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Enhanced body awareness has been suggested as one of the cognitive

mechanisms that characterize mindfulness. Yet neuroscience literature still

lacks strong empirical evidence to support this claim. Body awareness

contributes to postural control during quiet standing; in particular, it may be

argued that body awareness is more strongly engaged when standing quietly

with eyes closed, because only body cues are available, than with eyes open.

Under these theoretical assumptions, we recorded the postural signals of

156 healthy participants during quiet standing in Eyes closed (EC) and Eyes

open (EO) conditions. In addition, each participant completed the Freiburg

Mindfulness Inventory, and his/hermindfulness score was computed. Following

a well-established machine learning methodology, we designed two numerical

models per condition: one regression model intended to estimate the

mindfulness score of each participant from his/her postural signals, and one

classifier intended to assign each participant to one of the classes “Mindful” or

“Non-mindful.”We show that the two models designed from EC data are much

more successful in their regression and classification tasks than the twomodels

designed from EO data. We argue that these findings provide the first

physiological evidence that contributes to support the enhanced body

awareness hypothesis in mindfulness.
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Introduction

Enhanced body awareness has been suggested as a cognitive

mechanism through which mindfulness may improve health and

well-being (Hölzel et al., 2011; Gu et al., 2015; Verdonk et al.,

2020). Yet objective evidence, including physiological data, to

support this hypothesis remains weak [for a review, see (Treves

et al., 2019)]. Body awareness may be operationalized as the

individual ability to feel engaged by information coming from the

body and noticing subtle changes therein (Mehling et al., 2009).

Proprioception, which refers to internal representation of the

body in relation to space andmovement, results from the cerebral

integration of visual information and bodily signals that originate

from within vestibular and somatosensory systems (Forbes et al.,

2018; Tuthill and Azim, 2018). In the present study, the posture

was investigated as a potential proxy for enhanced

proprioception in trait mindfulness.

Previous work has reported mixed evidence for the

association between mindfulness and measures of posture. Of

note, here the term “mindfulness” includes dispositional trait

(i.e., an ability to be mindful in daily life without any practice of

mindfulness) and mindfulness intervention. Two studies

reported that mindfulness, including mindfulness intervention

and dispositional trait mindfulness, was associated with more

stable postural balance (Mills and Allen, 2000; Rosenstreich et al.,

2018). One study showed that a very brief mindfulness induction

(6 min) does not significantly affect postural balance (Kee et al.,

2012). Interestingly, mindfulness is also characterized by

enhanced self-regulation of attention (Hölzel et al., 2011;

Verdonk et al., 2020), which primarily involves attentional

focus on bodily signals [specifically the breath (Lutz et al.,

2015)]. In the literature, the contribution of attention to

postural balance is supported by the association between

poorer attention domain, as experimentally induced by the

dual-task paradigm, and postural imbalance [for a review, see

(Amboni et al., 2013)]. A few studies have shown that internal-

focused attention induced by experimental instructions

influences some measures of posture but not all (Vuillerme

and Nafati, 2007; Rhea et al., 2019). It should be noted that

the aforementioned studies mostly investigated a relatively small

number of postural measures, thus suggesting that potential

effects of mindfulness and attention on postural measures

remain largely unknown.

Our work is grounded in the global neural workspace theory

suggesting that conscious perception involves top-down

attentional amplification, which amplifies sensory information

and allows its integration into the current, conscious context

where it becomes available to other neural processes [for a review

of the global neural workspace theory, see (Dehaene and

Changeux, 2011)]. Given that mindfulness is characterized by

enhanced attentional skills (notably the self-regulation of

attention) (Hölzel et al., 2011), we suggest that mindfulness

could support the top-down process of attentional

amplification, which in turn could facilitate the conscious

processing of sensory information, including bodily signals

(Verdonk et al., 2020). In other words, mindfulness could

help overcome the situation in which information from the

body remains unconscious by facilitating conscious access to

this information, thus ultimately leading to enhanced body

awareness. Regarding the posture, control processes mostly

operate unconsciously but individuals may be aware of action

of postural balance and can volitionally control it when desired

(Amboni et al., 2013; Forbes et al., 2018). In the present study, we

assume that body awareness could be particularly important in

standing posture as the control of spontaneous, postural

oscillations requires tracking low-intensity bodily changes

(Fitzpatrick and McCloskey, 1994; Forbes et al., 2018) (see

Supplementary Material, section The biomechanical modeling

framework of standing posture, for a description of the

biomechanical framework of standing posture). In addition,

we assume that body awareness is more strongly engaged in

postural control when individuals are keeping their eyes closed

during standing. Indeed, in such a condition, sensitive pathways

of postural control loop only involve bodily signals from the

vestibular and somatosensory systems, and cannot benefit from

visual information.

In practice, static posturography is a simple and affordable

technique to objectively and quantitatively assess postural control

(Visser et al., 2008; Błaszczyk, 2016) (see Supplementary Material,

section The biomechanical modeling framework of standing

posture, for an illustrated description of static posturography).

The first challenge researchers face when investigating the posture

using posturography is the large number of features (more than

70) that can be extracted from the postural signal (in the time and

frequency domains). Interestingly, 16 of these postural features

have been characterized as individual-specific: they show both low

within-subject variability and high between-subjects variability,

and they contribute to discriminate every individual postural

pattern when analysed with the stepwise method (Yamamoto

et al., 2015). Given the trait mindfulness conceived as a

personality-like trait refers to individual differences in

characteristic patterns (Brown and Ryan, 2003; Tang et al.,

2016), we assumed in the present work that these

16 individual-specific postural features could be of particular

interest to investigate the relationship between the posture and

the trait mindfulness. The second challenge is that the relation

between physiological and psychological phenomena is inherently

nonlinear (Cacioppo and Tassinary, 1990). To address these two

challenges, we searched for machine learning based models that

could estimate the trait mindfulness (response variable) from a set

of input variables consisting of the postural features and pairwise

products thereof (see the Method, section Model design,

subsection Cross-term computation for a detailed description).

A machine learning based model is a mathematical,

parameterized relation between a set of input variables and

one response variable. From a theoretical standpoint, a
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stochastic model is postulated in the form y = f (θ, x) + ε, where

θ is the vector of parameters of the model, x is the vector of

variables, and ε is a random variable, usually with zero mean,

which is supposed to model all sources of noise or disturbances

in the process that generates the observed quantity y. f (usually

called regression function) is a parameterized function

belonging to a family of functions selected by the designer;

if prior knowledge suggests that the process that generates y

from x is multilinear, then f is chosen to be a multilinear

function. If no prior knowledge is available, the regression

function f is chosen in the family of universal nonlinear

approximators such as polynomials or neural networks. The

family of the regression function having been selected, the

purpose of regression is the following: given a set of

observations of x and y, estimate, by an algorithmic process

called “training”, the numerical values θ̂ of the parameters for

which the distance between the observations and the

estimations is minimum. After estimating these values, the

estimation ŷ of the quantity y is obtained by the deterministic

(non-stochastic) model ŷ � f(θ̂, x), also called predictive

model or predictor. If the model is fed repeatedly with the

same set of values of x, it always provides the same estimation

ŷ . If no satisfactory deterministic model can be found by

training, one can conclude that the experimental data do not

support the validity of the postulated stochastic models. The

number of parameters defines roughly the complexity of the

model. The higher the model complexity (i.e., the higher the

number of parameters), the more accurate the relation

between the observed input variables and the observed

response variable. However, an overly complex model

would be unable to account for data that are not used for

estimating the parameters of model, i.e., to generalize to

previously unseen data. This “generalization ability”

depends on the ratio of the model complexity to the size of

the dataset. If this ratio is too low, the model fails to account

for the relation between the input variables and the response

variable. Conversely, if the ratio is too high (i.e., model with

too many parameters given the size of the dataset), the model

overfits the training data, i.e., performs very accurately on the

training data but generalizes poorly on novel data (Geman

et al., 1992). In summary, the challenge is to find, given the

experimental data, a predictive model that accounts for the

relation between the observed input variables and the observed

response variable as accurately as possible, and that

generalizes satisfactorily to data unseen during training.

Such a model can be found if and only if there exists a

stochastic relationship between the input variables and the

response variable.

The models described in the present article were designed

using a well-established methodology of machine learning, which

comprises three main steps: (i) among the candidate variables

derived from the individual-specific postural features, selection

of the input variables that are relevant to account for the trait

mindfulness, (ii) selection of the model that has the optimal

complexity given the available data, and (iii) estimation of the

generalization ability of the selected model.

In the present work, we tested the enhanced body awareness

hypothesis in trait mindfulness by first examining whether one

can find, by machine learning, a deterministic relation between

trait mindfulness and posture. To this end, we tested whether the

self-reported trait mindfulness could be estimated successfully

from the postural signal, given the data available from a sample of

156 subjects. The existence of such a model would demonstrate

the existence of a deterministic relation between trait

mindfulness and posture. Secondly, we explored how the

relationship between trait mindfulness and posture is affected

by the experimental conditions. The postural signal was recorded

in two conditions: the participants were instructed either to stand

quietly while keeping their eyes open (EO condition), or to stand

quietly while keeping their eyes closed (EC condition). As

mentioned above, we assume that body awareness is more

strongly engaged in postural control in the EC condition than

in the EO condition, because only bodily signals (from vestibular

and somatosensory systems) are available in the former

condition, while the latter condition also involves visual

information. Therefore, exhibiting a model designed from data

collected in EC condition that estimates self-reported trait

mindfulness from postural signal more accurately than a

model designed from data collected in EO condition (all other

things being equal), would provide support for the enhanced

body awareness hypothesis in mindfulness.

Methods

Participants

One hundred and eighty-one healthy volunteer participants

were initially recruited from three different units of the French

Army: 111 participants belonged to the Ecole des fusiliers marins

et commandos of the French Navy (EFMC, Lorient, France),

46 participants belonged to submarine crews from the French

Navy (SC, Brest, France), and 24 participants belonged to the

French armed forces biomedical research institute (IRBA,

Brétigny-sur-Orge, France). Unlike the first two units (EFMC

and SC) that included active-duty military service members only,

participants from the IRBA unit were mainly (70%) civilian

personnel of the French Army Ministry. The only criterion

for inclusion was age (between 18 and 60 years). All

participants reported no medication and no history of somatic

disorders. After completion of the experiments, data related to

25 participants were discarded: four of them due to equipment

failures, and 21 of them due to issues concerning identification

either of participant or of experimental condition. Data from the

remaining 156 participants (mean age: 26 years old, SD: 8.7;

138 males – 88%) were analyzed.
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Procedure

Data were collected at the three unit sites, independently of

any military operation or training. After reviewing the study

description, participants provided written informed consent.

Then, they completed the Freiburg Mindfulness Inventory

(FMI) as self-report questionnaire of dispositional trait

mindfulness (Walach et al., 2006; Trousselard et al., 2010).

Finally, the postural signal was collected using the FEETEST

6 platform (TECHNO CONCEPT®, France) in two conditions:

eyes open (EO condition) and eyes closed (EC condition). Due to

technical specifications of the FEETEST 6 platform, each

sequence lasted 52 s. The participants were instructed to stand

quietly with their arms hanging at their sides and head in a

normal forward-facing position, while focusing on a stationary

target located at eye level approximately 2 m away (in the EO

condition).

Data management

A subset of the data (the training/validation set) was used for

designing and selecting the models; it included 70% of the

available data (109 subjects). The performances of the selected

models were assessed with the remaining 30% of the data (the test

set, 47 subjects). This guarantees that performance assessment is

carried out on data that are completely independent of the data

used for training and selecting the models (Figure 1).

Measures

Trait mindfulness
The 14-item FMI assesses dispositional trait mindfulness by

indexing facets of Presence (i.e., being aware of all experiences in

the present moment) and Non-judgemental acceptance (i.e.,

understanding that things are not necessarily how one wishes

them to be). This questionnaire is semantically independent of a

meditation context and it is applicable to all population groups,

in particular to those with no practice of mindfulness training.

The questionnaire is scored using a four-point scale, with

responses ranging from 1 (rarely) to 4 (almost always). A total

mindfulness score was computed by adding the rating for all

items, except for the 13th item that was reversely scored (Walach

et al., 2006; Trousselard et al., 2010). The scale demonstrated

acceptable levels of internal consistency in our sample

(Cronbach’s α = 0.80). The total score of FMI was an integer

quantitative variable, ranging from 14 to 56.

Postural sway
The FEETEST 6 (TECHNO CONCEPT®, France) includes

four small independent platforms that measure the positions of

FIGURE 1
Flowchart of datasets and analysis strategy. The original sample included data from 156 participants. Models of different complexities were
designed, and the best model (given the available data) was selected by leave-one-out cross-validation with the training/validation set, a subset of
the original sample including 70% of the available examples (109 subjects). The performance of the selected models was assessed on the remaining
30% of the available examples (47 subjects). Thus, model training and selection were exclusively based on the training/validation set, while the
assessment of the performance of the selected models was performed on a disjoint data set.
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the vertical ground reaction vector under the heel and the

metatarsal, for each foot separately. Each of the four

measurements is performed by three strain gauges with

integrated rigid diaphragm positioned in a triangle facing

heels and metatarsals. By averaging the positions of all the

four vectors along antero-posterior and medio-lateral axes, the

position of the Center of Pressure (CoP) of the whole body is

computed. In other words, the CoP is the point of application of

the vertical ground reaction force that is the sum of pressures

acting on the part of the body in contact with the ground. During

the recording, data were sampled at 40 Hz and information were

transmitted to the data collection software (POSTUREWIN 4©)

via a USB connection.

Postural data processing

Postural data were first low-pass filtered with 10 Hz cut-off

frequency using a fourth-order zero-phase-lag Butterworth filter.

The values of the 16 individual-specific postural features were

computed (Table 1; see Supplementary Material, section

Computation of postural features, for the detailed computation

of the postural features). In order to ensure that all features have

the same order of magnitude, they were subsequently “z-score

normalized” by subtracting their means and dividing by their

standard deviation, so that each normalized feature had zero

mean and unit standard deviation over the whole set of

participants.

Strategies for data analysis

Regression vs. classification approaches
The problem that we addressed was to find a deterministic

relation, if any, between the postural signal and the trait

mindfulness. To this end, we implemented two approaches for

data analysis that need to be viewed as complementary: (1) a

regression approach where the FMI score, as a quantitative

variable, was predicted from the posture variables; and (2) a

classification approach where the mindfulness status of subjects

(“mindful” or “non-mindful”), as a categorical variable, was

predicted from the posture variables. The mindfulness status

was computed from the FMI score at the individual level using

the group median as threshold: a subject was considered mindful

if his/her total FMI score was larger than the median value

reported in our original sample (X̃FMI = 41), and non-mindful

otherwise. Specifically, the median was preferred to the mean,

because it guarantees that the number of subjects of the “non-

mindful” class (i.e., subjects with mindfulness score smaller than

the median) is equal to the number of subjects of the “mindful”

class. This avoids the well-known, non-trivial problem raised by

containing different numbers of subjects. Classical machine

learning techniques were used to implement the regression

and classification approaches. We show in the following that

deterministic relations were found between the postural features

and the FMI score (regression approach), and between the

postural features and the mindfulness status as defined above

(classification approach). A detailed description of regression

TABLE 1 The list of the 16 features that were extracted from the postural signal to characterize time-series of the center of pressure. A detailed
description of the postural features, including their computation and their descriptive statistics, is provided in Supplementary Material (see
Section Computation of postural features and Supplementary Table S1).

Feature name Description

1 MP3 Mean peak value on sway-density curve at R = 3

2 Mean-AP Mean position of sway on AP axis

3 Mean-ML Mean position of sway on ML axis

4 Zero-cross-V-AP The number of zero crosses of low-pass filtered CoP velocity on AP axis

5 Beta-ML Scale parameter of Gamma distribution fitted to the duration of mean CoP velocity crosses on ML axis

6 log-Alpha-ML Log of shape parameter of Gamma distribution fitted to the duration of mean CoP velocity crosses on ML axis

7 log-Alpha-AP Log of shape parameter of Gamma distribution fitted to the duration of mean CoP velocity crosses on AP axis

8 Beta-AP Scale parameter of Gamma distribution fitted to the duration of mean CoP velocity crosses on AP axis

9 log-slope-MP Log of slope of the line obtained by linear regression of mean peak values on sway-density curve vs. R from 2 to 5 mm

10 log-LNG Log of total path length of CoP trajectory on the horizontal plane

11 log-MV Log of mean CoP velocity

12 log-MV-ML Log of mean CoP velocity on ML axis

13 log-MV-AP Log of mean CoP velocity on AP axis

14 log-Power Log of total power of CoP

15 log-Power-ML Log of total power of CoP on ML axis

16 PF95AP 95% power frequency of CoP

R, radius of circle centered at the current CoP point (in mm); AP, anterior-posterior; ML, medio-lateral; CoP, center of pressure.
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and classification approaches is provided in the Supplementary

Material, section Strategy for data analysis.

Linear and non-linear models
Multilinear regression and logistic regression were first

performed because they are the simplest linear models for

addressing regression and classification problems, respectively.

In addition to linear models, we used Neural Networks (NN)

for addressing regression and classification problems (see

Supplementary Material, section Linear and nonlinear models,

for a detailed presentation of the machine learning techniques

that were used, with emphasis on the NNmodel). NNmodels are

a very popular family of universal nonlinear approximators that,

when suitably designed, are particularly efficient for modeling

nonlinear relationships, such as the relations between

physiological and psychological phenomena (Cacioppo and

Tassinary, 1990).

Model design

As mentioned above, our purpose was to investigate whether

it could be possible to find a machine-learning based model that

could estimate, as accurately as possible, the trait mindfulness

from the postural features, given the available experimental data.

This problem was addressed in two steps: (1) among the

candidate variables (postural features and pairwise products

thereof), selection of the most relevant variables to estimate

the trait mindfulness, and (2) selection of the model

complexity that provides the best generalization ability, given

the data used for training/validation. After variable and model

selection, the performance of each selected model (regression

model or classifier) was estimated on a separate dataset (the test

set), disjoint from the training/validation set.

All steps described below were performed using Matlab

2018b (The Mathworks®), including the Statistics and

Machine Learning toolbox, the Deep Learning toolbox and

custom scripts.

Variable selection

The purpose of variable selection is to identify irrelevant and/

or redundant input variables that should be removed from the

available data before designing models, in order to prevent

overfitting (Guyon and Elisseeff, 2003).

The method used for selecting the appropriate set of variables

for estimating the response variable of interest (either FMI score

or mindfulness status) comprises three steps: (1) computing the

candidate variables (postural features and pairwise products

thereof), (2) ranking them in order of decreasing relevance to

the response variable using the Orthogonal Forward Regression

(OFR) algorithm, and (3) eliminating irrelevant candidate

variables by the random probe method.

Cross-term computation
In addition to the 16 primary features, which were directly

extracted from the postural signal, their pairwise products

(except products of a primary feature by itself), called “cross-

terms” (CT), were computed. Indeed, the product of two primary

features may provide more relevant information than the two

primary features separately. Thus, a total of 136 candidate

variables were generated, including the 16 primary features

and their 120 pairwise products.

OFR algorithm
The OFR algorithm (Chen et al., 1989) operates iteratively,

given the candidate variable vectors fk, k ϵ [1 . . . N] (N being the

number of candidate variables) and the response variable vector

Ω (Figure 2). All vectors are defined in observation space, whose

dimension is equal to the number of examples.

1) All candidate vectors (including the “probes” defined in the

next subsection) are ranked according to their correlations to

the response variable. In observation space, the correlation ck
between the k-th candidate variable vector fk and the response
variable vector is the squared cosine of the angle between

these vectors: ck = cos2 (fk, Ω). The candidate variable that is
most correlated to the response variable (with the maximum

squared cosine) is ranked first.

2) All remaining candidate variables, and the response variable,

are orthogonalized with respect to the first selected variable,

in order to eliminate the contribution of the latter to the

response variable. Then, the first selected variable is stored

and removed from the set, and the algorithm is iterated with

the remaining orthogonalized variables, until all candidate

variables are ranked.

Random probe method
Variable selection was performed by the random probe

method (Stoppiglia et al., 2003). Specifically, 100 randomly

drawn “probe” vectors were appended to the set of candidate

vectors, and ranked together with the latter as described above.

The higher the probability for a probe to rank better than a non-

probe candidate variable, the lower the relevance of the latter. For

each non-probe candidate variable i, the cumulative probability

Pp(i) for a probe p to rank better than that variable was

estimated; Pp(i) can be interpreted as the risk of keeping

candidate variable i although it is irrelevant. All non-probe

candidate vectors for which that risk is larger than a user-

defined threshold were discarded. The threshold was chosen

to be 0.10 in the EC condition for regression and classification; in

the EO condition, the thresholds were chosen to be 0.05 and

0.20 for regression and classification, respectively (see
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Supplementary Material for detailed explanations of the

interpretation and the choice of the threshold).

Model selection

The purpose of model selection is to select the model that is

expected to generalize best, i.e., to have the smallest generalization

error, given the available data. It was performed by Leave-One-Out

(LOO) cross-validation, a method that provides an unbiased

estimation of the generalization error of a model (Vapnik, 2013).

Two steps were performed: (1) among models with the same

complexity (e.g., NN models with the same number of hidden

neurons), trainedwith different initial parameter values, find theNN

model with initial parameter values that achieves the lowest

generalization error; (2) among models with different levels of

complexity (e.g., for classification, the logistic model and NN

classifiers with a variable number of hidden neurons), find the

model that achieves the lowest generalization error.

Jacobian matrix
As a preliminary step, we discarded models that were obviously

prone to overfitting by checking the rank of their Jacobian matrices.

The Jacobian matrix of a NN model with q parameters

{w1, w1, . . . , wq}, trained from a dataset of N examples, is the

(N, q) matrix whose column i contains the values of the derivative of

the model output with respect to parameterwi. Hence, each column

of the Jacobian matrix expresses the effect of the variation of a

parameter on the model output. The rank of the Jacobian matrix is

the number of linearly independent columns, i.e. the number of

parameters whose effects on the output are linearly independent. If

the Jacobianmatrix does not have full rank (i.e. if its rank is not equal

to q), it means that the effects, on the model output, of two

parameters (or more) are not independent. In other words, the

model has too many parameters because some of them are

redundant, so that overfitting is very likely to occur. Such a

model should be discarded (Zhou and Si, 1998; Dreyfus, 2005).

Root mean square error
One could intuitively consider that model selection should be

based on the minimum of the Root Mean Square Error (RMSE)

on the training/validation set (Equation 1), because it reflects the

distance between the model predictions and the measured values

of the response variable:

RMSE �

���������
1
N

∑N
k�1

(rk)2
√√

(1)

where rk is the modeling error (difference between the

experimental value of the response variable and its estimated

FIGURE 2
An illustration of the Orthogonal Forward Regression (OFR) algorithm for variable ranking. The algorithm operates iteratively: 1) all candidate
variables are ranked according to their correlations to the response variable, namely the squared cosine of the angle between the candidate variable
and the response variable; the most correlated variable (with the maximum squared cosine) is ranked first; 2) all remaining candidate vectors and the
response variable are orthogonalized with respect to the first vector, in order to eliminate the contribution of the latter to the response variable;
then, the first candidate variable is stored and removed from the set of candidate variables, and the algorithm iterates with the remaining
orthogonalized candidate variables and the response variable, until all candidate variables are ranked.
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value) on example k, and where the summation is performed over

allN examples of the training/validation set. However, the RMSE

on the training/validation set is not a relevant estimator of the

generalization error, because the modeling error on the training/

validation set can be made as small as desired by just increasing

the complexity of the model, which is detrimental to

generalization. Thus, the value of the RMSE on the training/

validation set is not a suitable criterion for model selection

(Dreyfus, 2005).

Leave-one-out
Model selection was based on the comparison of the Leave-

One-Out (LOO) score between candidate models of increasing

complexity. For a given complexity, a LOO score is computed

in N steps where N is the number of examples of the training/

validation set (n = 109); at each step, one example of the

training/validation set is withdrawn from the set, a model is

trained (with a given set of initial parameter values) with the

remaining N-1 examples; the modeling error on the

withdrawn example is computed, and the LOO score of the

model is computed as described below. In the present work,

this procedure was iterated 300 times, with 300 different sets of

initial parameter values. Finally, the model with the smallest

LOO was stored as the “best” candidate model of the

considered complexity, given the training/validation data.

This procedure was performed for complexities (number of

hidden neurons) ranging from 0 hidden neuron

(i.e., multilinear model) to five hidden neurons, as

described in the Results section.

For regression, the LOO score of a model is computed as

(Equation 2):

SLOO �

���������
1
N

∑N
k�1

(r−kk )2
√√

(2)

where r−kk is the modeling error on example k when it is

withdrawn from the training/validation set, the model

having been trained on the remaining N-1 examples

(Dreyfus, 2005). Thus the LOO score is an estimation of the

generalization error of the model, based on the training/

validation data.

For classification, the LOO score is computed as follows: if

the left-out example k is misclassified, the error rk
-k is taken

equal to 1, otherwise to 0. The LOO score is computed as

(Equation 3):

SLOO � 1
N

∑N
k�1

r−kk (3)

The sum on the right-hand side is the number of

misclassification errors, hence the LOO score is an estimation

of the misclassification rate of the classifier, given the training/

validation data.

Assessment of the model performance

Regression approach
Two indices were computed for model assessment: (i) the

RMSE on the test set, disjoint from the training/validation set,

and (ii) the Pearson correlation coefficient between the model

estimations and the measured values of the FMI score. The

RMSE on the test set (“test RMSE”) is computed as in Equation

1, but for the fact that the data are those of the test set. The

lower the test RMSE, the better the model performance on data

unseen during the design of the model. The Pearson

correlation coefficient provides an additional information,

namely, to what extent the estimations and the measured

values are linearly related; however, this quantity alone is

not a valid assessment of model performance, as a very

poor model (with a very high test RMSE) may have a

correlation coefficient of 1 (e.g., a model that would always

provide an estimation equal to 1000 times the measured

value). In addition to the aforementioned indices, it is

useful to compare the test RMSE of the selected model with

the RMSE of a “baseline model” in order to ascertain that the

results are acceptable. In the regression approach, the baseline

model is the simple-minded model that estimates the FMI

scores of all examples of the test set as equal to the mean FMI

score on the training/validation set.

Classification approach
When addressing a classification problem with two classes

(mindful and non-mindful), model performance can be assessed

in a number of ways.

ROC curve and related indices
Performance indices classically include (i) the accuracy

(i.e., percentage of examples that are correctly classified,

Equation 4) or, equivalently, the misclassification rate (1-

accuracy), (ii) the sensitivity (i.e., the percentage of examples

of themindful class – considered as the “positive” class – that are

correctly classified, also called true positive rate, Equation 5), and

(iii) the specificity (i.e., the percentage of examples of the non-

mindful class that are correctly classified, Equation 6):

Accuracy � Truemindful examples + True non−mindful examples
Total number of examples

(4)

Sensitivity � Truemindful examples
Total number of mindful examples

(5)

Specificity � True non−mindful examples
Total number of non−mindful examples

(6)

The Receiver Operating Characteristic (ROC) curve depicts

graphically the relation between sensitivity and (1 − specificity)
(i.e., percentage of examples of the “non-mindful” class that are

(incorrectly) assigned to the “mindful” class, also called false positive

rate), at various thresholds. Each threshold value represents the
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decision boundary, within the range [0, 1], for predicting whether

an example belongs to the “mindful” class: for instance, an example

is classified as “mindful” if the corresponding output of the model is

above threshold, otherwise it is considered “non-mindful”. The area

under the ROC curve (AUC) quantifies the ability of the model to

correctly assign an example to the “mindful” class. A value of

1 denotes perfect classification performance, whereas a value

below 0.5 means that the model does not perform better than a

random classifier (defined below) (Bradley, 1997).

Random classifier
In addition to computing the above performance indices, it is

useful to compare the results of the selected classifier with those of a

simple-minded “baseline classifier”. In the present work, we

investigated whether one can find, by machine learning, a

deterministic relation between the posture and the trait

mindfulness; specifically, in the classification approach, we tested

whether mindfulness status (mindful vs. non-mindful) can be

inferred from the selected variables. If posture and trait

mindfulness were unrelated, the selected model should not

perform better than chance. In the present work, the two classes

have the same number of examples; thus, the most suitable baseline

classifier is a random classifier that assigns each example to one of

the two classes with equal probability, hence has 50% accuracy. Any

classifier whose accuracy is smaller than 50% is not acceptable.

Results

Overall summaries

Table 2 summarizes the basic statistics on demographic (age

and gender) and biometric (weight and height) measures for the

three military units where examples originated from, and for the

two subsets of data we created from the original sample (training/

validation and test sets).

Table 3 reports the score of trait mindfulness, as assessed with

the FMI questionnaire, for the three military units. For the variable

“mindfulness status” (seeMethod section for a description of how it

was computed), 50% of examples were labelled as “mindful” and

that proportion was similar in the training/validation (Nmindful = 53)

and test sets (nmindful = 23).

TABLE 2 Summary of demographic (age and gender) and biometric (weight and height) data for the three military units from which the examples
originated. These data pertain to the 156 subjects selected from the study (see Participants section).

Variables

Age (years) Gender (males) Weight (kg) Height (cm)

M SD n % M SD M SD

Total (n = 156) 26 9 138 88 74 10 177 8

Military unit

EFMC (n = 99) 22 3 99 100 74 7 178 6

SC (n = 33) 28 7 31 94 78 13 177 8

IRBA (n = 24) 40 12 8 33 67 12 169 8

N, number of subjects; M, mean; SD, standard deviation; n, number of males; %, proportion of males; EFMC, ecole des fusiliers marins et commandos; SC, submarine crew; IRBA, french

armed forces biomedical research institute.

TABLE 3 Score of trait mindfulness, as assessed with the Freiburg
Mindfulness Inventory, for the three military units from which the
examples originated. These data pertain to the 156 subjects selected
from the study (see Participants section).

Freiburg mindfulness
inventory

M SD

Total (n = 156) 41 6

Military unit

EFMC (n = 99) 43 5

SC (n = 33) 42 5

IRBA (n = 24) 37 7

N, number of subjects; M, mean; SD, standard deviation; EFMC, ecole des fusiliers

marins et commandos; SC, submarine crew; IRBA, french armed forces biomedical

research institute.

TABLE 4 Results of variable selection for Eyes closed and Eyes open
conditions. The selected variables were the same for regression
and classification. A detailed description of the postural features,
including their descriptive statistics, is provided in Supplementary
Material (see Section Computation of postural features and
Supplementary Table S1).

Selected variables

Eyes Closed condition Mean-ML × log-Alpha-AP

Mean-ML × PF95-AP

Eyes Open condition MP3 × Beta-AP
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Selected variables

The variables that were selected as relevant to estimate the trait

mindfulness (as described in the Variable Selection section) are

presented in Table 4. Only cross-terms (pairwise products of

primary features), were selected with the chosen thresholds.

Variables that were selected varied depending on the condition

(EC or EO), but they were the same for classification and regression.

Selected models

Regression approach
Figure 3 shows the LOO score and the training RMSE of the

models on which the LOO method was applied (i.e. models whose

Jacobianmatrix had full rank) for the regression approach, in EC and

EO conditions separately. As expected, the RMSE decreases when the

model complexity (number of hidden neurons) increases, from the

FIGURE 3
In the regression approach, variation of the Leave-One-Out (LOO) score and of the Root Mean Square Error (RMSE) on the training set as a
function of model complexity [MLR: multilinear regression model; nHN: neural network (NN) with n hidden neurons (n ≠ 0)], (A) in Eyes closed (EC)
condition and (B) in Eyes open (EO) condition. In the EC condition, the LOO score is minimum with the NN model including two hidden neurons.
Therefore, the NN model including two hidden neurons was selected to address the regression problem in the EC condition. In the EO
condition, the LOO score is minimum with the NN model including a single hidden neuron. Therefore, the NN model including a single hidden
neuron was selected to address the regression problem in the EO condition.

Frontiers in Physiology frontiersin.org10

Verdonk et al. 10.3389/fphys.2022.915134

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.915134


multilinear model (0 hidden neuron) upward. By contrast, the LOO

score goes through a minimum for the NN model including two

hidden neurons in the EC condition, and subsequently increases with

increasing model complexity (Figure 3A). Therefore, the NN model

including two hidden neurons was selected as the best model, given

the experimental data, to address the regression problem in the EC

condition. In the EO condition, the LOO score is minimum for the

NNmodel including a single hidden neuron and remains higher with

the multilinear model and other NN models (Figure 3B). Therefore,

the NN model including a single hidden neuron was selected as the

best model, given the experimental data, to address the regression

problem in the EO condition.

Classification approach
Figure 4 shows the LOO score and the misclassification rate

(1 − accuracy) of the models on which the LOO method was

FIGURE 4
In the classification approach, variation of the Leave-One-Out (LOO) score and of the misclassification rate (1 − accuracy) as a function of
model complexity [LM: logistic regression model; nHN: neural network (NN) with n hidden neurons (n ≠ 0)], (A) in Eyes closed (EC) condition and (B)
in Eyes open (EO) condition. In the EC condition, the LOO score is minimum for the NN model including four hidden neurons. Therefore, the NN
model including four hidden neurons was selected to address the classification problem in the EC condition. In the EO condition, the LOO score
is minimum for the NNmodel including three hidden neurons. Therefore, the NNmodel including three hidden neurons was selected to address the
classification problem in the EO condition.
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applied (i.e., models whose Jacobian matrix had full rank) for the

classification approach, in EC and EO conditions separately. As

expected, the misclassification rate decreases when the model

complexity increases, from the logistic model (0 hidden neuron)

upward. By contrast, the LOO score goes through a minimum for

the NN model including four hidden neurons, and increases for

the NN model including five hidden neurons (Figure 4A).

Therefore, the NN model including four hidden neurons was

selected as the best model, given the experimental data, to address

the classification problem in the EC condition. In the EO

condition, the LOO score is minimum for the NN model

including three hidden neurons and remains higher with the

logistic model and other NN models (Figure 4B). Therefore, the

NN model including three hidden neurons was selected as the

best model, given the experimental data, to address the

classification problem in the EO condition.

Model performance

Regression approach
Table 5 shows the performance of the models that were

selected for addressing the regression problem, in EC and EO

conditions separately. In the EC condition, the training/

validation RMSE and the test RMSE of the selected model

are smaller than the test RMSE of the baseline model; in

addition, the training/validation and the test RMSE are of

the same order of magnitude, which shows that the test set is a

representative sample of the available data. The estimated and

measured values of the FMI score are significantly positively

correlated, both on the training/validation set and on the test

set. Taken together, these findings show that such a model is

acceptable. Hence, we show that, given the data obtained in EC

condition, there exists at least one deterministic function that

provides a reliable estimation of the FMI score from the

postural signal.

By contrast, in the EO condition, the test RMSE of the

selected model is much larger than the test RMSE of the

baseline model. Additionally, on the test set, the model

predictions and the measured values for FMI score are

uncorrelated. Taken together, these results show that the

model is unacceptable. Hence, given the data obtained in EO

condition, we have been unable to find a deterministic function

that provides a reliable estimation of the FMI score from the

postural signal.

Classification approach
The upper part of Table 6 shows the performance of the

NN model including four hidden neurons for addressing the

classification problem in the EC condition. The accuracy of

the NN model on the test set (64%) is much higher than the

performance of the baseline classifier that was defined with

50% accuracy (see the Method for detailed explanations).

Hence, we show that, given the data obtained in EC

condition, there exists at least one deterministic function

that provides a reliable estimation of the mindfulness status

from the postural signal.

The lower part of Table 6 shows the performance of the NN

model including three hidden neurons for addressing the

classification problem in the EO condition. The NN model

has 67% accuracy on the training/validation set but the

accuracy drops to 53% on the test set, which is very close to

the performance of the baseline classifier (50%). Hence, given the

data obtained in EO condition, we have been unable to find a

deterministic function that provides a reliable estimation of the

mindfulness status from the postural signal.

TABLE 5 Performance of themodels that were selected for addressing
the regression problem, in the Eyes closed condition and in the
Eyes open condition. Two indices of performance are reported: (i) the
Root mean square error (RMSE), and (ii) the Pearson correlation
coefficient ρ between the model predictions and the measured
values for the Freiburg Mindfulness Inventory score. Results are
presented separately for the training/validation set and the test
set, together with the results of the baseline model.

RMSE Pearson correlation ρ
(p-value)

Eyes Closed condition (NN model including two hidden neurons)

Training/validation set 5.21 0.46 (<0.001)
Test set 5.70 0.33 (<0.05)
Baseline model (test set) 5.98 0

Eyes Open condition (NN model including a single hidden neuron)

Training/validation set 5.83 0.30 (<0.001)
Test set 5.87 -0.07 (0.66)

Baseline model (test set) 5.40 0

RMSE, root mean square error.

TABLE 6 Performance of the NN model when addressing the
classification problem in the Eyes Closed condition (upper part)
and the Eyes Open condition (lower part). Results are reported
separately for the training/validation set and the test set, together
with the performance of the baseline model (random classifier).

Performance indices

Accuracy (%) AUC

Eyes Closed condition (NN model including four hidden neurons)

Training/validation set 75 0.82

Test set 64 0.70

Eyes Open condition (NN model including three hidden neurons)

Training/validation set 67 0.68

Test set 53 0.56

Baseline classifier 50 0.5

AUC, area under the ROC curve; NN, neural network.
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To summarize, regression and classification approaches

showed that, given the available experimental data, models

trained from postural data collected in EC condition, with the

selected variables, perform correctly, while the models trained

from postural data collected in EO condition do not, all other

things being equal. Hence, in EC condition, at least one neural

network model can be exhibited, which provides an accurate

estimation of the FMI score from the postural signal, while this is

not possible in EO condition.

Discussion

In the present study, we aimed to investigate the posture as a

proxy for enhanced body awareness (proprioception) in trait

mindfulness. To this end, we examined whether the self-reported

trait mindfulness could be estimated successfully from the

postural signal, using machine learning based models and

given the data available from a sample of 156 healthy subjects.

Specifically, we tested whether the FMI score could be estimated

from the postural signal (regression approach), and whether

discrimination of mindful from non-mindful participants

could be performed from the same signal (classification

approach). The first observation is that NN models designed

from postural data collected in EC condition successfully

estimate the mindfulness status (with 64% accuracy), and the

FMI score, from the selected postural features. Assuming that the

selected models should perform better than their respective

baseline model if postural signal accounts for self-reported

trait mindfulness (see section Assessment of the model

performance in the Method for detailed description of baseline

model), our results support the existence of a stochastic relation

between posture and trait mindfulness. We further explored how

the level of body awareness engagement in postural control may

affect this relationship, assuming that body awareness is more

strongly engaged in postural control when the latter rests on body

cues only (from vestibular and somatosensory systems) than

when visual information is available. In our work, body

awareness engagement in postural control was experimentally

controlled by instructing participants either to keep their eyes

closed (EC condition with high body awareness engagement) or

to keep their eyes open (EO condition with low body awareness

engagement) during standing. The second observation is that we

found an effect of the experimental condition on model

performance: a model trained from data collected in EC

condition estimates the trait mindfulness from the selected

postural features more accurately than a model trained from

data collected in EO condition (classification: 64% vs. 53%

accuracy; regression: presence vs. lack of correlation between

predicted and measured FMI scores). This finding supports the

idea that the strength of relationship between posture and trait

mindfulness increases as a function of body awareness

engagement in postural control. In summary, our results show

that self-reported trait mindfulness and postural signal are

associated, and that the higher the body awareness

engagement in postural control the stronger the

relationship between trait mindfulness and posture. Taken

together, our findings provide the first physiological argument

based on the postural signal that supports the hypothesis that

trait mindfulness is characterized by enhanced body

awareness (Hölzel et al., 2011; Treves et al., 2019; Verdonk

et al., 2020).

Variable selection was performed to identify the set of

relevant postural features for estimating the trait mindfulness.

The most relevant variables were found to be cross-terms, i.e.

pairwise products of the primary features that were extracted

from the postural signal. This means that each primary feature of

the product, taken separately, is not as relevant, for estimating the

trait mindfulness, as a nonlinear combination of the two features

such as – but not limited to – their product. It could be argued

that the product of postural features, although relevant for

estimating trait mindfulness by our machine learning models,

remain difficult to interpret functionally and in terms of postural

control. Future studies are needed to increase the biomechanical

interpretability of the machine learning models developed in our

study, which is a necessary requirement to make the enhanced

body awareness (proprioception) hypothesis in mindfulness

more readable in practice (e.g., for potential clinical use in

mindfulness based programs). As a preliminary step, one

could focus on the postural feature Mean-ML that was

included in both selected combinations of primary features in

the EC condition. Basically, the feature Mean-ML reflects the

average position of the CoP along the medio-lateral axis over

time. Considering that enhanced proprioception in mindful

individuals should be associated with less displacements of

their body’s center of pressure (i.e., better postural stability),

one could hypothesise that mindful individuals have their CoP

closer to the equilibrium point (the central point between both

internal malleolus, which also corresponds to the origin of axes

on statokinesigram; see Supplementary Material, section The

biomechanical modeling framework of standing posture),

compared to non-mindful individuals. In other words, one

could hypothesise that mean and standard deviation values of

the postural feature Mean-ML are closer to zero for mindful

individuals than for non-mindful individuals. Interestingly, our

data provide evidence, which need to be replicated with a larger

sample, in favour of this hypothesis (see Supplementary Table S1

that includes statistics of the feature Mean-ML for mindful and

non-mindful individuals separately).

Even though our findings provide preliminary physiological

evidence supporting the enhanced body awareness hypothesis in

mindfulness, they do not allow inferring any causal relationship

between self-reported trait mindfulness and enhanced body

awareness (proprioception). This limitation in the

interpretation of results is important to consider if

operationalization of mindfulness is extended to training in
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the form of brief interventions (e.g., Mindfulness Based Stress

Reduction, Mindfulness-Based Cognitive Therapy) or long-

term practice. Only studies that will experimentally

manipulate mindfulness will provide evidence, if any, that

mindfulness training may causally improve proprioceptive

body awareness, as assessed with the analysis of posture. It

should be noted that a causal, beneficial effect of mindfulness

training on body awareness has been reported before using

behavioural tasks [e.g., heartbeat tracking, tactile detection;

see (Treves et al., 2019)], but needs to be extended to

physiological signals originating from within sensory systems

of the body.

Given the inherently complex (nonlinear) nature of

psychophysiological relationships (Cacioppo and Tassinary,

1990), machine learning techniques were used for finding

numerical models that can account for the relation between

self-reported trait mindfulness and postural signal as

accurately as possible, and that have the best generalization

ability (i.e., that would perform similarly on novel data). We

implemented a robust, proven machine learning methodology

that was best suitable given our relatively small sample size,

allowing us to reach our primary goal: generate physiological

evidence that supports the enhanced body awareness

hypothesis in mindfulness. Regarding potential clinical use

of the present findings, our proof-of-concept study suggests

that postural signal could be an interesting candidate

physiological marker (i.e., a biomarker) of trait

mindfulness. Yet, the development of a reliable predictive

tool to objectively measure trait mindfulness by analysing the

postural signal would primarily require a larger sample. If

confirmed with a larger sample, our insights could have

implications for future mindfulness research since trait

mindfulness is usually assessed by means of self-report

psychological scales (Sauer et al., 2013) that raise

methodological concerns due to their vulnerability to

limitations of introspection and social-desirability biases

(Baumeister et al., 2007; Grossman, 2011; Van Dam et al.,

2018).

From a psychophysiological perspective, the limited

performance of our models might partially be due to

fluctuations of body awareness engagement in postural control

during recording. Indeed, unlike the psychological trait of

mindfulness that is supposed to be relatively stable over time

(Sauer et al., 2013), the subject’s postural control could have been

contaminated by a range of psycho-cognitive processes (e.g.,

changes in attention, emotional thoughts, etc.) that are known to

be associated with changes in postural signal (Amboni et al.,

2013; Adkin and Carpenter, 2018). We encourage the

investigation of the relationship that posture has with state

(context specific) and trait (individual specific) components of

mindfulness, for example by recording postural signal before and

while participants are engaged in a mindfulness meditation training

in a standing position. Furthermore, self-report measure of trait

mindfulness relies on a verbal method that provides access only to

introspective information that is consciously processed by the

subject (Dehaene et al., 2006). On the other hand, a dominant

portion of the postural control drive is subcortical, and conscious

perception of postural control mechanisms remains limited (Forbes

et al., 2018). We suggest that discrepancy between the conscious and

(predominantly) unconscious nature of processes underlying the

self-report of trait mindfulness and the postural control respectively

might explain part of the limited performance of our

psychophysiological model. Recently, we have proposed that

cognitive functioning associated with mindfulness could be

characterized with lower consciousness threshold that facilitates

the conscious processing of information coming from within (body

awareness and self-awareness) and outside the body (world

awareness) (Verdonk et al., 2020). Interestingly, we observe that

our model (in the classification approach) accounts for relation

between trait mindfulness and posture more accurately in the

mindful sample than in the non-mindful sample, as reflected by

its greater sensitivity (70%) compared to its specificity (58%). This

finding, which is preliminary and needs to be confirmed by a

dedicated study, suggests that mindful functioning could potentially

contribute to increase the proportion of postural control drive that is

consciously processed.

Finally, in our study, analysis of postural signal focused on

16 primary features (and their cross-terms) that have been

characterized as contributing to discriminate between

individual postural patterns (Yamamoto et al., 2015). Yet, it

should be noted that a much greater number of features (more

than 70) can be extracted from the postural signal in the time and

frequency domains. Future studies are encouraged to explore the

high dimensionality inherent in postural data in using the

existing wide range of machine learning techniques and

algorithms, which could ultimately lead to better modelling of

complex psychophysiological processes that characterize

mindfulness.
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