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ABSTRACT

A single-stranded DNA (ssDNA)-binding protein
(SSB) that binds to specific upstream sequences of
alcohol oxidase (AOX1) promoter of the methy-
lotrophic yeast Pichia pastoris has been isolated
and identified as zeta crystallin (ZTA1). The cDNA
encoding P.pastoris ZTA1 (PpZTA1) was cloned into
an Escherichia coli expression vector, the recombi-
nant PpZTA1 was expressed and purified from E.coli
cell lysates. The DNA-binding properties of recom-
binant PpZTA1 are identical to those of the SSB
present in P.pastoris cell lysates. PpZTA1 binds to
ssDNA sequences .24 nt and its DNA-binding
activity is abolished by NADPH. This is the first re-
port on the characterization of DNA-binding proper-
ties of a yeast ZTA1.

INTRODUCTION

Single-stranded DNA (ssDNA)-binding proteins (SSBs) per-
form several essential functions in cells. For many species,
SSBs that bind to ssDNA with little or no sequence specificity
have been identified, and such proteins have been identified
in almost all living cells. SSBs can be divided into several
classes ranging from monomeric proteins of bacteriophages
such as gene-32 protein (1) to dimeric SSBs of filamentous
phages (2) to heterotrimeric nuclear SSBs in eukaryotes such
as replication protein A (3) and finally to homotetrameric
SSBs (4–6). Zeta Crystallin (ZTA1), an NADPH-dependent
quinone oxidoreductase, is a major eye lens protein in certain
vertebrates such as guinea pigs and camels (7,8) but not in
others such as humans, mice or cattle. It is a soluble enzyme
and is distinct frommembrane-bound quinone oxidoreductase,
the large complex in the respiratory chain (9). It is also distinct
from the mammalian quinone oxidoreductase called DT-
diaphorase, a flavin adenine dinucleotide-containing enzyme
that catalyses NAD(P)H-dependent two-electron reduction
of quinones (10). ZTA1 reduces naturally occurring quino-
nes such as 1,2-naphthoquinone and phenanthraquinone

and the physiological function of ZTA1 is speculated to
be detoxification or metabolism of a quinone (7,11,12).
Genes encoding ZTA1 homologues are widely distributed
from bacteria to higher plants and animals and the crystal
structure of Escherichia coli quinone oxidoreductase/ZTA1
is known (13). Among the mammalian zeta crystallins, the
bovine ZTA1 was shown to be capable of binding to single-
stranded as well as double-stranded Z-DNA which could be
competed with NADPH (14). Bovine ZTA1, also known as
RF-36, was shown to play pleiotropic roles in gene expres-
sion, growth and differentiation of bovine lens (15–19). A
well-characterized nucleotide-binding domain (Rossmann
fold) as well as a pyridine nucleotide-binding sequence
(GxxGxxG) or its variant are present in ZTA1 of all species
(12,13,20,21). Genes encoding ZTA1 are reported in the
genomes of Saccharomyces cerevisiae (http://db.
yeastgenome.org/cgibin/locus.pl?locus¼zta1) and Pichia
pastoris (http://ergo.integratedgenomics.com/ERGO/CGI/
prot.cgi?prot¼RPPA06848) but the proteins are not bio-
chemically characterized.

In the methylotrophic yeast P.pastoris, alcohol oxidase
(AOX) is the first enzyme involved in the methanol metabo-
lism. It is encoded by two methanol-inducible genes, AOX1
and AOX2, of which transcription of AOX1 gene is induced
to very high levels by methanol (22,23). Therefore, the
upstream region of AOX promoter between �735 and �1 is
widely used for heterologous expression of a number of for-
eign proteins in P.pastoris (http://faculty.kgi.edu/cregg/index.
htm). Recently, a protein referred to as methanol expression
regulator 1 (Mxr1p) binding to the upstream region of P.pas-
toris AOX1 promoter was identified (24). Mxr1p binds to the
AOX1 upstream region between �415 and �172 in vitro and
deletion of this region results in a significant decrease in
AOX1 gene expression in vivo. However, deletion of seq-
uences outside Mxr1p-binding region in the AOX1 promoter
also results in a decrease in AOX1 gene expression indicating
the involvement of multiple regulatory circuits in AOX1 gene
regulation (24). In this study, we employed a biochemical
approach to identify proteins interacting with specific
upstream sequences of AOX1 promoter. Such efforts have
led to the isolation of an SSB which was purified and identi-
fied as the P.pastoris homologue of ZTA1.
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MATERIALS AND METHODS

Growth of P.pastoris cells and preparation of whole cell
extracts

P.pastoris (GS115 strain) cells were grown overnight in YPD
medium (1% yeast extract, 2% peptone, 2% glucose) at 30�C
with vigorous shaking. Stationary phase cells were cen-
trifuged once at 2000 g, washed with water and resuspended
in buffer A (20 mM Tris–HCl, pH 8.0, 10 mM MgCl2, 7 mM
b-mercaptoethanol, 10% glycerol, 1 mM phenylmethylsul-
fonyl flouride and 1 mg/ml each of pepstatin, aprotinin and
leupeptin) containing 50 mM NaCl. An equal volume of
acid-washed glass beads (0.45 mm) suspended in ice-cold
buffer A were added and cells were lysed at 4�C by vigorous
intermittent vortexing for 30 min or using a bead beater
(Biospec Products, USA). The whole cell extracts obtained
after centrifugation at 10 000 g for 20 min at 4�C were stored
at �80�C.

Heparin agarose and DEAE cellulose chromatography

The whole cell extracts were loaded onto heparin agarose col-
umn (20 mg protein/ml resin) equilibrated with buffer A, the
unbound protein was collected and stored separately as the
flow through fraction. The column was washed with
2 column volumes of buffer A and the bound protein was
eluted sequentially with buffer A containing 200 mM (E1),
300 mM (E2) and 400 mM NaCl (E3). These eluate fractions
were dialysed against buffer A at 4�C and stored at �80�C in
aliquots. The E1 fraction was loaded onto a DEAE cellulose
column equilibrated with buffer A, the unbound protein
fraction (flow through) was collected and stored at �80�C.
The column was washed with buffer A, the bound proteins
were eluted in buffer A containing 200 mM NaCl and stored
at �80�C in aliquots after dialysis against buffer A.

Synthesis of oligonucleotides and preparation of
radiolabelled DNA probes

Oligonucleotides listed in Table 1 were purchased from
Sigma-Aldrich Chemicals, Bangalore, India. High-specific
activity 32P-radiolabeled probes were prepared by random
prime labelling and lower specific activity probes were pre-
pared by 50 end labelling. The former (288*, 229* and
174*) were generated by first annealing complementary
oligonucleotides (288 and 288c1, 229 and 229c1, 174 and
174 c1) by heating at 75�C for 15 min in presence of
10 mM Tris–HCl, pH 7.5, and 100 mM NaCl followed by
slow cooling to room temperature. These partially double-
stranded DNA (dsDNA) molecules were then radiolabelled
in presence of dATP, dGTP, dTTP, [a-32P]dCTP and klenow
fragment of DNA polymerase I at 37�C for 20 min
(Figure 1A). End-labelled DNA probes were generated by
annealing complementary oligonucleotides (288 and 288c,
229 and 229c, 174 and 174c) and then incubating these
double-stranded oligonucleotides with T4 polynucleotide
kinase and [g-32P]ATP at 37�C for 45 min (Figure 2A).
After radiolabelling, unincorporated radionucleotides were
removed by sephadex G-50 chromatography.

Electrophoretic mobility shift assay (EMSA)

Protein preparations (5–10 mg) obtained from heparin agarose
and DEAE cellulose chromatography were incubated with
radiolabelled oligonucleotides (40 000 CPM) in a 30 ml reac-
tion containing 50 mM Tris–HCl, pH 8.0, 50 mM NaCl, 1
mM DTT, 0.05% NP-40, 6% glycerol and 100 ng of poly(dI–
dC) for 30 min at 4�C. The reaction mixtures were subjected
to electrophoresis at 4�C on 5% non-denaturing polyacry-
lamide gel in a buffer containing 7 mM Tris–HCl (pH 7.4),
3 mM boric acid and 1 mM EDTA. The gels were dried
and autoradiographed. In some experiments, P.pastoris cell
extract was replaced by recombinant ZTA1. For the calcula-
tion of dissociation constant, EMSA was carried out with
15 ng of recombinant ZTA1 and increasing amounts of
end-labelled ssDNA probes. The amount of oligonucleotide
bound by protein was calculated as the difference between the
known total input concentration of oligonucleotide and the
amount detected in the position for free oligonucleotide on
the mobility shift gels. Kd values were determined by quanti-
tative analysis using a Scatchard plot.

Production and purification of recombinant P.pastoris
ZTA1 (PpZTA1)

PpZTA1 cDNA was isolated by RT–PCR from P.pastoris
cellular RNA using the primer pair 50ggatccatgactacaattccc
30 and 50aagctttcattgagggatctc 30 and cloned into BamHI
and HindIII sites of pRSETA vector (Invitrogen, USA)
using standard molecular biology protocols (25). The restric-
tion sites in the primers are underlined. The recombinant
plasmid was transformed into E.coli BL21(DE3)pLysS cells
and expression of the recombinant protein was induced by
the addition of 0.5 mM isopropyl-b-D-thiogalactoside. Three
hours after induction, cells were harvested and resuspended in
a buffer B (50 mM Tris–HCl, pH 8.0, 250 mM NaCl, 10%

Table 1. Oligonucleotides spanning the near upstream region of P.pastoris

AOX1 promoter

(�288 to �230)
288 50-ACCCGCTTTTTGGATGATTATGCATTGTC-

TCCACATTGTATGCTTCCAAGATTCTGGTGG-30

288c 30-TGGGCGAAAAACCTACTAATACGTAACAG-
AGGTGTAAGATACGAAGGTTCTAAGACCACC-50

288C1a 30-ACGAAGGTTCTAAGACCACC-50

(�229 to �175)
229 50-GAATACTGCTGATAGCCTAACGTTCATG-

ATCAAAATTTAACTGTTCTAACCCCT-30

229c 30-CTTATGACGACTATCGGTAAGCAAGAT-
CTAGTTTTAAATTGACAAGATTGGGGA-50

229c1a 30-TAAATTGACAAGATTGGGGA-50

(�174 to �115)
174 50-ACTTGACAGCAATATATAAACAGAAGGAA-

GCTGCCCTGTCTTAAACCTTTTTTTTTATCA-30

174c 30-TGAACTGTCGTTATATATTTGTCTTCCTTC-
GACGGGACAGAATTTGGAAAAAAAAATAGT-50

174c1a 30-AATTTGGAAAAAAAAATAGT-50

The AOX1 promoter sequences are numbered relative to initiator codon. The
putative TATA box between �162 and �155 is indicated in boldface. The
major transcription start site at �115 is underlined. The upstream region cov-
ered by the oligonucleotides is indicated in parentheses.
aThese short oligonucleotides were used for random prime labelling.
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glycerol and 10 mM b-mercaptoethanol) containing 10 mM
imidazole. Cells were lysed by sonication and the lysate
was centrifuged at 10 000 g at 4�C for 30 min. The clear
supernatant was loaded onto a Ni2+-NTA agarose column
(Qiagen, USA). The column was washed with buffer B
containing 50 mM imidazole and the Histidine-tagged
PpZTA1 protein was eluted with buffer B containing
150 mM imidazole. The protein was dialysed against buffer
A and stored in aliquots at �80�C after ascertaining its purity
by SDS–PAGE.

RESULTS

Identification of an SSB in P.pastoris cell extracts

The upstream region of AOX1 promoter between �735 and
�1 has been extensively used for methanol-inducible expres-
sion of a number of proteins. This region was shown to har-
bour multiple regulatory elements including the binding site
for the recently identified transcription factor Mxr1p (24).
In this study, we first focused our attention on the sequences
in the near upstream region of AOX1 promoter between
�288 and the major transcription start site (0–115) of
AOX1 promoter. Oligonucletodies spanning this region were
designed (Table 1) and their ability to interact with proteins
present in whole cell extracts of P.pastoris cells grown in
YPD was examined by EMSA. Since EMSA with whole
cell extracts did not yield significant results, we enriched
DNA-binding proteins by heparin agarose chromatography

and also generated high-specific activity 32P-labelled DNA
probes (Materials and Methods and Figure 1A). The results
presented in Figure 1B indicate that 229* and 288* DNA
probes formed protein–DNA complexes (E1, E2 and E3)
while no significant super shift was observed with probe
174*. In this study, we focussed our attention on complex I
generated by the E1 fraction (Figure 1B).

In the next set of experiments, we generated 50 end-labelled
DNA probes using polynucleotide kinase and [g-32P]ATP
(Figure 2A) and examined their ability to form complex I
by EMSA. Surprisingly, complex I was generated by ssDNA
probes (Figure 2B, lanes 1, 2, 4, 5 and 8) except 174c
(Figure 2B, lane 7) but not by dsDNA probes (Figure 2B,
lanes 3, 6 and 9). These results indicate that complex I is
formed by an SSB protein present in the E1 fraction.

Purification and characterization of SSB from
P.pastoris cell extracts

To purify the SSB present in P.pastoris cell extract, the E1
fraction was fractionated on a DEAE-Sepharose column,
the flow through and 200 mM NaCl eluate fractions were
analysed by SDS–PAGE (Figure 3A) and EMSA (Figure 3B).
The SSB activity was detected in the flow through frac-
tion (Figure 3B, lane 1) but not in the eluate (Figure 3B,
lane 2). UV cross-linking of DEAE flow through fraction
and 32P-labelled 229 DNA followed by SDS–PAGE and
autoradiography lead to the identification of a radioactive
band of �35–40 kDa molecular weight (data not shown).

Figure 1. Identification of proteins binding to radiolabelled upstream sequences of P.pastoris AOX1 promoter by EMSA. (A) Strategy for generating 32P-labelled
probes (288*, 229*, 174*) using random prime labelling by incorporation of radioactive nucleotide (asterix) into the newly synthesized DNA (lower case) by
Klenow polymerase using annealed partially dsDNA molecules (upper case) as templates. (B) EMSA of flow through (FT) and eluate (E1, E2, E3) fractions (5
mg) obtained by heparin agarose chromatography. Protein–DNA complexes I and II generated by FT, E1 and E2 fractions are indicated.
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Since a protein of similar molecular weight was enriched in
the DEAE flow through fraction (indicated by an arrow in
Figure 3A), this protein band was excised from the gel, sub-
jected to trypsin digestion and the amino acid sequence of

one of its tryptic peptides was determined. BLASTP search
of this amino acid sequence (AYLSPSTFAQYTK) against
the S.cerevisiae genome database revealed it to be homo-
logous to a 37 kDa protein annotated as YBR046c/zeta
crystallin (ZTA1) (http://db.yeastgenome.org/cgibin/locus.
pl?locus=zta1). BLASTP search of ScZTA1 amino acid
sequence with the P.pastoris genome database (http://ergo.
integratedgenomics.com) led to the identification of a protein
(ID # RPPA06848) annotated as quinone oxidoreductase.
Multiple sequence alignment of amino acid sequences of
ZTA1 from different species indicated that the NADPH-
binding motif (AXXGXXG) present in the ZTA1 isolated
from E.coli and mammalian cells is conserved in the yeast
ZTA1 as well (Figure 4A). Yeast ZTA1 had �55% and
46–49% homology to E.coli and mammalian ZTA1, respec-
tively (Figure 4B). Since the molecular weight as well as
the amino acid sequence of the protein sequenced in
this study was similar to that encoded by S.cerevisiae
YBR046c/ZTA1 and identical to that encoded by P.pastoris
RPPA06848 genes, we conclude that the protein sequenced
in this study is the P.pastoris homologue of E.coli and mam-
malian ZTA1 (PpZTA1).

Characterization of SSB activity of recombinant
PpZTA1

To examine whether PpZTA1 is an SSB, oligonucleotide pri-
mers were designed based on the PpZTA1 nucleotide
sequence and the full-length PpZTA1 cDNA was isolated

Figure 3. Partial purification of P.pastoris SSB. (A) Analysis of DEAE flow
through (lane 1) and eluate (lane 2) fractions by SDS–PAGE followed by
Coomassie blue staining of the gel. Lane 3, protein molecular weight markers
(kDa). A protein band of �37 kDa which was excised and sequenced is
indicated by an arrow. (B) EMSA of DEAE flow though (lane 1) and eluate
(lane 2) fractions using 50 end-labelled 229 probe. Lane 3, free probe.

Figure 2. Detection of SSB activity in P.pastoris cell extract. (A) Generation of 50 end-labelled ss and dsDNA probes by 50 end labelling. (B) EMSA of Heparin
agarose-E1 fraction using 50 end-labelled ssDNA (lanes 1, 2, 4, 5, 7 and 8) and dsDNA (lanes 3, 6 and 9) probes.
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from P.pastoris cellular RNA by RT–PCR. The cDNA was
cloned into an E.coli expression vector (Figure 5A) and the
recombinant PpZTA1 was purified as a histidine-tagged
protein using Ni2+-affinity chromatography (Figure 5B).
The ability of recombinant PpZTA1 to bind ssDNA was
examined by EMSA. The results indicate that the SSB prop-
erties of recombinant PpZTA1 are indistinguishable from
those of the SSB purified from P.pastoris cell extracts (com-
pare Figures 5C and 2). To gain further insights into the
DNA-binding properties of PpZTA1, we chose 50 end-
labelled 288c and 229c ssDNA probes and annealed them
to a number of short complementary oligonucleotides to gen-
erate partial duplex DNA molecules for use in EMSA as
depicted in Figure 6A. The results indicate that the DNA-
binding activity of ZTA1 is not abolished when the 30 end
(Figure 6B, lanes 2 and 2a) or a region near the 30 end of
ssDNA molecule (Figure 6B, lanes 5 and 5a, and
Figure 6C, v) is double-stranded. However, PpZTA1 failed

to bind partial duplex DNA with double-stranded regions in
the middle (Figure 6B, lanes 3 and 3a), 50 end (Figure 6B,
lanes 4 and 4a) or near the 50 end (Figure 6B, lanes 6 and
6a). The results of EMSA are summarized in Figure 6C. Dis-
sociation constants (Kd) for the interaction between recombi-
nant PpZTA1 and three different oligonucleotides were
calculated using scatchard plots and the results indicate that
PpZTA1 binds 174 (Kd ¼ 1 · 10�10M) and 229 (Kd ¼
2 · 10�10M) ssDNA probes with higher affinity than
288 ssDNA (Kd ¼ 9 · 10�10M). To identify the minimal
ssDNA region required PpZTA1 binding, short oligonu-
cleotides of 20–32 nt in length were designed (Figure 7A)
and used in EMSA. The results presented in Figure 7B indi-
cate that PpZTA1 binds to ssDNA of 28 and 32 nt in length
but not to shorter oligonucleotides. Since E.coli and mamma-
lian ZTA1 are NADPH quinone oxidoreductases capable of
binding to NADPH through the AXXGXXG nucleotide-
binding motif, we examined the effect of NADPH on the

Figure 4. Comparison of amino acid sequences of ZTA1 from different species. (A) Multiple sequence alignment of yeast, E.coli and mammalian ZTA1. The
amino acid sequence of the P.pastoris trypic peptide is underlined. The conserved nucleotide-binding motif is boxed. (B) Percent identity and homology
(parantheses) among various ZTA1.
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SSB activity of PpZTA1. The results presented in Figure 8
indicate that SSB activity of recombinant PpZTA1
(Figure 8) is abolished in presence of NADPH but not
NADH. Finally, gel filtration chromatography indicates that
PpZTA1 exists as a dimer in solution since it co-elutes with
albumin (Figure 9).

DISCUSSION

Our efforts to identify proteins interacting with the upstream
sequences of P.pastoris AOX1 promoter have led to the isola-
tion of a SSB. This SSB could be identified in P.pastoris cell
extracts primarily because of our strategy of radiolabell-
ing oligonucleotides by method A as well as enrichment of
DNA-binding proteins by heparin agarose chromatography.
Radiolabelling of oligonucleotides by method A (Figure 1A)
resulted in the generation of full-length as well as partially
double-stranded radiolabelled DNA molecules and the latter
are responsible for binding to the SSB enriched in the E1
and flow through fractions (Figure 1B). The results presented
in Figure 2 clearly demonstrate that complex I is indeed
generated by an SSB present in the E1 fraction. Partial
purification and sequencing of a �37 kDa protein enriched
in the DEAE flow through fraction led to the identification

of PpZTA1. Studies carried out with recombinant PpZTA1
clearly establish its identity as an SSB. Although gene
sequences encoding ZTA1 have been reported for a number
of organisms (http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?db=protein&cmd=search&term=zeta?crystallin), thus
far only the bovine ZTA1 was shown to have SSB activity
(14,18,19). Our studies indicate that PpZTA1 is similar to
bovine ZTA1 since it also binds ssDNA. In this study, we
focused our attention on the DNA-binding activity of PpZTA1
using oligonucletodies of defined length and sequence since
such studies have not been carried out thus far. We have
also calculated the Kd values which are comparable with
those for other well-characterized DNA-binding proteins (26).
Of the six different single-stranded oligonucleotides exam-
ined in this study, ZTA1 binds to five of them (Figure 5,
lanes 1, 2, 4, 5 and 7) but does not bind to 174c oligonu-
cleotide (Figure 5, lane 8), which is complementary to 174.
This is a very interesting observation since it demonstrates
for the first time that the binding of ZTA1 to ssDNA may
be sequence-specific. However, the results presented in
Figure 6 does not completely support this notion. To address
these issues, we are now carrying out DNA-binding studies
using chimeric oligonucleotides in which specific regions in
174 ssDNA are replaced by corresponding regions in 174c
ssDNA. We are also examining the ability of ZTA1 to bind
to homopolymers such as poly(dA), poly(dT), poly(dC) and
poly(dG). Such studies aimed at understanding the molecular
mechanism of ZTA1 DNA binding will be published in a
separate study.

Earlier studies on analysis of SSB of bovine ZTA1 were
carried out using denatured or high molecular weight bovine
lens DNA and Z-DNA (14,18,19). For the first time, we report
the purification of ZTA1 based on its ability to bind to ssDNA
sequences of defined length. Further, the SSB activity of
PpZTA1 is abolished in presence of NADPH as observed in
case of bovine ZTA1 (14). Among the mammalian ZTA1
proteins studied thus far, bovine but not guinea pig ZTA1
binds ssDNA and the theoretical pI of bovine and guinea
pig ZTA1 calculated based on their amino acid sequences
is 8.61 and 7.81, respectively (14). It was suggested that
the increased positive charge may contribute to the high
affinity of bovine ZTA1 for ssDNA (14). The theoretical pI
of PpZTA1 calculated based on the amino acid sequence is
8.93 which is similar to that of bovine ZTA1 rather than gui-
nea pig ZTA1. Thus, there appears to be a good correlation
between the net positive charge of ZTA1 of different species
and the SSB activity.

The redox potential of cells vary during the metabolism of
different carbon sources and proteins which act as redox sen-
sors as well as regulators of gene expression may play an
important role in cellular homeostasis. A number of pyridine
nucleotide-binding proteins possessing nucleotide-binding
domains also bind nucleic acids indicating a dual role for
these metabolic enzymes in enzyme catalysis as well as
gene regulation (27). It is tempting to speculate that ZTA1
may have such dual functions wherein, it not only performs
catalytic function in the cytoplasm but also under conditions
of reduced cytosolic NADPH levels, translocates to nucleus,
bind to single-stranded regions in the promoters of genes
such as AOX1 and functions as a regulator of gene
expression. ZTA1 is localized in cytoplasm as well as nucleus

Figure 5. Production and purification of recombinant PpZTA1. (A) Strategy
for cloning cDNA encoding PpZTA1 into E.coli expression vector. (B)
Visualization of purified PpZTA1 (lane 2) in a Coomassie blue-stained SDS–
polyacrylamide gel. Lane M, protein molecular weight markers (kDa). (C)
EMSA of recombinant PpZTA1 using radiolabelled ssDNA (lanes 1, 2, 4, 5, 7
and 8) and dsDNA (lanes 3, 6 and 9) DNA probes.
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in S.cerevisiae cells (http://yeastgfp.ucsf.edu/getOrf.php?orf
=YBR046C) and preliminary studies from our laboratory
indicate that PpZTA1 is also localized in both these compart-
ments (B. V. Kranthi and P. N. Rangarajan, unpublished
data). It should be noted that deletion of ZTA1 results in a

viable phenotype (http://db.yeastgenome.org/cgibin/pheno
type/phenotype.pl?dbid=S000000250) in S.cerevisiae indicat-
ing that the function of ZTA1 may be evident only under spe-
cific growth conditions. Identification of these growth
conditions as well as characterization of the DNA sequences
to which ZTA1 binds in vivo may pave way for the under-
standing of the physiological functions of ZTA1.

Bovine ZTA1 was originally identified as a DNA-binding
protein called regulatory factor 36 (RF-36) involved in the
homeotic switch concerned with adult lens gene expression

Figure 7. Identification of minimal DNA-binding site of PpZTA1.
Oligonucleotides of varying length were designed based on the nucleotide
sequence of 288c (A) and their ability to supershift recombinant PpZTA1 was
examined by EMSA (B). The nucleotide sequence of 288c20 within the 288c
oligonucleotide is underlined.

Figure 8. Effect of NADPH and NADH on the SSB activity of recombinant
PpZTA1. 50 End-labelled 229 probe was used.

Figure 6. Analysis of SSB properties of PpZTA1. (A) Nucleotide sequence of ssDNA and partial duplex DNA probes used in EMSA. (B) EMSA of PpZTA1
using various radiolabelled probes. (C) Schematic representation of results of EMSA. Double-stranded regions are indicated by shaded boxes.
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(28). RF-36 was shown to bind to alpha-crystallin A-2 gene
promoter region between the TATA box and transcription ini-
tiation site which possesses a Z-DNA conformation (16,17).
Addition of bovine ZTA1 (RF-36) to in vitro transcription
reactions was shown to result in 6- to 10-fold increase in tran-
scription of alpha-crystallin A-2 gene or purified bovine lens
chromatin (15,16). It is speculated that mammalian ZTA1
may act as a transcriptional enhancer in the outer lens cortex
by binding to Z-DNA sequences in the lens crystallin gene
promoters (19). In the light of these observations, a role for
PpZTA1 in AOX gene regulation cannot be ruled out. Finally,
ZTA1 is induced by various oxidative stress treatments in
Arabidopsis thaliana and it confers tolerance toward oxida-
tive stress to yeast when introduced into the yeast, suggesting
that the enzyme is involved in an antioxidative mechanism in
plants (29). Whether PpZTA1 has a similar role during the
oxidative stress induced by methanol and oleate metabolism
in P.pastoris remains to be examined.
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