and organismal
functions. It is involved in synaptic signaling, cellular communication, intra- and extra-cellular
vesicle trafficking, mitochondrial homeostasis, sexual reproduction, embryogenesis, and infection
by enveloped viruses [1–6]. Infection by all enveloped viruses requires fusion of the viral and host
membranes in order to deliver the viral genome and replication machinery across the host cell
membrane to a suitable subcellular location and initiate an infection cycle. Enveloped viruses have
evolved specialized protein machinery that drive this process to completion by undergoing a series
of large-scale conformational changes [7]. The nature of these changes and the resulting impact on
the membranes themselves have long-eluded characterization, but new biophysical techniques are
providing a detailed glimpse into dynamic changes in the protein machinery as well as revealing new
structural and mechanistic insights into the interplay of proteins and membranes during fusion.

All viral fusion proteins encode the same basic functionality: activate in response to a specific
trigger(s), engage the target host membrane, draw the host membrane into close apposition with the
viral membrane, and induce the membranes to merge. Viral fusion proteins are classified into three
distinct classes, with the type I fusion proteins being the best characterized to date [1,4,7,8]. Among
the type I proteins, the influenza virus hemagglutinin (HA) is the most widely studied and has served
as the foundation upon which much of our understanding of viral membrane fusion proteins has been
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built. Type II fusion proteins are found in viruses including flaviviruses and alphaviruses such as
Dengue, Zika, and Chikungunya viruses, and even have been identified in eukaryotic cell-cell fusion
systems [9–12]. Type III fusion proteins are found in rhabdoviruses (such as Rabies and Vesicular
Stomatatis virus G glycoproteins), herpesviruses (Herpes Simplex virus 1 gB protein), as well as
baculovirus [12–16]. While the individual folds exhibited by these classes are completely different,
they share common functional traits in that all adopt a pre-fusion conformation prior to activation in
which one terminus of the protein is anchored in the virus membrane by a transmembrane domain and
a second membrane active component, either a fusion peptide or loop, is sequestered from interacting
with membranes (Figure 1) [12]. A trigger or set of triggers, such as exposure to low pH in endosomes
or receptor binding, spurs the machinery to reorganize into a post-fusion state in which the two
membrane active components are colocalized.

Until recently, static structures of the pre- and post-fusion states of isolated fusion protein
ectodomains and biochemical or spectroscopic measurements were the primary pieces of information
that informed our models of membrane fusion. While the static structures provide defined endpoints for
the conformational change that drives membrane fusion, they do not tell us how these conformational
changes occur or how these proteins interact with and perturb the lipid membrane during fusion.
Likewise, fluorescence spectroscopy and circular dichroism studies have shown that HA-fusion
activation leads to population of discernable intermediates rather than transitioning directly and
irreversibly from pre- to post-fusion states [17–20]. These studies show that not all HAs respond to
activation in the same way and some require different pH conditions to fully activate [20]. While
such studies provided valuable information on how influenza HA responds to activation conditions,
they could not resolve the structure of intermediates or the specific conformational changes that occur.

A defining characteristic of type I and II viral fusion proteins is that the pre-fusion conformation is
trapped in a high-energy, metastable state with respect to the low-energy, post-fusion conformation [4,7,21].
Once triggered, this energetic imbalance ultimately results in the fusion protein undergoing an
irreversible transition to the post-fusion state. Indeed many early pioneering studies on influenza
HA led to the development of the “spring-loaded” mechanistic model for viral membrane fusion
that is the prevailing way in which these machines are considered to function [21–32]. In this model,
type I fusion proteins function analogous to taut springs that are poised in a high energy state that,
once triggered, rapidly and irreversibly “spring” or refold to the low-energy, post-fusion state. The type
III rhabdovirus G proteins are an exception to this general trend and exhibit reversible pH-dependent
conformational switching [13,15].

While membrane fusion is a thermodynamically favorable process, it requires an input of free
energy to dehydrate the phospholipid headgroups as they are drawn into close apposition during
fusion [2,21,33,34]. This repulsive “hydration force” presents a kinetic barrier to fusion that prevents
spontaneous, aberrant fusion events from occurring. This renders the membrane fusion reaction a
tightly controlled biological process [12,35–37]. The fusion peptides (type I) or fusion loops (type
II) are believed to facilitate this reorganization of bound water while the free energy released from
the exothermic refolding of the fusion proteins from the metastable pre-fusion to the low-energy
post-fusion state is harnessed to remodel, induce curvature and local defects in the lipid bilayer,
and drive the membranes together [12,21,37–42].
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Figure 1. Architecture of a type I fusion protein. (A) The structures of the influenza hemagglutinin
(HA) fusion protein in the pre-fusion (PDB 3HMG) and post-fusion (PDB 1QU1) states highlight the
dramatic pH-dependent reorganization that drives the membrane fusion reaction. The pre-fusion
state is metastable with respect to the post-fusion state. In the pre-fusion state, the HA1 receptor
binding domain (RBD) (shown in light grey volume and blue ribbon) forms a “clamp” interaction
with the HA2 fusion subunit, thereby stabilizing the high-energy, “spring-loaded” HA2 fusion domain
(highlighted by the HA1-HA2 interface shown in grey). The HA2 N-terminal fusion peptide (FP shown
in dark magenta) forms a “hook” within the fusion domain, lashing adjacent protomers together. Once
destabilized by low pH, these interactions are lost and the HA reorganizes to the post-fusion state where
the N-terminal FP and transmembrane domain (TMD) are colocalized in the newly fused membrane.
The post-fusion state is characterized by the trimer of hairpins formed by the two heptad repeat regions
(HR1 and HR2). (B) Comparison of the pre-fusion (top) and post-fusion (bottom) structures of diverse
type I fusion proteins reveals the conservation of core architectural features including the “clamp”
interaction between the RBD and fusion domain and reorganization of the two heptad repeats into a
trimer of hairpins. Shown are the pre- and post-fusion structures of the HIV-1 Env (PDB 5FUU and
1I5X), Coronavirus (CoV) S (PDB 5W9J and 6B3O), and Lassa virus glycoprotein complex (GPC) (PDB
5VK2 and 5OMI).
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Direct structural characterization of viral membrane fusion and the machinery involved has
been impeded by the dynamic nature of the membrane fusion reaction. To understand the process
of protein-mediated membrane fusion, it is necessary to characterize the intermediate states that are
traversed both at the level of the protein machinery and the organization of the lipid membrane
itself. Recent technological advances, notably those involving cryo-electron microscopy (cryo-EM),
have enabled the structure of many viral fusion proteins to be imaged at high resolution [4,43–45].
These structures revealed that remarkably similar features were present in the fusion proteins of
diverse viruses [4,46]. Even more exciting in terms of finally being able to dissect mechanisms of
this complex biological process is that recent developments in cryo-electron tomography (cryo-ET),
single molecule FRET (sm-FRET), and structural mass spectrometry have enabled the direct monitoring
of viral membrane fusion and dissection of the conformational changes that take place in the fusion
machinery during fusion [43–56]. Here, we review our current understanding of the structure and
function of type I viral fusion proteins, the structural mechanics of fusion protein activation, and the
mechanism of protein-mediated viral membrane fusion.

2. Structural Organization of Class 1 Viral Fusion Proteins

Type I viral fusion proteins are homotrimeric glycoproteins that decorate the viral envelope. These
proteins are synthesized as inactive, single-chain, polypeptide precursors that assemble into trimers
and are proteolytically processed by host cell proteases into their functional, metastable pre-fusion
states [4,7,57–59]. Proteolytic processing can take place during viral assembly, maturation, and/or
entry depending on the specific virus. In the case of influenza, the uncleaved, fusion-incompetent
glycoprotein trimer, HA0, is primarily processed by extracellular trypsin-like proteases after new
virions are released from infected cells [23,26,32,57,58,60]. HA’s from highly pathogenic avian influenza
viruses often contain a polybasic motif at their cleavage site and are processed by endogenous proteases,
such as furin, in the trans-Golgi network [61–63]. The resulting functional HA assembly is a homotrimer
of disulfide-linked heterodimers consisting of a receptor binding subunit, HA1, and a membrane
fusion subunit, HA2 (Figure 1A). The newly formed N-terminus of HA2 includes the highly conserved
hydrophobic fusion peptide which becomes sequestered in a pocket within the central helical bundle of
HA2 in the pre-fusion conformation (Figure 1A) [24,26,30,32,64]. The C-terminus of HA2 is anchored
in the viral membrane by a helical transmembrane domain [65]. The HA1 globular head contains a
sialic acid receptor binding site positioned at the apex of the trimer in the pre-fusion conformation [24].

Infection by influenza virus begins when HA binds sialic acid on cell surface receptors through a
low-affinity, high-avidity interaction, triggering uptake into cells by receptor-mediated endocytosis
or macropinocytosis [32]. As the endosomal lumen becomes increasingly acidic, low pH triggers a
cascade of conformational changes throughout the HA that culminate in the irreversible reorganization
to the post-fusion conformation and fusion of the viral and endosomal membranes (Figure 1A) [25].

The conventional mechanistic model describing HA’s membrane fusion activity suggests that
two dominant stabilizing interactions within HA, termed the “clamp” and “hook”, act to maintain the
metastable pre-fusion conformation [21]. In this model, the HA1 globular head acts as a stabilizing
“clamp” on the high-energy and spring-loaded HA2 fusion domain. The HA1 globular head rests
atop the HA2 apex where HA1 forms stabilizing contacts with the HA2 B-loop (Figure 1A). N- and
C-terminal segments of HA1 form extended quaternary contacts with the HA2 A-helix and B-loop and
are likely important for maintaining the pre-fusion conformation (Figure 1A) [21,31]. The sequestered
N-terminal HA2 fusion peptide forms a “hook”, lashing the central helices of adjacent HA2 protomers
together. According to this model, once activated by low pH, these interactions become destabilized and
release the high-energy spring-loaded HA2 fusion domain which rapidly and irreversibly reorganizes
to the post-fusion state.

Comparison of the pre- and post-fusion crystal structures of the HA ectodomain reveals the
dramatic conformational changes that occur as a result of this reorganization (Figure 1A). In the
post-fusion state, the central B-loop segment of HA2 has converted from an extended coil to a helix
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that extends the central helical bundle [31]. As a result, the fusion peptide is projected towards the
target host membrane. Structures of post-fusion HA2 have revealed that C-terminal portions of the
subunit also refold. In this case, a helix converts to a turn, which enables the C-terminal “leash”
attached to the viral membrane anchor to run along the groove formed by the helical bundle. This
“leash-in-the-groove” interaction has been shown to be necessary for drawing the two membrane
active components together, leading the viral and target membranes into close contact and inducing
them to merge [66]. These structures provided the beginning and endpoints of the pathway the fusion
machinery takes, but neither in fact correspond to the fusion-active forms of the trimer that manipulate
the membranes, nor do they reveal the pathway of conformational change that links the end states.

3. A Conserved Architecture Shared by Divergent Viruses

Pre- and post-fusion structures of many type I viral fusion proteins from diverse viruses have
been solved (Figure 1A,B) [1,4,7]. To date, pre- and post-fusion structures have been determined for
the influenza HA, human immunodeficiency virus (HIV-1) Env, Coronavirus (CoV) S, Ebola virus
GP, Lassa virus GPC, Parainfluenza virus (PIV5) F, and respiratory syncytial virus (RSV) F proteins
(Figure 1A,B) [67–76]. While the pre-fusion structures of these diverse fusion proteins differ in size and
elaborations, they share a conserved organization and architecture of their fusion subunits which feature
two central heptad repeats that reorganize to form the three hairpins at the core of the six-helix bundle
in the post-fusion state, bringing the viral and host target membranes together (Figure 1A,B) [7,12].
Furthermore, in the pre-fusion state the fusion subunits for these viral fusion proteins exhibit extensive
interactions with the head domains that, as for influenza HA, could be interpreted to help “clamp” the
fusion subunit in its pre-triggered conformation (Figure 1A,B).

4. Despite their Common Architectures, Activation Mechanisms and Triggers are Highly
Divergent Among Type I Fusion Proteins

The process of fusion protein activation and the means by which the fusion trigger is communicated
across domains are not well understood for the majority of type I viral fusion proteins. Indeed, for the
best-characterized system, HA, structural and biophysical data that reveal details of fusion activation
and membrane fusion have only recently become available.

To date, technical limitations have hindered researchers’ abilities to directly observe fusion
intermediates with adequate resolution. Indeed, even in the relatively well-characterized HA case,
a range of rather different models of fusion protein activation and conformational change have been
proposed. One of the earliest and most informative studies performed by White and Wilson, used a
panel of antibodies against HA to determine the sequence of early structural rearrangements that
occur during HA-fusion activation [27]. This approach, however, was limited to resolving changes
significant enough to expose the antibody epitope. Indeed, antibody probes have the potential to
perturb the behavior of the system due to their strong interactions with the antigen and large size.
Despite these limitations, White and Wilson concluded that HA exhibits two sequential conformational
changes during fusion activation: reorganization of the HA2 stem region followed by a dissociation of
the HA1 globular head domains leading to opening of the HA apex. Furthermore, White and Wilson
demonstrated that activation of the soluble bromelain-released HA ectodomain (BHA) was slightly
faster than detergent-solubilized full-length HA, suggesting that the intact trimer behaves differently
than the ectodomain alone. This study was among the first to suggest that HA undergoes a sequence
of conformational changes, transiently populating intermediate states, along the fusion pathway.

The antibody-monitored changes in the HA structure seemed to contradict an “HA1 uncaging”
model for hemagglutinin activation that suggests this fusion protein’s activation is initiated by the
dissociation of the HA1 globular head domains, which would necessarily precede HA2 triggering.
The uncaging model is supported by data showing that dissociation of the HA1 globular head is
essential for HA’s membrane fusion activity [27–29,77]. Expression of HA2 in the absence of HA1
yields HA2 in its post-fusion conformation [27–29,77]. Furthermore, preventing HA1′s dissociation



Viruses 2020, 12, 413 6 of 21

either through the introduction of interprotomer disulfide bonds or antibody binding renders HA
non-fusogenic, but these restraints still enable the HA2 fusion peptide to release and interact with
target membranes [28,29,77–79].

Ultimately, to understand HA’s native modes of activation, it is necessary to directly probe
the sequence of conformational changes that occur during HA-fusion activation. Recent direct
observations of HA fusion intermediates and the membrane fusion process, enabled by advances in
cryo-EM, sm-FRET, and structural mass spectrometry have begun to challenge these long-standing
conceptions about HA. In 2012 using cryo-electron tomography, Fontana et al. observed low pH-induced
morphological changes in full-length HA on the virus surface that suggested reorganization of the
HA2 fusion domain preceded dissociation of the HA1 globular head and that these changes were
reversible, within a certain window in time, upon return to neutral pH [80]. From the tomograms,
sub-tomogram averaged structures of fusion-active HA revealed morphological changes that were
consistent with those suggested to occur during the so called “fusion peptide release” mechanism of
HA-fusion activation, similar to those put forth by White and Wilson nearly 30 years earlier [27,78,80].
In contrast to the long-held and conventional “HA1 uncaging” model, this alternative model posits
that first the HA2 fusion domain becomes activated by low pH, releasing the fusion peptide from
sequestration where it is free to engage the target membrane prior to complete dissociation of the
HA1 globular head [78]. While the averaged images gave a tantalizing glimpse of potential HA
intermediates, they did not offer sufficient structural resolution to elucidate detailed structural changes
in HA.

More recently, Garcia et al. sought to understand the dynamic structural changes that occur
throughout the soluble HA ectodomain at low pH at the threshold of fusion activation using
hydrogen/deuterium-exchange mass spectrometry (HDX-MS) [81]. HDX-MS is a solution state
biophysical and structural technique that monitors the accessibility of amide hydrogens along the
protein backbone. HDX-MS directly monitors dynamic structural changes and motion throughout a
protein that are otherwise invisible to other structural approaches [45,50,82,83]. At low pH conditions
approaching fusion activation, dynamic changes across the HA were observed where the HA1-HA1
trimeric interface became bolstered and the HA2 fusion peptide proximal subdomain became more
dynamic. The authors concluded that at increasingly acidic condition, prior to activation, HA becomes
primed for fusion peptide release, adding further support to this emerging mechanistic model.
These recent studies suggest that in the early stages of fusion activation HA adopts a dynamic
fusion-peptide-released intermediate state [22,27,33,80,81,84–87].

HA has served as the system against which other type I fusion proteins have been compared.
Low pH activation of HA, however, is relatively simple when compared to other fusion proteins with
more varied and complex activation modes [8]. Due to the complexities of the triggering mechanisms
for other type I systems, comparatively less is known about how they function. Perhaps the next
best characterized system after HA is HIV-1 Envelope (Env) fusion glycoprotein, which is activated
by two successive receptor binding events [4,75,88–92]. Env first binds the CD4 receptor on the
surface of T-cells which induces reorganization of the gp120 receptor binding domain and exposure
of the co-receptor binding site enabling binding of either CCR5 or CXCR4 [7,92]. Recently cryo-EM,
sm-FRET, and HDX-MS have been used to characterize the structure of Env in the apo and CD4-bound
conformations, illuminating how CD4 binding induces long-range conformational changes throughout
Env, priming it for coreceptor binding [75,88–91]. Sm-FRET revealed that even receptor-naive Env
dynamically samples multiple conformations at equilibrium, including a state that seems to mimic
the CD4-bound state [75,89–91]. While these studies have revealed valuable information about Env
structural dynamics, there remains little understood about how coreceptor binding activates Env
during membrane fusion.

The Lassa virus fusion glycoprotein complex (GPC), like HA, is triggered by low pH in the
endosome [93,94]. However, GPC also must initially bind to two successive receptors in order for the
Lassa virus to become internalized into host cells and deliver the viral replication machinery to the
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correct cellular compartment [93–95]. GPC first binds α-dystroglycan receptors on the cell surface and
is internalized into endosomes [93–96]. As the endosome approaches pH 6.0, GPC dissociates from
α-dystroglycan and binds the endosomal receptor LAMP-1 [94,97–99]. GPC is only capable of binding
to LAMP-1 under acidic conditions in the endosome, and while LAMP-1 binding is not required for
fusion to occur, it raises the pH of activation for GPC from pH 4.0 to above 5, increases fusion efficiency,
and infectivity [94,97–100]. Cryo-ET analysis of GPC in complex with LAMP-1 at low pH suggests
that the GP1 receptor binding domain (RBD) subunit reorganizes at low pH exposing the LAMP-1
binding site [99]. However, this study was unable to resolve LAMP-1-induced structural changes in
GPC and thus the molecular mechanism for how LAMP-1 binding primes GPC for fusion at elevated
pH conditions remains elusive [98–100].

In other type I fusion systems, such as those found in paramyxoviruses, receptor binding and the
fusion machinery are distributed between two proteins. Each apparently undergoes conformational changes
that change their mode of interaction, leading the fusion protein to become fusogenic [67,101,102]. Two
models have been proposed that describe how paramyxovirus F protein activation occurs through the
interaction with the receptor binding protein (HN, H, or G protein). The “dissociation” or “clamp”
hypothesis suggests that the fusion and attachment proteins are associated on the viral surface
before receptor binding and that this interaction acts to stabilize the F protein in the metastable
pre-fusion conformation, similar to how the RBDs of other type I fusion proteins act as a “clamp”
and the fusion domain [101,102]. Upon receptor binding, the attachment protein releases the fusion
protein which then becomes fusion-active. Alternatively, the “provocateur” hypothesis suggests
that the fusion and attachment proteins exist freely on the viral surface and, upon receptor binding,
they associate, leading the F protein to become fusion-active. One key difference between these two
hypotheses is that in the dissociation/clamp hypothesis the interaction between the attachment and
fusion protein is stabilizing, whereas in the provocateur hypothesis this interaction acts to destabilize
the F protein [101,102].

The biophysical techniques piloted in studies of HA-mediated membrane fusion may begin to
reveal the nature of the conformational changes in these systems, however at present much remains
to be understood about how the complex set of environmental, receptor-binding, and proteolytic
processing triggers are communicated to their fusion subunit machinery.

5. Direct Monitoring of the Transitions between Conformational States

While atomic resolution structural models provide the highest level of detail for understanding a
protein architecture, they are less suited for tracking protein dynamics and conformational change.
Researchers have recently turned towards approaches such as single molecule-FRET (sm-FRET),
that enable the study of proteins’ motions. Using sm-FRET, Das et al. directly observed, for the
first time, an obligate and highly dynamic fusion intermediate for influenza HA [22]. By producing
virus-like particles (VLPs) where, on each VLP, a single HA trimer bore one pair of FRET labels, the
authors were able to monitor, in real time, the dynamic structural changes that occurred in HA2
during low-pH-induced fusion activation and membrane fusion. Their data showed that, even at
neutral pH, HA was remarkably dynamic and reversibly transitioned between at least two distinct
states. During fusion activation, in the absence of a target membrane, HA was observed to reversibly
transition through a long-lived, obligate-fusion intermediate before irreversibly transitioning to the
post-fusion conformation (Figure 2A). When a target membrane was present, HA transitioned to
the same intermediate state, however, the subsequent transition to the irreversible post-fusion state
was significantly faster. While this approach cannot definitively resolve the detailed structure of
each state, sm-FRET monitoring yields information describing the dynamic behavior and lifetimes
of each state reported by the relative positioning of the FRET dye pairs. Furthermore, by inferring
the position of each FRET label based upon its attachment residue, the authors were able to develop
structural models that correspond to each FRET state. The resulting mechanistic model put forth
by the authors describing HA-fusion activation and membrane fusion provided a detailed glimpse
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into the intermediate states and transitions for this long-studied fusion protein (Figure 2B). Despite
the advances, much about the molecular mechanisms and structural nature of HA-fusion activation
remains poorly understood.
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Figure 2. Structural mechanics of influenza-HA-fusion activation. (A) Single molecule FRET (sm-FRET)
monitoring of HA during fusion activation shows the transition from the pre-fusion state (1) (high FRET)
through an obligate and dynamic intermediate (2) (intermediate FRET and reversible low FRET) to the
irreversible post-fusion state (3) (low FRET) (figure modified with permission from Das et al., 2018).
(B) Cartoon model describing HA-fusion activation shows the formation of a dynamic intermediate
ensemble, as supported by sm-FRET and hydrogen/deuterium-exchange mass spectrometry (HDX-MS).
Transitions between states are labeled according to those observed by sm-FRET (panel A) and the
dynamic intermediate state is depicted according to the HDX-MS study (panel C). (C) Pulse-labeling
HDX-MS reveals the formation of a dynamic intermediate state in fusion-active HA on infectious
influenza virions. In the neutral pH pre-fusion state (left—grey envelope) the HA2 B-loop peptide
becomes labeled with a moderate level of deuterium as it is a structured loop in the pre-fusion state.
After incubation at pH 5.10 for 1 min the B-loop displays three unique HDX states corresponding to the
pre-fusion state (grey—moderate level of deuterium exchange), post-fusion helical bundle (blue—very
low level of deuterium exchange), and dynamic intermediate (red—high level of deuterium exchange).
After continued incubation at low pH the HA2 B-loop transitions monotonically to the post-fusion
state (blue).

Previous studies on HA-fusion activation and membrane fusion had been able to resolve the
structural changes that occur throughout the trimer during fusion activation. In the sm-FRET case,
changes involving HA1 could not be followed since the labeling approach was limited exclusively to
monitoring the relative position of the positions in HA2 labeled by the FRET pair [22]. Recently, using
structural mass spectrometry, Benhaim et al. monitored the full sequence of structural changes that occur
throughout HA during fusion activation using whole influenza virions [56]. A pulse-labeling HDX-MS
approach enabled snapshots of the HA’s structure to be captured during fusion activation. Pulse-labeling
HDX-MS monitors changes in the accessibility of amide hydrogens along the protein backbone during
a protein’s conformational change. Changes in the local structure of a protein, including changes in
secondary structure or quaternary organization, in most cases yield resolvable HDX states. Monitoring
these changes over time elucidated the sequence of detailed conformational changes that occur in HA1
and HA2 during fusion activation [56]. The first changes observed involved concurrent reorganization
of the HA1 trimeric interface and HA2 fusion peptide proximal subdomain resulting in formation of a
highly dynamic fusion peptide-released ensemble of intermediate configurations (Figure 2B,C). In this
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intermediate ensemble, the HA2 fusion peptide proximal subdomain features highly dynamic A-helix
and B-loop segments (Figure 2B,C). The HA2 B-loop’s loop-to-helix transition had long been viewed
as the driving force behind formation of the HA2 extended helical intermediate and that, once freed
from the HA1 “clamp”, it was believed that the B-loop would rapidly and irreversibly adopt a helical
conformation and add to the core HA2 helical bundle [21,30,103]. The HDX-MS data however, for
the dynamic intermediate ensemble, revealed that the A-helix and B-loop sampled diverse secondary
structure from unstructured loops to highly-protected helices [56]. Consistent with this, computational
studies also suggest that both the HA2 A-helix and B-loop segments can sample diverse structural
states as they transition to the extended helical intermediate. Moreover, the computational modeling
suggested that the transition to the extended helical intermediate is largely driven by trimerization of
the A-helix and not the B-loop’s loop-to-helix transition [103].

Interestingly, in the soluble BHA ectodomain that lacks the transmembrane anchor, a direct,
two-state transition from the pre- to post-fusion state was observed by HDX-MS. This striking result
underscored the fact that in order to understand the mechanism of viral protein-mediated membrane
fusion, it is necessary to examine how the conformational changes are carried out in the context of
the complete viral system. While the HDX-MS study did not include a target membrane, the results
were in agreement with the sm-FRET findings reported by Das et al. that did examine the effect of
having a target membrane present [22]. Together, these studies provide insight into the mechanism of
influenza-HA-fusion activation and membrane fusion (Figure 2).

As noted above, in contrast to influenza HA, other type I viral fusion systems present a more
complex set of activation factors. Das et al. and Durham et al. recently sought to characterize the
intrinsic structural dynamics and dynamic conformational changes that occur in another type I fusion
protein, the Ebola virus GP fusion glycoprotein, resulting from a set of activating factors [104,105].
Once internalized into cells by macropinocytosis, the low pH conditions of the endosome activate
cellular proteases that cleave and remove the heavily glycosylated mucin-like domain and glycan
cap from GP [104,106–109]. Once cleaved, GP binds the Niemann-Pick C1 (NPC1) receptor, becomes
activated, and mediates membrane fusion through a currently unknown mechanism [106,110,111].

Atomic resolution structures of the pre-fusion GP ectodomain without the mucin-like and
transmembrane domains (GP∆TM) depict GP∆TM in a single, static conformation [74,106]. However,
by sm-FRET Durham et al. observed GP∆TM to be highly dynamic and capable of reversibly
interconverting between three distinct states, with the dominant high-FRET state corresponding to the
pre-fusion state depicted in the crystal structure [105]. Similar dynamics were observed for GP without
the mucin-like domain (GP∆muc) when presented on the surface of pseudovirus particles (Figure 3A).
Removal of the glycan cap (GPCL) resulted in a dramatic change in the equilibrium distribution of the
three FRET states as well as reduced dynamics (Figure 3B). The authors concluded that removal of the
glycan cap destabilizes the pre-fusion-like high-FRET state preferred by GP∆TM and GP∆muc biasing
GPCL towards the intermediate-FRET state. NPC1 binding to GPCL potentiated these changes, further
biasing GP towards the intermediate-FRET state and lowering the frequency of dynamic transitions
between states (Figure 3C). In this study, the donor and acceptor fluorophores were positioned on GP1
and GP2 so that the movement of GP1 with respect to GP2 could be monitored. The authors suggest
that removal of the glycan cap results in a repositioning of GP1 that favors NPC1 binding and relieves
conformational restrictions on GP2, conferring increased flexibility and mobility to GP2 and the fusion
loop [104,105]. Thus, the reversible structural changes and dynamics observed here likely correspond
to a repositioning of GP1 with respect to GP2 where GP1 does not dissociate from GP2 upon receptor
binding. It is important to note that while removal of the glycan cap and NPC1 binding are necessary,
they alone are not sufficient to trigger GP-mediated membrane fusion [104,105].
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Figure 3. Dynamic conformational changes in Ebola virus GP during viral entry. (A) sm-FRET
monitoring of Ebola GP without the mucin-like domain (GP∆muc) revealed the GP was highly dynamic
under equilibrium conditions and reversibly transitioned between three states: the high-FRET state (H)
corresponding to the pre-fusion conformation, intermediate-FRET state (I), and low-FRET state (L).
Population FRET histograms show the equilibrium distribution of all observed FRET states. Transition
density plots (TDP) (far right) reveal the direct transitions between each FRET state for all observed
trajectories. (B) Removal of the glycan cap resulted in lower occupancy of the high-FRET state and
increased occupancy of the intermediate-FRET state. The glycan cap (GPCL) also displayed reduced
transitions between all FRET states indicating lowered conformational and structural dynamics. (C)
Niemann-Pick C1 (NPC1) receptor binding to GPCL further biased the equilibrium distribution towards
the intermediate-FRET state and reduced transitions between states. Receptor binding did not result in
irreversible transitions but rather quenched the conformational dynamics of GP. Figure modified with
permission from [105].

Additional factors implicated in Ebola entry and GP-mediated fusion include endosomal pH
and exposure to Ca2+ [112]. In a second study of Ebola GP using sm-FRET, Das et al. monitored
dynamic structural changes in the GP2 fusion domain that were induced by NPC1 receptor binding,
exposure to low pH, and Ca2+ [104]. The authors observed that receptor binding, low pH, and Ca2+

act synergistically to promote membrane fusion. Furthermore, low pH and Ca2+ induced dynamic
and reversible conformational changes in GP that prime GP for NPC1 binding. Once bound to the
receptor, GP2 transitioned irreversibly to a conformation that was consistent with the post-fusion
state. Thus, the authors conclude that low pH and endosomal Ca2+ act to prime GP for receptor
binding following removal of the glycan cap by promoting transition to the receptor-binding-competent
intermediate state while maintaining reversibility. Similarly, as observed by Durham et al., removal of
the glycan cap resulted in a repositioning of GP1 with respect to GP2 and increased mobility in the
GP2 fusion loop [104,105]. Together these results indicate that removal of the glycan cap, low pH,
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and Ca2+ act synergistically to promote an intermediate state primed for receptor binding and fusion
activation [104,105]. Furthermore, this suggests the glycan cap functions not just to conceal the NPC1
binding site, but also plays a critical role in regulating the pre-fusion conformational dynamics of GP.
At low pH with Ca2+, NPC1 binding induces reorganization of GP2 into a fusion-active intermediate
state and the subsequent transition to the irreversible post-fusion state.

These studies presented the first direct evidence for how multiple fusion activation factors serve
to regulate and prime a fusion protein’s activity [104,105]. While the detailed molecular mechanisms
underlying these observed conformational changes remain to be understood, the study of Ebola GP
further highlighted the power and versatility of the sm-FRET approach and demonstrated how this
approach can be used to better understand the dynamic mechanisms of fusion-protein activation
beyond the simpler systems such as influenza HA. This approach thus appears to be well-suited for
use in studies of fusion proteins with complex and multicomponent activation mechanisms such as
SARS, CoV-S, and Lassa GPC [59,69,93–100].

6. Visualizing Viral Membrane Fusion in Action

Thus far we have reviewed the structure of type I viral fusion proteins and the conformational
changes that occur during the membrane fusion reaction. However, these topics have largely been
discussed outside the context of the actual membrane fusion reaction. While the mechanics of viral
fusion proteins, namely influenza HA, have been intensively studied, the biophysical and structural
mechanics of the membranes themselves have eluded characterization. The role of the viral fusion
protein in the membrane fusion reaction can be distilled, quite simply, down to: engaging the host target
membrane, generating the required free energy through structural reorganization to be able to bring
the two membranes into close apposition, perturb the membranes, and induce them to merge. The
conventional model for influenza virus HA-mediated membrane fusion suggests that HA deforms the
membranes while bringing them into close contact, resulting in formation of the hemifusion state, where
the outer leaflets of each membrane have joined, and the inner leaflets remain separate [7,37,48,113–121].
How HA mediates formation of the hemifusion state and how hemifusion proceeds to a fusion pore is
not well understood, however. Furthermore, until recently it was not known which membrane (that of
the virus, or cell, or both) was being primarily perturbed and remodeled during fusion [113,122–124].
Direct structural characterization of the membrane fusion reaction and elucidation of the sequence of
membrane remodeling by the fusion proteins has only recently become possible [43,48,49,53,113,125].
Cryo-ET in particular is uniquely suited for the direct imaging of protein and membrane structural
changes during protein-mediated membrane fusion [47,48,53,55,80,113–115,120,125,126].

The power and utility of this approach was demonstrated by in 2010 where the ultrastructure
of influenza virus membrane fusion intermediates was imaged using whole virions and synthetic
membrane vesicles [113]. The cryo-ET images suggested that fusion initiates when fusion-active HA,
after grappling to the target membrane and upon refolding to a post-fusion hairpin configuration,
creates highly curved, localized dimples in the target membrane as it is drawn towards the more rigid,
matrix-protein-reinforced, viral membrane. Density surrounding the dimples corresponded to a set
of 2-8 HAs that coordinated the junction between membranes. This figure was in good agreement
with previous findings that estimated the stoichiometry of viral fusion proteins required for membrane
fusion [42,127–132]. The cryo-tomograms conclusively showed that during membrane fusion the viral
membrane remains largely unperturbed, under the mildly acidic pH conditions examined, due to
the influenza M1 presence of an intact matrix protein layer [113]. Thus, the majority of membrane
remodeling at that early stage is focused on the target membrane. Only when acidic pH was further
lowered, did the M1 layer dissociate from the viral membrane as would need to occur to free the lipid
bilayer to complete fusion during the late stages of fusion. This study was among the first to directly
image the membrane ultrastructure during fusion.

The advent of the direct electron detector for use in cryo-electron microscopy, which afforded
greater sensitivity and the ability to correct for sample blurring due to beam-induced sample movement
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and mechanical drift, enabled high-resolution information to be retained when imaging biological
complexes while limiting sample degradation from high electron exposures. For studies of membrane
fusion, it became possible, for example, to consistently resolve the individual membrane leaflets of
a lipid bilayer [115]. Using cryo-ET, Gui et al. sought to sequence the influenza virus membrane
fusion reaction and characterize the membrane ultrastructure at each stage of the fusion process using
multiple pH conditions and varied target membrane compositions [115]. The authors identified and
characterized the interactions between influenza virions and liposomes and monitored the population
of fusion intermediate states over time (Figure 4).
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Figure 4. Visualizing influenza virus membrane fusion. Intermediates throughout the membrane fusion
were visualized by cryo-electron tomography (cryo-ET) and the sequence of membrane remodeling
was elucidated. (A) Cryo-ET images highlight key intermediates during membrane fusion including
HA bridging (1), membrane pinching (2), and formation of a tightly docked interface (3) (left to right)
(scale bar = 50 nm). (B) Cartoon model describing the membrane ultrastructure and sequence of
intermediates during influenza viral membrane fusion.

In addition to the initial point-like contact mediated by a small number of HA trimers, intermediates
formed by extended regions of membranes in direct contact with each other emerged prior to formation
of fusion pores that allowed transfer of the viral RNP segments into the merged virus-liposome
vesicles (Figure 4). Through analysis of the population kinetics, the putative sequence of intermediate
states traversed during fusion was inferred. Interestingly, in that study, hemifusion was very rarely
observed—it was concluded that the hemifusion state is likely unstable and transiently populated
during fusion [115]. These results challenge prior observations of the hemifusion state in past studies,
which relied primarily on fluorescence-monitored membrane fusion with cell surface-expressed HA,
which may not replicate the density and organization of HA on virions and also lack the important
M1 matrix layer [116–118]. Some studies have suggested that hemifusion represents an unproductive
off-pathway state for protein-mediated membrane fusion [133,134]. While this remains a subject of



Viruses 2020, 12, 413 13 of 21

debate, studies of SNARE protein-mediated membrane fusion show that although hemifusion is often
observed, it may function as a metastable trap [133,134].

Gui et al. [115] suggest that for influenza virus membrane fusion, activated HA first engages
the target membrane through its exposed fusion peptide, forming bridging contacts between the two
opposing membranes (Figure 4A). Subsequent HA refolding induces dimpling in the target membrane
as it is drawn towards the matrix-reinforced viral membrane leading to formation of localized close
contact zones between the two membranes, which the authors suggest may serve to minimize the
initial energetic penalty incurred from dehydrating the membrane surface (Figure 4A,B) [40,123].
The contact zone then expands to form an extended, tightly docked interface between the two outer
membrane leaflets (Figure 4A,B). Similar extended interface contacts have been observed during SNARE
protein-mediated membrane fusion and the GTP-dependent alastin fusion protein [2,34,133–137].
Higher levels of cholesterol or inclusion of lipids found in mature endosomes in the target membrane
were found to promote formation of these extended interfaces [115]. The tightly docked membranes
transitioned to the post-fusion state thus supporting the authors’ conclusion that these extended
interfaces are a critical stage along the fusion reaction [114,115,117].

Membrane composition contributes to how membrane fusion proceeds and what lipid
organizations are populated and enriched during the process [40,113,114,117,120,121,123,138,139].
A separate recent cryo-ET study of influenza virus membrane fusion with synthetic liposomes, where
the liposome composition differed from that used by Gui et al., found hemifused virus-liposome
complexes in high abundance [114]. While both cryo-ET studies concluded that cholesterol is critically
important for productive and complete fusion to occur, their conflicting results regarding the prevalence
of hemifused membranes indicate that membrane composition can influence the pathway of membrane
remodeling during fusion.

One aspect that makes clear the need to study whole virions to understand the fusion process
relates to the role of the M1 matrix protein layer. Although classically HA has been considered the prime
mediator of fusion, M1 likewise appears to play an important role in regulating the order of events as
well as the ability for the virus membrane to deform and complete fusion [115]. At increasingly acidic
conditions the previously well-ordered M1 matrix layer dissociates from the viral membrane conferring
plasticity to the lipid bilayer and greater lateral mobility of the HAs engaged in fusion [113,140]. The
HA transmembrane domain (TMD) and cytoplasmic tail are believed to interact with the M1 matrix
layer, thus dissociation of the matrix layer and abolition of this interaction would free the HA TMD
enabling it to mobilize and recombine with the HA2 fusion peptide as the fusion reaction proceeds to
completion [113,141,142].

These cryo-ET studies present the most complete observations describing viral protein-mediated
membrane fusion to date and, taken together with recent observations on the structural mechanics of
HA-fusion activation, these studies show how new approaches are providing unprecedented views
into mechanisms of protein-mediated membrane fusion.

7. Understanding HA-mediated Fusion as a First Step towards a Broader Understanding of Fusion
in Diverse Enveloped Viruses

Influenza HA serves as an invaluable model system for studying the mechanism of fusion
activation and protein-mediated membrane fusion. It is unclear, however, whether the mechanistic
models derived from the study of the HA described above (a subtype H3 HA in the HDX-MS case
and H5 in the sm-FRET example) are directly generalizable across all HA subtypes that exhibit
different pH sensitivities and overall stability, or to other type I fusion proteins that are triggered by
different signals [22,56]. During infection, the endosomal lumen becomes increasingly acidic as it
matures [8,140,143,144]. Evidence suggests that the gradual and stepwise endosomal acidification is
important for priming HA and the influenza virus for membrane fusion [81]. This dynamic structural
priming is likely important for ensuring that influenza virus membrane fusion is triggered at the correct
pH, and thus cellular location. The efficiency of membrane fusion by some HAs is highly dependent
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on pH, whereas other HAs, even within the same group, display seemingly no such dependence [144].
At present, we do not understand the structural basis for HA’s variable acid stability and how these
differences manifest mechanistically during fusion activation.

Despite recent advances, our understanding of influenza virus membrane fusion is still incomplete.
For example the route of viral uptake by cells is dependent on viral morphology [32]. Influenza virus is
highly pleomorphic and ranges from small spherical virions ~100 nm in diameter to large filamentous
virions up to 1 µm in length, and the balance of particle morphology to one end of the spectrum vs the
other can vary dramatically with influenza strain [126,145]. At present, it is not fully understood how
different entry pathways for large and small influenza particles influences the acidification pathway or
the mechanics of HA-mediated membrane fusion, or how morphology influences engagement between
the virus and target membranes [146,147]. It remains to be determined what the appropriate triggering
conditions to mimic the in vitro trafficking of large vs small influenza particles are, and whether
morphology itself may alter the influenza fusion pathway.

Beyond influenza, low pH activation of HA is relatively simple compared to other type I fusion
proteins that are activated by receptor binding, proteolytic cleavage, environmental factors (such as low
pH, temperature, or cations), and any combination of these factors [8]. Thus, the dynamic and staged
activation of HA in response to increasingly low pH conditions may not be a generalizable phenomenon
amongst type I fusion proteins. If we extend our consideration to Type II where in many cases the
fusion proteins are organized symmetrically on the icosahedral particles, the ability of fusion proteins
to work in concert may be quite different to the case of the influenza virus [148]. It will be fascinating
to revisit the basic questions of: what is the nature of protein conformational changes that drive fusion,
what happens to the membranes themselves, and how are protein and membrane remodeling coupled
together for such systems when comparable biophysical and structural data are available in the future?
What is clear at this stage, is that we now possess the tools that can address those fundamental questions
of how proteins undergo conformational changes that mediate the process of membrane deformation
and remodeling that ultimately lead to productive fusion. Thus, we are now poised to gain a far deeper
understanding by directly probing, imaging, and structurally dissecting the mechanics and dynamic
transitions that are at the heart of the process of protein-mediated membrane fusion.
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