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Abstract

Background

Barrett’s esophagus is strongly associated with esophageal adenocarcinoma. Considering

costs and risks associated with invasive surveillance endoscopies better methods of risk

stratification are required to assist decision-making and move toward more personalised tai-

loring of Barrett’s surveillance.

Methods

A Bayesian network was created by synthesizing data from published studies analysing risk

factors for developing adenocarcinoma in Barrett’s oesophagus through a two-stage weight-

ing process.

Results

Data was synthesized from 114 studies (n = 394,827) to create the Bayesian network, which

was validated against a prospectively maintained institutional database (n = 571). Version 1

contained 10 variables (dysplasia, gender, age, Barrett’s segment length, statin use, proton

pump inhibitor use, BMI, smoking, aspirin and NSAID use) and achieved AUC of 0.61. Ver-

sion 2 contained 4 variables with the strongest evidence of association with the develop-

ment of adenocarcinoma in Barrett’s (dysplasia, gender, age, Barrett’s segment length) and

achieved an AUC 0.90.

Conclusion

This Bayesian network is unique in the way it utilizes published data to translate the existing

empirical evidence surrounding the risk of developing adenocarcinoma in Barrett’s
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esophagus to make personalized risk predictions. Further work is required but this tool

marks a vital step towards delivering a more personalized approach to Barrett’s

surveillance.

Introduction

The incidence of esophageal malignancy has increased markedly within the Western World in

recent decades [1, 2]. Most cases of esophageal malignancy can be attributed to known risk fac-

tors including gastro-esophageal reflux disease, smoking, central obesity and hiatus hernia.

Family history, male gender and Caucasian race have also been linked to increased risk of

developing esophageal malignancy [1].

Barrett’s esophagus has a 30 to 125 times greater risk of developing esophageal adenocarci-

noma compared to age matched population [2–4]. Barrett’s surveillance screening has there-

fore been recommended as this has been shown to detect disease at an earlier stage resulting in

prolonged survival times. However, the relative rarity of malignancy balanced against the inva-

siveness of upper gastrointestinal endoscopy, has meant that the cost-effectiveness of Barrett’s

surveillance depends on the risk of cancer with a wide variation in this risk being observed and

reported [1, 2]. Definitions of Barrett’s esophagus, clinical guidelines and criteria for screening

also vary between countries and professional bodies [1].

The challenge is to identify at individual patient level who will benefit most from surveil-

lance endoscopy and to what intensity of frequency this should be performed in order to maxi-

mize benefit and minimise both risk and costs of the procedure itself as well as risk of failure to

detect an early malignancy [1, 2]. The second challenge therefore is how we can better commu-

nicate and transmit complex narratives to patients about their individual risk over time follow-

ing a diagnosis of Barrett’s esophagus to facilitate better shared decision-making.

Personalized predictive modeling has gained precedence within contemporary medicine [5,

6]. However existing predictive models are rarely applied in clinical practice as they are mainly

based on non-linear regression techniques and fail to capture the dynamic nature of the care

process whereby predicted outcomes evolve as time-dependent information emerges [7, 8].

Bayesian networks offer a means of engaging with the complexity of a healthcare process.

The aim of this study is to create a Bayesian network that provides patients with Barrett’s

esophagus with individualised risk assessments for developing high-grade dysplasia or adeno-

carcinoma. We hypothesize that by using a Bayesian network to model risk as a complex adap-

tive system, we will create a model that can provide more accurate individualized predictions

of risk throughout the patient journey, with predictive updating as patient information evolves

over time, compared to relying on degree of dysplasia alone.

Materials and methods

Bayesian network

Bayesian networks are graphical models that are based on probability theory [9]. They are also

referred to as acyclic directed graphs and model the relationship between variables, or nodes,

with arcs depicting causal relationships between parent and child nodes based on a joint or

multivariate probability distribution [9, 10]. This means that each node within the Bayesian

network has a defined and exclusive set of states [11]. Through Bayes theorem the state of a

child node is defined by the condition of its parent nodes, with the dependencies between
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parent and child nodes quantified through a set of conditional probability tables, which has

been proven to be an effectively method of handling uncertainty within a model [11–13].

This is often viewed as the likelihood distribution and in a Bayesian network this can be

computed as [9]:

p XijYð Þ ¼
pðYjXiÞxpðXiÞ
SjpðYjXjÞpðXjÞ

where Xi is any mutually exclusive parameter, (i = 1,2,3. . .n), given the observed state of Y. p(X|Y)

is the posterior probability of X given the condition of Y, and p(Y|X) is the posterior probabil-

ity of Y given the condition of X, with the prior probability of X represented by p(X) and the

marginal occurrence of Y presented p(Y) [9].

Bayes theorem therefore allows the prior distribution and observed data to be combined to

update knowledge in the form of the posterior distribution which in practical terms allows pre-

dictions to evolve as more information becomes available at different stages of the healthcare

process [6, 9, 14, 15]. Bayesian networks can therefore also perform diagnostic and decision

analysis through marginalization, which is also employed to compute the reliability of net-

works based on statistical data and allows clinicians to assess ‘what if’ scenarios [16–18].

Evidence synthesis

Conditional probabilities used within a Bayesian network can, in some circumstances, be elic-

ited from expert opinion but this can result in larger, more complex models losing reliability

[10, 11, 19]. An alternative approach for acquiring conditional probabilities could be through

the use of training data [11]. However, the risk of cancer in Barrett’s patients has been reported

as below 3 per cent per annum and the lack of consistency in definitions and surveillance

guidelines as well as the lack of national surveillance databases in some countries makes the

acquisition of sufficiently large and detailed databases difficult [1, 2]. This has resulted in pre-

vious prediction models being limited by small and/or biased datasets and lacking generaliz-

ability. Methods first developed by Zhao and Weng [20], and later adapted by Bradley et al.
[21], were therefore employed to synthesize evidence from which to build the Bayesian

network.

First PubMed, Cochrane Database, and GoogleScholar databases were searched follow-

ing the PRISMA guidelines [22] (S1 Fig) with the entire database included from 1st January

2000 up to and including 23rd December, 2019 using the full list of search terms provided in

(S1 Table). The inclusion criteria were full-text multivariable analysis studies of risk factors

for developing high-grade dysplasia or esophageal malignancy in patients aged 18years or

over who had Barrett’s esophagus. Observational and cohort studies and studies that

reported only rates or incidence of malignancy without multivariable analysis of variables

associated with its development were excluded. Studies exploring experimental treatment

strategies or comparing surveillance strategies were excluded. Reference lists and citations

of all included papers were manually screened to identify any additional articles until no

new articles were identified.

The first and second author performed search design and all authors performed indepen-

dent data extraction and quality assurance with any discrepancies resolved by inter-reviewer

discussion. Data was extracted manually from studies and included: study year, number of

included patients, all variables that were included in the multivariable analysis, and for each

variable whether it was found to have a statistically significant association with the develop-

ment of high-grade dysplasia or malignancy as defined by a P value <0.005. This yielded 114

papers, (n = 394,827) from which the model was built (S2 Table).
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Secondly extracted data underwent a two stage weighting process developed by Zhao and

Weng [20], and developed further by the work of Bradley et al. [21]. The original weight for

each variable represented a summary of existing evidence, including conflicting findings [20].

The original weight then underwent a process of normalization to place this ratio in the con-

text of the entire body of evidence related to each variable (Table 1; S3 Table). This approach

has been shown to reduce the impact of bias inherent in the literature on the model as conflict-

ing findings are accounted for and smaller trials with greater risk of bias have a reduced impact

through the process of normalization [20, 21].

Bayesian network structure

The top 10 ranking variables (Table 1) were used to structure the first version of the Bayesian

network created using AgenaRisk version 10 software [23] (Fig 1). The definitions and catego-

rization of input data for each node detailed in Table 1 were determined by how this data was

presented in published studies and were approved by an expert panel of surgeons. Continuous

variables such as age and length of Barrett’s segment were therefore modeled as categorical

variables based on how these variables were reported in published studies (Table 1). Node

probability tables for each child node was calculated using the normalized weighting of each

parent node as the weighted mean of the truncated Normal (TNormal) distribution which has

been proven to generate accurate node probability tables for Bayesian networks involving

ranked nodes with ranked parent nodes [14]. The second version of the Bayesian network was

Table 1. Top 10 weighted variables from synthesized studies ordered in rank order based on normalized

weighting.

Variable/ Node Node States within Bayesian Network

Dysplasia No dysplasia

Low grade dysplasia

High grade dysplasia

Gender Female

Male

Age <60 years

60-70year

>70 years

Segment Length <3cm

3cm-5cm

>5cm

Statin Yes

No

Proton Pump Inhibitor (PPI) use Yes

No

Body Mass Index (BMI) >18/<28

28–30

>30/<18

Smoking No

Ex/Current

Aspirin Yes

No

Non-Steroidal Anti-Inflammatory (NSAID) Yes

No

https://doi.org/10.1371/journal.pone.0240620.t001
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based on only the top 4 ranked variables based on their normalized weighting. These nodes

acted as direct parent nodes of the output node (Fig 2). The output node was calculated from

the weighted mean of the corresponding parent nodes. The output node provided a percentage

probability of having low, medium or high risk of developing high-grade dysplasia or esoph-

ageal malignancy.

Model validation

The proposed Bayesian networks were checked with three hypothetical scenarios. Scenario 1

reflects a high-risk patient where all the criteria are in worst possible state. Scenario 2 reflects a

patient where all criteria are in medium or moderate states. Scenario 3 reflects a low-risk

patient where all criteria are in the most favourable state (Figs 3 and 4).

The performance of the model was assessed using the area under the curve (AUC) of the

receiver operating curve (ROC) using SPSS Statistics version 26 software. It was validated

against the prospectively maintained Barrett’s surveillance patient database of a district general

hospital. This database contained 571 patients and two expert pathologists confirmed all

pathology reports. Anonymous individual patient data for all 517 patients was entered into the

Bayesian network to provide individual patient risk assessment of developing high-grade dys-

plasia or esophageal malignancy for each patient. On completion of the model all patients

Fig 1. Bayesian network version 1 based on top 10 variables.

https://doi.org/10.1371/journal.pone.0240620.g001

Fig 2. Bayesian network version 2 based on top 4 variables.

https://doi.org/10.1371/journal.pone.0240620.g002
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within the database were followed up. 62 were due and had undergone their repeat upper gas-

trointestinal surveillance endoscopy or had been diagnosed with malignancy and undergone

definitive treatment. The original risk profile of these patients were compared against the

results from their repeat surveillance endoscopy to validate the performance of the Bayesian

network. Those patients who had an initial predicted high risk of malignancy of 50% or above

were expected to have developed high-grade dysplasia or malignancy for the Bayesian network

to make a true positive prediction.

Results

There were 54 patients who had repeat endoscopy or definitive treatment and who had com-

plete data on all 10 variables contained within version 1 of the Bayesian network. Validated

against these patients version 1 of the Bayesian network had a sensitivity of 0.55 and specificity

of 1 with a positive predictive value of 1 and negative predictive value of 0.90. AUC was 0.61

(standard error 0.33; P value 0.001; 95% confidence interval 0.000–0.126).

Fig 3. Bayesian network version 1 based on top 10 variables. Scenario 1 blue; scenario 2 green; scenario 3 orange.

https://doi.org/10.1371/journal.pone.0240620.g003

Fig 4. Bayesian network version 2 based on top 4 variables. Scenario 1 blue; scenario 2 green; scenario 3 orange.

https://doi.org/10.1371/journal.pone.0240620.g004
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Version 2 of the Bayesian network was based on only the 4 variables most strongly associ-

ated with developing esophageal malignancy and performed better than version 1. There were

62 patients who had repeat endoscopy or definitive treatment and who had complete data on

all 4 variables contained within version 2 of the Bayesian network. Validated against these

patients version 2 of the Bayesian network had a sensitivity of 0.82 and specificity of 0.98 with

a positive predictive value of 0.90 and negative predictive value of 0.96. AUC was 0.90 (stan-

dard error 0.07; P value 0.000; 95% confidence interval 0.762–1.000) (Fig 5). When only dys-

plasia was used within the Bayesian network this produced a sensitivity of 1.0 and specificity of

0.79 with a positive predictive value of 0.36 and negative predictive value of 0.84. AUC was

0.68 (standard error 0.10; P value 0.060; 95% confidence interval 0.477–0.886).

Discussion

This Bayesian network was developed to provide patients with Barrett’s esophagus with an

individualised risk assessment for developing esophageal adenocarcinoma. Such information

could facilitate better shared decision-making regarding the potential impact of preventative

measures and decisions regarding the intensity of surveillance. By utilizing existing published

data in a unique way within a Bayesian network, version 2 of the model was able to achieve an

AUC of 0.90, which outperformed reliance on dysplasia alone.

The evidence base for predicting progression to esophageal adenocarcinoma in Barrett’s

esophagus is limited which makes comparison of this model’s performance difficult [1]. Previ-

ous studies assessing the relative risk of malignancy in this population are mainly small cohort

Fig 5. Bayesian network version 2 area under receiver operator curve.

https://doi.org/10.1371/journal.pone.0240620.g005
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studies which lack generalizability, have limited and often conflicting risk factor information,

focus on a small number of outcomes for a relatively rare occurrence rate of esophageal malig-

nancy and use varying study designs [1]. Across existing studies there is disagreement about

what factors are significantly predictive and not all studies include data on all known potential

factors affecting risk [1].

Strengths and limitations

This model is unique in its novel utilization of knowledge from existing studies, including the

incorporation of conflicting information and uncertainty across studies through a two stage

weighting process. This means that the existing evidence base can be translated in a clinically

more meaningful way for individual patients and their clinicians to assist shared decision-

making. This also means that the Bayesian network overcomes the limitations of many existing

models such as lack of generalizability and bias from being largely based on single institutional

databases.

A limitation of this model is that it is based on published studies that are mainly cohort

analysis from single centres that did not explicitly state whether pathology reports were con-

firmed by two pathologists, and which demonstrated a degree heterogeneity in surveillance

strategies, which carries a risk of bias. The two-stage weighting process of variables was

designed to minimize the potential impact of such bias on the Bayesian network [21]. There is

also the potential that new and emerging studies will alter the weightings of nodes within the

model. A strength of the Bayesian network is that new advances either in less invasive methods

of surveillance of in our understanding of disease at molecular or genetic level can easily be

incorporated within the model which effectively offers a vehicle to combine clinical and geno-

mic data in a clinically meaningful way [21]. Thus far the model has only been prospectively

validated against a small number of patients. Further prospective validation is ongoing and the

model would also benefit from being validated against another institution’s database. The

anticipated next phase of this model will be to incorporate patient level data from larger

national databases into the existing model so that the accuracy of predictions can be further

improved by combining the prior distribution and observed data to update the posterior distri-

bution through Bayes theorem [14].

Study impact

Barrett’s esophagus is strongly associated with esophageal malignancy. However there are sig-

nificant costs and risks associated with invasive surveillance endoscopies. Ambiguities also

exist in the definitions of Barrett’s esophagus, clinical guidelines and criteria for screening

between countries and professional bodies [1]. Current surveillance strategies rely heavily on

degree of dysplasia and the Bayesian network presented here weights this variable as holding

strongest significance within the model. This study builds on previous work by Bradley et al.
[21] to model under uncertainty to move towards a more personalized approach to risk strati-

fication in order to assist clinical decision-making. In the immediate clinical setting the poten-

tial impact of this study could be to help to communicate a complex narrative to patients

regarding their individual risk of malignancy, as it evolves over time, following a diagnosis of

Barrett’s esophagus to facilitate better shared decision-making [21]. Both versions of the Bayes-

ian network presented here go beyond a reliance solely on dysplasia. The AUC for version 2 of

the model is superior to that produced by modeling dysplasia alone. Version 1 of the Bayesian

network also offers additional benefits and insights that facilitate better communication and

shared decision-making in the clinical setting that a reliance on dysplasia alone could not

offer. This includes being better able to explain to patients the impact of “what if” scenarios on
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their individual risk profiles such as the impact of risk reduction strategies including weight

loss in obese patients, smoking cessation and the introduction of proton pump inhibitors et

cetera, as demonstrated in Fig 6. Therefore whilst version 2 of the model might be used to

make more accurate predictions, version 1 of the Bayesian network still has clinical merit in

Fig 6. Bayesian network showing how the individual patient’s risk profile alters without and then with implementation of

protective measures.

https://doi.org/10.1371/journal.pone.0240620.g006
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facilitating better clinical communication and shared decision-making through graphical

representation of individualized risk profiles.

A further impact of this research could be in directing future research towards developing

more sophisticated mechanisms of clinical decision support and analysis models to support

the delivery of more personalized medicine through the integration of multiple, large and

complex databases [21, 24–27]. The methods used and developed within this study have the

potential to merge clinical and pathological data to make individualized predictions of risk of

developing esophageal malignancy in patients with Barrett’s esophagus. At present American

College of Gastroenterology guidelines state that biomarkers should not be used for surveil-

lance [28]. However, as our knowledge of disease processes evolve to include a deeper genetic

understanding, a future requirement will emerge to develop ways of amalgamating both

genetic and clinical data in order to facilitate better shared clinical decision-making. As dem-

onstrated in this study Bayesian networks offer one possible solution. As newer methods of

Barrett’s screening are developed, and our understanding of disease at molecular level

advances, this emerging data could be integrated into this model as additional weighted nodes,

with the posterior data distributions updated accordingly through Bayes theorem, hence facili-

tating the clinical application of such knowledge at individual patient level [21, 27].
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