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1  |  INTRODUC TION

The concept of Bayesian estimation originated in 1763 when Thomas 
Bayes, an English statistician, and philosopher, published his idea of in-
verse probability. Originally, Bayes strived to determine the probability 
of a future event occurring based on how many times it had occurred 
in the past. A prominent French mathematician, Pierre- Simon Laplace, 
further developed the theory and published the formal equation.1,2

Bayesian estimation has been used in many diverse fields. 
Historically, Bayes analysis was used in World War II by Alan Turing 

to decipher the Enigma code.3 In healthcare, Bayes analysis has been 
studied in the diagnosis and prognosis of clinical conditions, drug 
development and discovery, as well as therapeutic drug monitoring 
(TDM) and pharmacokinetics (PK).4– 7

In 2020, the American Society of Health- Systems Pharmacists, 
the Infectious Diseases Society of America, the Pediatric Infectious 
Diseases Society, and the Society of Infectious Diseases Pharmacists 
published the vancomycin consensus guidelines for dosing and 
monitoring vancomycin, which was an update to the 2009 vanco-
mycin guidelines.8 The revised guidelines recommended the use of 

Received:	7	September	2022  | Accepted:	26	October	2022
DOI: 10.1002/prp2.1026  

R E V I E W

Bayesian method application: Integrating mathematical 
modeling into clinical pharmacy through vancomycin 
therapeutic monitoring

Ashley Chen1 |   Anjum Gupta1,2 |   Dylan Huy Do1,3 |   Lama H. Nazer4

This is an open access article under the terms of the Creative Commons Attribution- NonCommercial- NoDerivs License, which permits use and distribution in 
any medium, provided the original work is properly cited, the use is non- commercial and no modifications or adaptations are made.
© 2022 The Authors. Pharmacology Research & Perspectives published by British Pharmacological Society and American Society for Pharmacology and 
Experimental Therapeutics and John Wiley & Sons Ltd.

Abbreviations: AUC, Area under the curve; MIC, Minimum inhibitory concentration; TDM, Therapeutic drug monitoring; PK, Pharmacokinetics.

1University of California, San Diego, 
California, USA
2PreciseRx Inc, San Diego, California, USA
3Canyon Crest Academy, San Diego, 
California, USA
4King Hussein Cancer Center, Amman, 
Jordan

Correspondence
Lama H. Nazer, Department of Pharmacy, 
King Hussein Cancer Center, P.O. Box 
1269, Al- Jubeiha, Amman 11941, Jordan.
Email: lnazer@khcc.jo

Abstract
The most recent consensus guidelines for dosing and monitoring vancomycin recom-
mended the use of area- under- the- curve with Bayesian estimation for therapeutic 
monitoring. As this is a modern concept in the practice of clinical pharmacy, the main 
objective of this review is to introduce the fundamentals of Bayesian estimation and 
its mathematical application as it relates to vancomycin therapeutic drug monitoring. 
In addition, we aim to identify pharmacokinetic (PK) software programs that incor-
porate Bayesian estimation for vancomycin dosing and to describe the PK models 
utilized in those software programs for the adult population. Twelve software pro-
grams that utilize Bayesian estimation were identified, which included: Adult and 
Pediatric Kinetics, Best Dose, ClinCalc, DoseMeRx, ID- ODS, InsightRx, MwPharm++, 
NextDose, PrecisePK, TDMx, Tucuxi, and VancoCalc. The software programs varied 
in the population PK models used as the Bayesian a priori. With the presence of vari-
ous vancomycin Bayesian software programs, it is important to choose those that 
utilize PK models reflective of the specific patient population.

K E Y W O R D S
Bayes theorem, pharmacokinetics, therapeutic drug monitoring, vancomycin

www.wileyonlinelibrary.com/journal/prp2
mailto:
https://orcid.org/0000-0002-7550-4751
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:lnazer@khcc.jo


2 of 8  |     CHEN et al.

area-	under-	the-	curve	 over	 24 h	 to	 minimum	 inhibitory	 concentra-
tion (AUC/MIC) and the Bayesian approach for vancomycin TDM.8 
The AUC/MIC is considered the most appropriate pharmacokinetic/
pharmacodynamic target for vancomycin.8 In addition, studies demon-
strated less vancomycin- associated nephrotoxicity with the AUC- 
based dosing.9– 13 However, in a survey of 364 critical care pharmacists, 
over 80% of the pharmacists reported using vancomycin trough con-
centrations rather than the AUC to assess exposure and to determine 
further dosing.14 Other studies reported similar findings demonstrat-
ing that the majority of institutions have not yet implemented the AUC- 
guided monitoring utilizing the Bayesian approach, as recommended 
by the guidelines.15,16 The most common barriers to implementation 
have mainly been the pharmacist and provider's unfamiliarity with 
AUC- based monitoring, training requirements, the unclear benefit of 
AUC- based monitoring, time allocation, and cost.15,16

Since the Bayesian theory is a modern concept in the practice of 
clinical pharmacy, the main objective of this review is to introduce 
the fundamentals of Bayesian estimation and its mathematical appli-
cation as it relates to vancomycin. Integration of Bayesian estimation 
with AUC therapeutic drug monitoring in clinical practice is available 
through various software tools. Therefore, we also aim to identify 
PK software programs that incorporate Bayesian estimation for van-
comycin dosing and to describe the PK models utilized in those soft-
ware programs for the adult population.

2  |  FUNDAMENTAL S OF BAYESIAN 
ANALYSIS

In the traditional probability (frequentist) approach, the parameter of 
interest is assumed to be unknown but fixed. For example, in flipping 
heads or tails, the probability of flipping onto one face is one- half. 
In contrast, the Bayesian method approaches the coin flip using all 
observed and unobserved parameters in a statistical model and gives 
each parameter a joint probability distribution, a probability that is 
dependent on several factors. The knowledge about the factors im-
pacting the model is further updated with newly observed data.2,17

Bayesian estimation involves three main elements: (1) prior dis-
tribution, (2) likelihood function, and (3) posterior inference.2,17 Each 
component is described below, along with its implication in PK cal-
culations and TDM. For the purposes of this article, the following 
definitions are used: observed or measured concentrations are those 
obtained from the patient receiving vancomycin; the predicted or 
estimated concentrations are those determined by utilizing the 
Bayesian or non- Bayesian methods for calculating the concentra-
tions; the prior PK model concentrations refer to those derived from 
the population PK models.

2.1  |  Prior distribution

The prior (termed a priori) refers to the knowledge known before 
experimentation and reflects the expected observation(s) for a 

specific population.2,17 For dose calculations, the Bayesian prior is 
the population- based probability distribution from available, and 
preferably published, population PK models. A prior distribution PK 
model that accurately represents the population through rich sam-
pling is an important component of Bayesian dosing.

2.2  |  Likelihood function

For drug dosing, the likelihood function is determined by observed 
evidence such as the patient's clearance, the volume of distribution, 
weight, and real- time measured levels. The function is used to deter-
mine how the observed data works in tandem with the prior distri-
bution to predict individual parameter estimates.2,17

2.3  |  Posterior inference

The posterior estimates the patient's optimal PK values and AUC by 
combining the prior and likelihood probabilities. Through balancing 
prior knowledge with observed data, the distribution is updated to 
the final dosing estimation.2,17 Available Bayesian dosing software 
programs are continuously personalized with patient details by mini-
mizing an objective function to reach the optimized posterior prob-
ability for individualized treatment.

3  |  BAYESIAN MATHEMATIC AL 
APPLIC ATION FOR VANCOMYCIN

To explain how vancomycin concentrations and doses are predicted 
using the Bayes theorem, we will review a simple one- compartment 
model. Using the following equation for first- order kinetics,18 the 
concentration can be extracted in an exponential function based on 
dose, volume of distribution (Vd), clearance (CL), and time (t):

According to this equation, the concentration depends on two 
PK parameters, the Vd and CL, which vary greatly between individ-
uals. The between- subject variability can be reduced by using pop-
ulation PK models which incorporate patient- specific clinical factors 
such as weight, height, and serum creatinine. However, there are 
other patient and non- patient parameters that may affect the indi-
vidual PK values, which are not incorporated in the population PK 
models but may be addressed through Bayesian modeling.19 Such 
parameters may include patient- related characteristics and random 
variance in one's observed concentrations.

The goal of Bayesian modeling is to enhance the precision of “in-
dividual” patient- specific PK parameters, compared to what popula-
tion PK models predict. In PK models, the relationship between the 
patient's creatinine clearance and the computed clearance shows 
significant variability, which can be addressed by Bayesian dosing.19 

Predicted Concentration(t)=
Dose

Vd
e−kt=

Dose

Vd
e−

CL

Vd
(t)
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To achieve this, an error function, which is the sum of the squared 
difference between the observed concentrations and Bayesian pre-
dicted concentrations, is determined. To do so, Bayesian estimation 
aims to maintain PK parameters that reflect the actually observed 
concentrations of the patient, an element that is not considered 
if using population PK models alone for predictions.19 In addition, 
while minimizing the error function, Bayes theorem considers outli-
ers and possible errors with patient observed concentrations, such 
as timing or lab errors. The Bayesian method also ensures that the 
fitted Bayesian predictions do not deviate greatly from what a popu-
lation PK model would predict. These two factors are accounted for 
in the following equation20:

In patients with suspected or documented serious infections due 
to methicillin- resistant Staphylococcus aureus, the guidelines for 
vancomycin dosing and monitoring recommend the use of AUC/MIC 
for vancomycin therapeutic monitoring, with a target of 400– 600, 
assuming a vancomycin MIC of 1 mg/L.8 In addition, the guidelines 
recommend estimating the AUC using first- order pharmacokinetic 
equations or Bayesian software programs, with the latter being 
the preferred approach. The main limitations of using the pharma-
cokinetic equations include: (1) It assumes steady- state after the 
3 doses, which may not always be the case; (2) It assumes a linear 
elimination by estimating the slope of the line connecting the two 
concentrations	over	24 h;	 (3)	 It	 requires	 two	measured	 concentra-
tions; (4) It does not account for concentration measurement errors 
related to the time of measurement or standard assay errors.2,17,19 In 
contrast, with Bayesian estimation these issues are addressed and, 
to a large degree, mitigated. Bayesian starts with a population PK 
assumption model and integrates a non- steady- state serum graph 
as a prior dataset. This eliminates the need for concentrations to be 
obtained at steady state and can rely on one concentration instead 
of two.2,17,19 However, an important aspect of the Bayesian- guided 
AUC monitoring is the quality of data that is used to build the prior, 
which, in the case of vancomycin, are the PK models. The vancomy-
cin guidelines recommend the use of PK models that are based on 
richly sampled vancomycin data as the prior, but the availability of 
such models is limited.21 In such cases, two levels rather than one are 
recommended to estimate the AUC using the Bayesian approach.8

In a large study by Neely et al,22 when a model based on richly 
sampled vancomycin samples was used as the Bayesian prior, trough- 
only data produced accurate and reliable AUC estimates that deviated 
from the actual AUC by an average of about 3%. However, when the 
PK model was based on limited samples, it did not perform well in pre-
dicting AUC from a single level. However, when two concentrations 
were used, the predictive performance of the model improved.

Aljutayli et al23 demonstrated similar findings in a study that 
aimed to compare the AUC derived from non- Bayesian first- order 

PK equations versus AUC estimated using the Bayesian approach. 
The accuracy and precision of the Bayesian and non- Bayesian ap-
proaches were similar when using two levels near or at steady state. 
A major advantage of the Bayesian estimation was demonstrated 
when using a single trough level at pre- steady state, as early as 
after the first dose; the AUC estimates were comparable to those 
obtained with two levels at steady state. Such advantage with the 
Bayesian approach would allow clinicians to optimize the vancomy-
cin therapeutic regimen of patients early on in treatment rather than 
wait until steady state. However, it should be noted that the findings 
of the study by Aljutayli et al23 was in the absence of a loading dose. 
Therefore, in the case of administering a loading dose, at which the 
therapeutic concentrations can be achieved faster, it is unclear if the 
Bayesian approach would continue to be favorable to AUC- based 
monitoring.

4  |  BAYESIAN PHARMACOKINETIC 
SOF T WARE PROGR AMS

In patients with suspected or documented serious infections due to 
methicillin- resistant Staphylococcus aureus, the guidelines for van-
comycin dosing and monitoring recommend Bayesian- derived AUC 
monitoring.8 This recommendation is based on the advantages of the 
Bayesian- based approach, compared to the non- Bayesian, that were 
discussed earlier in the paper. Given that estimating the AUC using 
the Bayesian approach is difficult to perform manually, the guide-
lines recommend the use of Bayesian pharmacokinetic software pro-
grams for Bayesian- based dosing and monitoring of vancomycin.8

Several pharmacokinetic software programs are available to 
calculate AUC calculations with Bayesian prediction and to com-
pute individually personalized AUC. To identify the available soft-
ware programs, we conducted a literature search using PubMed as 
well as a web search with the following search terms: Vancomycin, 
Bayesian, software programs, therapeutic drug monitoring, and pre-
cision dosing. In addition, we searched the references of relevant 
citations. The population PK models included in those software 
programs were reviewed. The search and assessment were primar-
ily focused on the adult population as an earlier publication by Han 
et al24 had already evaluated the software programs and PK models 
available for neonatal and pediatric patients.

Based on the search, we identified 12 software programs that 
utilize Bayesian estimation for vancomycin therapeutic monitor-
ing in adult patients, which included: Adult and Pediatric Kinetics, 
Best Dose, ClinCalc, DoseMeRx, ID- ODS, InsightRx, MwPharm++, 
NextDose, PrecisePK, TDMx, Tucuxi, and VancoCalc. We also iden-
tified Autokinetics, and TDM for R as Bayesian software programs 
for vancomycin but they were not included in this paper since we 
were unable to retrieve sufficient information about the programs. 
Both ClinCalc and VancoCalc are free online dosing software while 
all others require subscription fees.

The performance of the vancomycin Bayesian software programs 
depends largely on the PK models that are used as the prior in accurately 

n
∑
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representing the population as well as the patient- related co- variates 
that are incorporated in the analysis, such as age, body weight, and 
kidney function. The software programs utilize various PK vancomycin 
models, some of which are published PK models while others may be 
internally developed by the software company. Table 1 provides a sum-
mary of the published PK models included in the software programs 
that we identified for vancomycin therapeutic monitoring.13,25– 47

Though the vancomycin guidelines recommend Bayesian software 
programs that utilize PK models based on richly sampled vancomycin 
data as the prior, the availability of richly sampled models in the litera-
ture is limited. Most of the available models included a limited number 
of vancomycin samples that were routinely taken as part of therapeu-
tic drug monitoring (e.g., peak, trough, random levels) and included rel-
atively small number of patients, which raises the concern about the 
accuracy, precision and generalizability of the models.21 In addition, PK 
models may not be available for all patient populations encountered. 
To address this issue, most of the software programs allow institutions 
to incorporate local PK models or PK parameters that reflect their pa-
tient population and some may use the local data that is entered in the 
software program to further enhance the performance of its Bayesian 
estimations. Such features may not be clearly stated on the website 
of the software company but it would be important to address when 
deciding on which software program to purchase and/or use.

Most Bayesian software programs include more than one PK 
model, offering flexibility for clinical pharmacists to select the optimal 
model for their patients, based on the setting and patient character-
istics, as outlined in Table 1. Though most of the PK models have had 
some kind of validation, the most appropriate model remains difficult 
to determine due to the limitations of the available PK models and 
the limited studies that have compared the performance of the vari-
ous PK models. Broeker et al48 evaluated the predictive performance 
of 31 published population PK models when used in Bayesian- based 
estimation of AUC. Data from 292 patients from two hospitals were 
used to evaluate the predictive performance of the models to esti-
mate vancomycin concentrations and AUC by solely relying on patient 
characteristics (e.g., weight, renal function), as well when including 
vancomycin concentrations from the previous dosing using Bayesian- 
based approach. The model published by Goti et al32 had the highest 
predictive performance when used for vancomycin dosing and thera-
peutic drug monitoring before and after vancomycin concentrations 
are available and was therefore recommended for use in hospitalized 
patients. The Goti model is listed as one of the models that can be used 
in DoseMeRx, InsightRx, TDMx, and Tucuxi.

Due to the limitations, we discussed earlier for the available van-
comycin PK models, the choice of the most appropriate PK model may 
not be a straightforward step. For example, one may consider the Gotti 
model32 as appropriate for critically ill patients since it included patients 
in intensive care units or may consider the Thomson model44 based on 
a study that showed this model to be the most suitable for critically ill 
patients.49 However, when these two models were more closely evalu-
ated, they were found to have low precision in the critically ill.50

Another important element in Bayesian dosing is the co- variates 
that are included in the models and the software programs. While A
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age, weight, and renal function are commonly included co- variates in 
most PK models, additional co- variates are also seen, such as race, di-
abetes, critical illness, and furosemide administration. Furthermore, 
some software programs have included co- variates other than those 
that are included in the selected PK model to further enhance the 
Bayesian estimation.

5  |  CONCLUSIONS

Bayesian estimation has wide use in biological and medicinal sci-
ences. From the PK side, the Bayesian method aims to enhance the 
precision of vancomycin dosing and monitoring to support decision 
making in clinical pharmacy practice. Several Bayesian PK software 
programs are available and vary in their features and the PK models 
they utilize. It is important to choose those that utilize PK models 
reflective of the specific patient population. However, further re-
search is necessary to determine the most appropriate PK models 
and software programs based on the patient population and setting.
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