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Purpose: To assess image quality and uncertainty in organ-at-risk segmentation on cone
beam computed tomography (CBCT) enhanced by deep-learning convolutional neural
network (DCNN) for head and neck cancer.

Methods: An in-house DCNN was trained using forty post-operative head and neck
cancer patients with their planning CT and first-fraction CBCT images. Additional fifteen
patients with repeat simulation CT (rCT) and CBCT scan taken on the same day (oCBCT)
were used for validation and clinical utility assessment. Enhanced CBCT (eCBCT) images
were generated from the oCBCT using the in-house DCNN. Quantitative imaging quality
improvement was evaluated using HU accuracy, signal-to-noise-ratio (SNR), and
structural similarity index measure (SSIM). Organs-at-risk (OARs) were delineated on
o/eCBCT and compared with manual structures on the same day rCT. Contour accuracy
was assessed using dice similarity coefficient (DSC), Hausdorff distance (HD), and center
of mass (COM) displacement. Qualitative assessment of users’ confidence in manual
segmenting OARs was performed on both eCBCT and oCBCT by visual scoring.

Results: eCBCT organs-at-risk had significant improvement on mean pixel values, SNR
(p < 0.05), and SSIM (p < 0.05) compared to oCBCT images. Mean DSC of eCBCT-to-rCT
(0.83 ± 0.06) was higher than oCBCT-to-rCT (0.70 ± 0.13). Improvement was observed for
mean HD of eCBCT-to-rCT (0.42 ± 0.13 cm) vs. oCBCT-to-rCT (0.72 ± 0.25 cm). Mean
COM was less for eCBCT-to-rCT (0.28 ± 0.19 cm) comparing to oCBCT-to-rCT (0.44 ±
0.22 cm). Visual scores showed OAR segmentation was more accessible on eCBCT than
oCBCT images.

Conclusion: DCNN improved fast-scan low-dose CBCT in terms of the HU accuracy,
image contrast, and OAR delineation accuracy, presenting potential of eCBCT for adaptive
radiotherapy.
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INTRODUCTION

Head and neck cancer (HNC) is reported as the eighth leading
cause of cancer-related death worldwide (Parkin et al., 2005).
HNC can have heterogeneous responses to definitive
chemoradiotherapy regarding locoregional control and overall
survival (Yan et al., 2012). Anatomic changes due to tumor
response or weight loss may lead to under- or over-dosage to
target volumes or overdosage to organs at risk (OARs) during
radiotherapy. Changes in the plan dosimetry may result in
increased risk of toxicity and/or impact tumor control (Chen
et al., 2014; Castelli et al., 2015). In recent years, adaptive
radiation therapy (ART) has been proposed to account for
changes in tumor and normal organs to enhance the
therapeutic ratio (Castadot et al., 2010; Schwartz, 2012).
However, ART requires re-segmentation of OARs and
treatment target volumes on each re-planning CT image. This
process, if performed manually, is time-consuming with high
intra- and inter-observer segmentation variability (Brouwer et al.,
2012; Nelms et al., 2012; Lim and Leech, 2016).

Cone beam CT (CBCT) is the most common and readily
available onboard imaging system for online ART (Lu et al., 2006;
Woerner et al., 2017). Previous studies (Nijkamp et al., 2008;
Foroudi et al., 2011) have proved that CBCT is helpful in ART for
reducing the volume of irradiated healthy tissue and the dose
delivered to OAR. In offline ART, CBCTs are used for anatomic
change monitoring during the treatment. When needed, a new
planning CT is often acquired for plan adaptation to those organ
or tumor volume changes. An ideal image dataset for ART should
have accurate electron density for dose calculation and high soft
tissue contrast resolution for accurate and robust image
registrations and/or organ segmentation. For online ART,
daily images acquired for treatment alignment are used for
adapting the plan to anatomic and tumor changes prior to
daily treatment. Unfortunately, online adaptive CBCT is
hampered by poor image quality because of scatter artifact
and lack of soft-tissue contrast. Furthermore, CBCT image
values have poor correlation to electron density which requires
post-image processing for correction (van Zijtveld et al., 2007).
Poor image quality on CBCT also limits the ability to identify
organ boundaries, thus resulting in high inter-observer variability
in contour delineation (Lutgendorf-Caucig et al., 2011; Altorjai
et al., 2012). Deformable image registration for contours
propagation has shown high uncertainties due to poor CBCT
image quality (Pukala et al., 2013). Increasing scan settings might
improve the image quality and electron density accuracy for
CBCT images (Dyer et al., 2019), yet at a cost of increasing
imaging dose to patients, which might not be trivial when adding
all fractions together.

Recently, deep learning algorithms were proposed to improve
CBCT image quality using different network models (Jain, 2008;
Xie et al., 2012; Dong et al., 2016). Deep convolutional neural
networks (DCNN) can denoise images, reduce blurring, and
improve soft tissue contrast resolution (Jain, 2008; Dong et al.,
2016). Specifically for those fast-scan-low-dose CBCT scans, a
U-NET based DCNN was developed for enhancing image quality
for HNC patients, with improved HU accuracy, signal-to-noise

ratio, and small anatomical structure preservation (Yuan et al.,
2019). Such image quality enhancement should bring clinical
benefits specifically for ART, including improved CT-CBCT
image registration accuracy, thus improved contour
propagation accuracy and better visualization for identifying
organs at risk on CBCT images. The present study aimed to
evaluate these clinical benefits with the image quality
improvements in enhanced CBCT images.

MATERIALS AND METHODS

Patient Data
Forty post-operative HNC patients with a planning CT (pCT)
and the first fraction CBCT were retrospectively identified and
used for network training. A 2D U-Net shape architecture with
19-layers in 5 depths was specially optimized and trained using a
total of 2080 CT and CBCT slice. The network design and
architecture were described in the previous study (Yuan et al.,
2019). Additional 15 patients with pCT, and replanning CT (rCT)
3–4 weeks into treatment with the same-day CBCT in relation to
rCT were selected for DCNN validation. All CBCT scans were
acquired with a kV x-ray imaging system mounted on a Synergy®
linear accelerator (Elekta AB, Stockholm, Sweden). The CT
parameters were set as follows: 512 * 512 matrix size on the
axial plane, 1.183 mm * 1.183 mm pixel size, and 3.0 mm
thickness. CBCT parameters were set to 270 * 270 matrix size,
1.0 mm * 1.0 mm pixel size, and 3.0 mm thickness. The original
CBCT (oCBCT) images were fed into the trained DCNNmodel to
obtain enhanced image quality from CBCT images, namely
eCBCT. These images are synthetic CT images created based
on the CT-CBCT paired trained DCNN model.

Organs at Risk Selection
For all patients, OARs included: left/right parotid, left/right
submandibular gland (SMG), larynx, brainstem, and spinal
cord. The reference contours on both pCT and rCT for each
patient were manually delineated on the RayStation treatment
planning system (Raysearch Laboratory, Stockholm, Sweden) by
a radiation oncologist specialized in HNC and confirmed by a
senior radiation oncologist. Contours on rCT were directly
copied to the corresponding eCBCT and oCBCT through the
gray-values based rigid image registration frame as comparison
references. To eliminate the potential impact of registration
differences between eCBCT and oCBCT images, the eCBCT
was first registered to rCT and then the registration result of
eCBCT was copied to oCBCT. All organs for delineation were
completely covered in the field of CBCT view.

Image Quality Evaluation
The manually segmented OARs on rCT was considered the
ground truth for image comparison. Image quality was
quantified as the difference of mean pixel values among the
region of interests (ROIs) between rCT and CBCT (oCBCT,
eCBCT) images, denoted ROIm. Seven ROIs (left/right parotid,
left/right SMG, larynx, brainstem, spinal cord) were used for all
patients.
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The definition for signal-to-noise-ratio (SNR) is the ratio of
signal power to noise power. The structural similarity index
measure (SSIM) is the similarity between two images by
comprehensively evaluating different properties such as
luminance, contrast, and structure, which is one of human
visual system-based metrics. The SNR and the SSIM of CBCTs
were measured based on the seven ROIs used in the calculation of
spatial non-uniformity for each patient.

SNR � 10 · log10[ ∑ ∑ [ICT(x, y)]2∑ ∑ [ICT(x, y) − IeCBCT(x, y)]2]
In the formula, ICT represents the CT scan slice and IeCBCT

represents the eCBCT scan slice.

SSIM � (2μeCBCTμCT + C1)(2δeCBCT&CT + C2)(μ2eCBCT + μ2CT + C1)(δ2eCBCT + δ2CT + C2)
μ represents the mean value, δ2 represents the variance, the
parameters C1 � (k1Q)2 and C2 � (k2Q)2 are used to stabilize
the division with weak denominators, k1 � 0.01 and k2 � 0.02. Q
is the dynamic range of the pixel-values.

Contour Accuracy Assessment
For each patient, the CBCT pairs (oCBCT and eCBCT) and the
same day rCT were imported into RayStation treatment planning
system (TPS). All oCBCTs and eCBCTs were rigid registered
based on skull and spine bony anatomy to the pCTs.
Subsequently, a deformable image registration was performed
between pCT and CBCTs, for organ contour propagation from
pCTs to CBCTs image sets (both oCBCT and eCBCT)
(Weistrand and Svensson, 2015). The image similarity term
measured by correlation coefficient of the anatomically
constrained deformation algorithm (ANACONDA) was used

for CT/CBCT image comparison/registration. The whole body
structure was used to define the registration region. After contour
propagation, an experienced HNC radiation oncologist reviewed
contours on oCBCT and eCBCT images and made contour
modification if necessary. For the same patient, the type of
images was not disclosed to the user at the time of contouring
to avoid observer bias among different image modalities.

Accuracy of corrected propagated contours on oCBCT and
eCBCT images were evaluated against the reference contours on
rCTs (Whitfield et al., 2013). Quantitative assessment includes:
dice similarity coefficient (DSC), Hausdorff distance (HD), and
center of mass (COM) displacement. The DSC was adopted to
evaluate the overlap of volumes between two contours. And it is
calculated as follows:

DSC � 2 × Volume1∩  Volume2
Volume1 + Volume2

Volume 1 and volume 2 represent the volumes of selected
reference contours. A result of 1 means a complete overlap
and a result of 0 means no overlap. The HD is to measure the
max distance of all the nearest points between contours, define as:

HD � max{min d(a)
a ∈ A

,
min d(b)
b ∈ B

}
“a” and “b” are points in contours A and B, respectively, where
min
a∈A

d(a) is the minimum distance of all points on the contour A
to points on the contour B, so as the same definition used for
min
b∈B

d(b). While the center of mass displacement (COM) acts as a
metric of the overall shift between two contours. It is calculated
based on the following equation:

COM �

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)22

√

FIGURE 1 | Comparison of image quality for one representative patient. eCBCT has lower image noise and less streak artifacts in the soft tissue region than the
oCBCT. eCBCT also has higher image contrast than oCBCT for parotid and submandibular gland areas (see green box).
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x (1, 2), y (1, 2), z (1,2) are coordinates of the geometric centroid
of the contours in comparison (Kumarasiri et al., 2014).

To further evaluate the clinical accessibility of CBCT image
quality for manual segmentation, three HNC radiation
oncologists visually scored OAR structures on both eCBCT
and oCBCT images using a scale 1–3 according to the
following criteria: 1) the outline of the structure cannot be

identified; 2) the outline of the structure can be identified with
moderate difficulty; 3) the image quality is close to CT simulation
and the outline of the structure can be clearly identified.

Statistical Analysis
All Statistical analyses were performed in SPSS software version
24.0 (SPSS Inc., Chicago, IL, United States) and GraphPad

FIGURE 2 | Differences in HU, SNR and SSIM between eCBCT and oCBCT. Box plots on the left side showing the ROIm (HU) variations (A), signal-to-noise-ratio
(SNR) (B), structural similarity index measure (SSIM) (C) for parotids, submandibular glands, larynx, brainstem, spinal cord, respectively. The limits of each box represent
the 25th and 75th percentiles, the middle black line represents the median, and the upper and lower whiskers represents the highest and lowest values, respectively. The
bar graphs on the right side for (A)–(C) showing the overall ROIm (HU), SNR, SSIM variations for all organs, respectively.*Indicates that the p value < 0.05, and error
bars are standard deviations.
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version 6.0. p < 0.05 was considered statistically significant. The
Wilcoxon test was used to compare the image quality and the
contouring difference between eCBCT and oCBCT.

RESULTS

Figure 1 shows image quality as an example. eCBCT images had
lower noise and less streak artifacts in the soft tissue region than
oCBCT. eCBCT images also had higher image contrast than
oCBCT, particularly in the parotid and submandibular gland
regions. A quantitative analysis of image quality for OARs is
summarized in Figure 2. Seven ROIs were segmented on rCT
and the mean pixel values were calculated for each ROI on rCT,
oCBCT, and eCBCT images. When compared with rCT, the mean
difference in CT values of ROIm between rCT and oCBCT were 90
HU, while the difference between rCT and eCBCT reduced to 50
HU. This suggests that the CT values of OARs on eCBCT images
more closely match those on rCT than oCBCT. When oCBCT and
eCBCT SNR and SSIM were compared, eCBCT was significantly
better than oCBCT (p < 0.05). This suggests that the DCNN
method performs effectively in reducing image noise and
improving image quality in eCBCT images, more closely
resembling the corresponding rCT images. Metrics of image
quality (ROIm, SNR, and SSIM) were calculated and compared
for all OARs on rCT, oCBCT, and eCBCT images. We found that

eCBCT showed significant improvement compared to oCBCT for
all studied OARs (p < 0.05) (Figure 2).

Figure 3 shows OAR contours on transverse slices of rCT,
oCBCT, and eCBCT images for one representative patient. The
mean value of DSC, HD and COM difference for OARs on oCBCT
and eCBCT images are shown in Figure 4. The average DSC for
eCBCT-to-rCT and oCBCT-to-rCT was 0.83 ± 0.06, and 0.70 ±
0.13. The average HD for eCBCT-to-rCT was 0.42 ± 0.13 cm
and for oCBCT-to-rCT was 0.72 ± 0.25 cm. The mean COM for
eCBCT-to-rCT was 0.28 ± 0.19 cm and for oCBCT-to-rCT was
0.44± 0.22 cm eCBCTOARs had a higher DSC than oCBCT for all
the structures (p < 0.05), except for brainstem. Similarly, the results
of HD and COM all showed that OARs delineated on eCBCTwere
closer to rCT than oCBCT. Statistically, the difference between
OARs on eCBCT vs oCBCT for HD and COMwere significant for
most organs. Table 1 shows the reported visual scores for OAR
identification by three physicians. The scores are higher for all
OAR structures on eCBCT vs oCBCT images—particularly for
parotid structures. This implies that eCBCT improves ease of
manual segmentation compared with oCBCT.

DISCUSSION

The studied DCNN method quantitatively improved CBCT image
quality for head and neck patients. The impact of eCBCT image

FIGURE 3 | OARs delineated on transverse slices of oCBCT, eCBCT and rCT images for a representative HNC patient. OARs are outlined: brainstem (top, yellow
line), parotids [middle, yellow (right) and green (left) lines], spinal cord (middle, light blue line),submandibular glands [bottom, blue (right) and yellow (left) lines], larynx
(bottom, purple line).

Frontiers in Artificial Intelligence | www.frontiersin.org February 2021 | Volume 3 | Article 6143845

Chen et al. Clinical Enhancement in CBCT

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


quality improvements in a clinical context was evaluated. SNR and
SSIMof eCBCT both improved comparedwith those of oCBCT. An
overall improvement in image quality also helped users’ judgment
in identifying OARs and their subsequent contour correction on
eCBCT compared with those for oCBCTs.

The inaccurate CBCT Hounsfield units will subsequently
compromise dose calculation accuracy (Richter et al., 2008; Usui
et al., 2013). Several approaches have been proposed to deal with
the shortcomings of CBCT, such as anti-scatter grids and software-

based solutions (Letourneau et al., 2007; Stankovic et al., 2017).
According to Letourneau et al.’s study (Letourneau et al., 2007),
they quantified the magnitude of CBCT image artifacts following
the use of an anti-scatter grid and a nonlinear scatter correction. Then
the corrected CBCT images were used for online planning and the
dosimetric accuracy was satisfied with accepted RT standards. Veiga
et al. (2014) indicated that using CT to CBCT deformable image
registration provides the tools for calculating "dose of the day" without
the need to obtain a new CT. However, they are limited by the time

FIGURE 4 | Quantitative assessment of OARs for rCTs vs. oCBCT and eCBCT images. Box plot showing Dice similarity coefficient (DSC) variations (A), Center of
mass (COM) displacement (B), Hausdorff distance (HD) variations (C) for parotids, submandibular glands, larynx, brainstem, spinal cord, respectively. The limits of each
box represent the 25th and 75th percentiles, the middle black line represents the median, and the upper and lower whiskers represents the highest and lowest values,
respectively. *Indicates that the p value < 0.05.
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required to correct the image, and if there are large anatomical changes,
these methods will also face problems due to a large challenge to the
registration algorithms used in thesemethods. In our study, we present
a fast method for intensity correction for CBCT based on a
convolutional neural network. Previously, amongst those using
DCNN methods, Kida et al. (2018) showed improved CBCT image
quality and noise reduction for 20 prostate cancer patients using a
DCNN model. Hansen et al. (2018) presented a proof-of principle of
using deep learning techniques for pelvic CBCT correction and dose
calculation accuracy, which is superior to conventional methods of
mapping image value from the planning CT to CBCT (van Zijtveld
et al., 2007), or deforming the planning CT to match a daily CBCT for
the dose calculation (Veiga et al., 2015). Original CBCT often suffers
from severe scatter contaminations, resulted in significant image value
inaccuracy compared to that of CT. In our study, enhanced CBCT
images reduced scatter artifacts, improved soft tissue contrast, and
improved the HU image values within each OARs.

We compared OAR segmentation on eCBCTs and oCBCTs in
reference to rCT, which was acquired on the same day as the
CBCT images. Our results indicate that the eCBCTs consistently
outperforms oCBCTs in all metrics. The average DSC for parotid
glands in eCBCT was more than 0.80. This result is very close to
previous studies. According to Zhang et al. (2014), the average
DSC for parotid was 0.80 in compressed sensing based CBCT.
They also proved that compressed sensing based CBCT can help
to improve manual delineation of targets. Although DSC is widely
used as a performance metric, it has limitation that the structure
volume affects its values. Previous studies (Kumarasiri et al., 2014;
Zhang et al., 2018) reported that DSC shows a positive correlation
with structure volume, regardless how good the structure overlap
is. Therefore, COM and HD were also used as complementary
measures to better understand the quality of volume overlaps.

We chose to evaluate DCNN for CBCT image improvement in
HNC patients for practical consideration. Due to the complexity of
head and neck anatomic structures, and low soft tissue contrast, it is
challenging to perform a manual OAR segmentation on the original
CBCT. Many had attempted to create a simulated CT from
deforming the planning CT to the original CBCT. However, the
significant scatter artifacts on CBCT can affect the DIR accuracy. In
addition, it was reported (Hou et al., 2011) that deforming contours
fromCT to CBCT to evaluate anatomic changes or calculate adapted
dose during treatment is not reliable or requires significant manual
modification.With the current CBCT image quality overall, it seems
to be a common clinical practice to obtain propagated contours from
the original CT to CBCT after image registration (either rigid or
deformable) and correct for any obvious inaccuracy on CBCT. This
of course has never been an easy task to users due to the poor quality
of CBCT. Thus we included visual scoring as one of the evaluation
criteria in this study. Visual score results indicated that physicians
felt higher confidence in identifying the outline of those structures on
eCBCT, compared to those of oCBCT.

Manual contours defined by experienced physicians were used
as the comparison reference. Using manual contours as the “gold
standard” is clinically feasible, andmany researchers (Li et al., 2016;
Zhang et al., 2014) have used this method to evaluate the
delineation accuracy. A major limitation of the study is that
only a small number of patients’ scans were available for this
study. Future study should include more patient data and explore
other anatomical regions. Moreover, contouring accuracy of gross
tumor volume (GTV) on eCBCT was not studied, due to limited
image quality for target delineation on both oCBCT and eCBCT.
Therefore, it is worthy of noting that even though the present study
has shown significant improvement toward CBCT-based ART,
eCBCT image quality still has room for improvement, i.e. on the
aspects of target visualization. Yet this study is still valuable for
ART, in that eCBCThas improvedHUaccuracy and can serve for a
quick on-line dose verification. The dosimetric deviation can be a
trigger for ART, where a regular or high-dose CBCT can be
acquired for better image quality should ART is determined
necessary. This study presented that DCNN-processed low dose
fast scan CBCT images, i.e. eCBCT, have the potential for head and
neck adaptive radiotherapy.

CONCLUSION

We validated a DCNN model for improving low-dose-fast-scan
CBCT image quality, and enhanced CBCT has the potential to
improve delineation accuracy for head and neck patients. These
results support that enhanced CBCT has potential for adaptive
radiotherapy. In addition, the CBCT image quality may still have
room for improvement. Future study includes further improve
the performance of the DCNN method, using enhanced CBCT
for a direct dose calculation to validate the accuracy by comparing
with dose distribution calculated on planning CTs.
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TABLE 1 | Visual score (mean ± SD) for OAR segmentation ranked by three HNC physicians.

Parotid-R Parotid-L SMG-R SMG-L Cord Larynx Brainstem

eCBCT 2.3 ± 0.6 2.2 ± 0.5 1.9 ± 0.3 1.9 ± 0.4 1.8 ± 0.5 1.7 ± 0.5 1.3 ± 0.5
oCBCT 1.5 ± 0.3 1.2 ± 0.4 1.1 ± 0.2 1.1 ± 0.3 1.1 ± 0.2 1.3 ± 0.4 1.1 ± 0.3
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