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Evaluation of multiple prediction models:
A novel view on model selection and
performance assessment

Max Westphal and Werner Brannath

Abstract

Model selection and performance assessment for prediction models are important tasks in machine learning, e.g. for the

development of medical diagnosis or prognosis rules based on complex data. A common approach is to select the best

model via cross-validation and to evaluate this final model on an independent dataset. In this work, we propose to instead

evaluate several models simultaneously. These may result from varied hyperparameters or completely different learning

algorithms. Our main goal is to increase the probability to correctly identify a model that performs sufficiently well. In this

case, adjusting for multiplicity is necessary in the evaluation stage to avoid an inflation of the family wise error rate. We

apply the so-called maxT-approach which is based on the joint distribution of test statistics and suitable to (approximately)

control the family-wise error rate for a wide variety of performance measures. We conclude that evaluating only a single

final model is suboptimal. Instead, several promising models should be evaluated simultaneously, e.g. all models within one

standard error of the best validation model. This strategy has proven to increase the probability to correctly identify a good

model as well as the final model performance in extensive simulation studies.

Keywords

Artificial intelligence, diagnosis, diagnostic accuracy, machine learning, model evaluation, multiple testing, prognosis

1 Introduction

Accurate and reliable diagnosis and prognosis are of utmost importance in clinical practice. New technologies
rapidly add a vast variety of data sources that may be used as potential predictors. More often than not, these data
are complex and high dimensional. As a result, many efforts are made to provide trustworthy diagnostic tools in
the form of prediction models obtained via machine learning techniques.1–4 A recent example is the application of
deep learning for tumor classification based on imaging mass spectrometry data.5 A major challenge in this process
is the selection of a good model and a reliable assessment of its predictive performance. In this work, we address
both questions with particular focus on increasing statistical power for model evaluation while avoiding
overoptimistic claims regarding the final model performance.

In the following, we consider the problem of predicting a target variable Y (dependent variable) from a set of
features X (independent variables). In supervised machine learning, this is achieved by learning a deterministic
function f̂ which provides a prediction ŷ ¼ f̂ ðxÞ based on the observed features x. In practice, this is accomplished
by a learning algorithm A which learns f̂ from the training data T , that is to say f̂ ¼ AðT Þ. We assume that the nT
observations are sampled i.i.d. from the unknown joint probability distribution D ¼ DðX,YÞ from X and Y or
T � D

nT for short. A typical example is medical diagnosis, e.g. prediction if a patient has a certain disease (Y¼ 1)
or not (Y¼ 0) based on a collection of clinical measurements X 2 RP, where P 2 N denotes the number of features.
In contrast to this (binary) classification task, the case of Y 2 R is referred to as a regression problem. We refer to
standard references for a throughout introduction to fundamental machine learning concepts.6,7

Once a prediction model f̂ has been learned from T , we consider it as a given, deterministic function. An
important task is then the evaluation of its predictive performance. The (generalization) performance of f̂ is
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defined as # ¼ #sð f̂ Þ ¼ ED½sð f̂ ðXÞ,YÞ�, where sðŷ, yÞ is a deterministic, real-valued function which measures the
similarity of prediction ŷ ¼ f̂ ðxÞ and truth y. In some cases, one rather defines a dissimilarity measure (loss) d ðŷ, yÞ
and accordingly the (generalization) error #dð f̂ Þ. Typical examples for a similarity and dissimilarity measure are
sðŷ, yÞ ¼ 11ðŷ ¼ yÞ, defining classification accuracy, and d ðŷ, yÞ ¼ ðŷ� yÞ2, defining the mean squared error (MSE)
for a regression problem. In the following, we only refer to # as performance. The question on how to choose s for
a specific application is not covered in this work and we refer to the existing literature for a comparison of different
(dis)similarity measures.8–12

A natural estimator for # is the empirical performance #̂ ¼ #̂ð f̂,DÞ ¼ 1
nD

PnD
i¼1 sð f̂ ðxiÞ, yiÞ on a dataset D � D

nD .
It is well known that estimation of # on the training data T may lead to overly optimistic (upward biased)
performance estimates, if the learning algorithm overfits the training data. The usual recommendation is
therefore to estimate # on validation data V � D

nv that is independent of T .
In practice, usually not only a single but rather multiple learning algorithms Am, m 2 M ¼ f1, . . . ,Mg, are

considered. The algorithms Am may be completely different, e.g. a logistic regression versus a tree-based model, or
just differ regarding the choice of a hyperparameter like the strength of a penalty term. Two important aspects of
machine learning are how to select a model fm� and estimate its performance #m� . The naive approach of estimating
#m ¼ #ðf̂mÞ for all models, on the same dataset V and then choosing the empirically best model
m� ¼ argmaxm2M#̂mðVÞ has the severe downside that the estimate #̂m� ðVÞ for #m� is usually biased upward. This
is often referred to as selection-induced bias which is particularly important in case statistical inference regarding
the unknown parameter #m� is the ultimate goal, e.g. deciding if #m� 4#0 for a performance threshold #0.
Statistical inference for model performance in form of test decisions or interval estimates may not always be
needed in machine learning applications, but it certainly is in regulated environments like evaluation of diagnostic
or prognostic devices and procedures in medical research.13,14

The predominant recommendation in the literature concerning model selection and evaluation is to sample
learning data L � D

nL and evaluation data E � D
nE and perform the following steps6,8,15–17

Learning: The learning data L is split into training set T and validation set V. The random splitting L ¼ T [_ V may be
repeated multiple times leading to techniques like (repeated) K-fold-cross-validation and different bootstrap versions,

cf.18 and references therein. In this case, the resulting estimates #̂ðAmðT Þ,VÞ are averaged to estimate the expected
performance of each algorithms Am. The algorithm m� which yields the highest estimated (expected) performance is
selected and used to learn the final model f̂m� ¼ Am� ðLÞ on the whole learning data L.

Evaluation: The performance of the final model f̂m� ¼ Am� ðLÞ is assessed on the independent evaluation set E. It is
frequently emphasized that only a single model shall be evaluated on E to enable an unbiased performance estimation.
A statistical test ’ : E ! f0, 1g may be used to decide if the null hypothesis H0 : #m� � #0 can be rejected in favor of

alternative H1 : #m� 4#0.

In the machine learning literature, E is commonly referred to as the test set. Unfortunately, E is also sometimes
referred to as validation data. To avoid confusion, we will only use the term evaluation data for E and validation
data for V � L in the following.

The default learning-evaluation-strategy described above has several advantages. Mainly, it limits the
danger of overfitting to the training data and it allows to obtain an unbiased estimate of #m� , the performance of
the final model f̂m� . Furthermore, it is usually not difficult to derive a statistical test for the (one-sided) null hypothesis
Hm�

0 : #m� � #0. The threshold #0 needs to be defined prior to the evaluation study and should reflect the minimal
required performance for the application at hand. For diagnostic devices in medical applications, 1� #0 expresses
the sacrifice in accuracy one is willing to make compared to the reference standard due to other advantages of the
new procedure (e.g. lower invasiveness or costs). It is also possible to estimate #0 ¼ #ðf̂0Þ of an established
comparator f̂0 on the same evaluation data for a direct comparison. For simplicity, we will however assume that
#0 is known in the remainder of the work. Requiring that the null hypothesis Hm�

0 : #m� � #0 needs to be rejected
before implementing a new diagnostic tool in clinical practice expresses that we would rather err on the side of
caution. That is to say, we would rather not implement a good model (type 2 error) than falsely implementing a bad
model (type 1 error). This is in particular true in critical applications where life threatening decisions may be based on
the diagnostic results. This approach is established in particular in phase 4 or phase 3 diagnostic accuracy studies,
depending on the taxonomy.9,19 Furthermore, several works highlight that (external) evaluation studies for the final
model are important but rarely conducted in practice.13,14,20,21

However, it might also be disadvantageous to select only one model for final evaluation, namely if the selected
model m� is far worse than one of its competitors m 2 M. This is a relevant threat in practice when validation
performance estimates are highly variable, e.g. in case of few validation observations. Another obstacle might be
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non-representative learning samples, i.e. when the data used for model development strongly deviates from the
target population in key characteristics. In our experience, this is not unlikely in medical research when the
learning data is collected retrospectively from a wide variety of data sources. For instance, the learning data
might differ strongly from the target population regarding relevant features like age, sex or comorbidities. The
prospective evaluation study, however, is conducted in a cohort fulfilling rigorous inclusion criteria leading to
charasteristics closer to the target population. Performance estimates during learning and evaluation phase might
hence differ substantially. A similar effect might originate from ongoing advances of sample preparation
procedures and biomarker assays over time, i.e. from L (past) to E (future). Such developments are certainly
positive in general, but may nonetheless lower the chances to correctly identify a truly good model with regards to
samples from the target distribution D based on the non-representative learning data.

As a result, we may thus be in danger to conduct correct inference for an underperforming model. A potential
remedy is to evaluate multiple modelsM� �M on the evaluation data with the goal to increase the probability to
correctly identify at least one model m� 2 M� which is able to outperform the benchmark #0. This problem can be
stated as a multiple test problem specified by the following system of null hypotheses

H� ¼ fHm�

0 : #m� � #0, m
� 2 M

�
g ð1Þ

Inference regarding H� may be conducted via a multiple test, i.e. a mapping u : E ! f0, 1gM
�

whereby ’m� ¼ 1
implies that hypothesis Hm�

0 is rejected. u is expected to control the family wise error rate (FWER), a
generalization of the type 1 error for multiple hypothesis tests. In addition, we consider the disjunctive power
as an important characteristic of u, which is defined as the probability to correctly reject at least one false null
hypothesis. When rejecting a single null hypothesis from H�, we also reject the global null hypothesis

G� ¼
\

m�2M�
Hm�

0 ð2Þ

Multiple hypothesis testing is not commonly employed in model evaluation practice although different
approaches have been showcased and compared in this context.22 This might stem from the fact that the
omnipresent recommendation to completely seperate model selection and evaluation results in a valid and easy-
to-use strategy to avoid an overoptimistic performance assessment. To avoid the beforementioned downsides
associated with this strategy when the uncertainty regarding model selection is high, we will investigate a
particular multiple test in this work. The so-called maxT-approach is based on the joint distribution of the test
statistics and assumes (approximate) normality. Technical details are provided in the next section. We note that, even
if the validation ranking is correct, we might benefit from evaluating multiple models in terms of statistical power.

In this context it should also be noted that in the usual framework, the properties of the multiple test u for H�,
i.e. FWER control and maximization of power, are assessed conditional on the previously conducted model
selection. Formally, we assume that this selection is based on a selection rule which is a mapping
r : L�M� �M. That is to say, a subset of models M� is selected for evaluation based on the learning data,
in particular the validation estimates ð#̂mðVÞÞm2M. In order to link model selection and performance assessment, we
propose to extend a given selection rule r and a multiple test u forH� to a multiple test w ¼ ð mÞm2M for the initial
hypothesis system

H ¼ fHm
0 : #m � #0, m 2 Mg ð3Þ

by setting

 mðEÞ ¼
0 if m =2M�,

’mðEÞ if m 2 M�

�
ð4Þ

This means that we evaluate all models m =2M� negatively, i.e. do not reject the according null hypothesis. With
definition (4) we formalize what is implicitly done in practice, namely to ‘spend’ all of the significance level � on the
evaluation of the selected model(s) and neglect all other models. We perceive the global null

G ¼
\
m2M

Hm
0 ð5Þ
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associated with H as much more relevant in practice than G� associated to H�. That is, it is more natural to
ask if any of the candidate models considered in the first place (m 2 M) outperforms the performance
benchmark #0 rather than asking the same question restricted to the few (or single) models m� 2 M� which
were chosen to be evaluated. This approach enables us to assess the quality of model selection and evaluation
together.

Our main research questions can be stated as follows: (1) In which situations is it beneficial to evaluate more
than one model? (2) How do different model selection rules perform relative to each other regarding FWER
control, statistical power and estimation bias? The remainder of this work is structured as follows: In the second
section, a few important concepts from multiple testing theory are defined. In addition, we show that our approach
is applicable for a wide variety of performance measures, namely if the empirical performance estimate (sample
average) is used. In the third section, we will present the results from numerical experiments we conducted to
compare several heuristic model selection rules in conjunction with the maxT-approach with regards to FWER,
power and estimation bias. In the fourth section, our evaluation strategy is applied to two real datasets. Finally, in
the last section, we will discuss our findings and propose possible extensions to our work.

2 Statistical model and theoretical aspects

We will assume the following scenario: Given a prediction task Ŷ ¼ f̂ ðXÞ, a similarity measure s and learning
data L, the goal is to provide empirical evidence that at least one of the candidate models f̂m ¼ AmðLÞ, m 2 M,
can outperform the benchmark #0. The evaluation is conducted via a selection rule r, an evaluation sample
E � D

nE and a multiple test u. We are interested in properties of the multiple test w ¼ ðr,uÞ introduced via
equation (4) in terms FWER and power and the bias of the performance estimate(s). As the traditional
assumption L � D

nL may be violated in practice, we will also consider the case were L � ~D
nL

is sampled from
an altered distribution ~D. Our perception of the learning-evaluation process is depicted in Figure 1, whereby some
aspects will be derived in the following. Note that the learning phase may be iterative which is indicated by the
double arrow between training and validation. In contrast, the hypotheses and hence the prediction models in
the evaluation phase cannot be changed after the data has been observed when the goal is strict control of the type
1 error.

2.1 Multiple testing in model evaluation

In the following we introduce some important definitions, mainly adopted from Dickhaus.23 The system of null
hypothesis H� is defined in equation (1). A (non-randomized) multiple test for H� is a mapping u : E ! f0, 1gM

�

.
For m� 2 M� the null hypothesis Hm�

0 gets rejected if ’m� ¼ 1. The family-wise error rate of u is defined as

FWERq ðuÞ ¼ P#
[

m�2M�0

f’m� ¼ 1g

0@ 1A ð6Þ

whereM�0 �M
� is defined as the set of indexes m� such that Hm�

0 is true which depends on the true parameter
vector q . This probability to make any false positive claim shall be bounded by the significance level � 2 ð0, 1Þ.
Formally, ’ is said to control the FWER strongly if

8q 2 ? : FWERq ðuÞ � � ð7Þ

whereby ? is the parameter space. This is a very important property, as without FWER control or another way of
limiting false positive test decision any multiple test is essentially pointless. Regarding type 2 errors (false negative
test decisions), the disjunctive (or 1-minimal) power is defined as

Powerq ðuÞ ¼ Pq

[
m�2M�1

f’m� ¼ 1g

0@ 1A ð8Þ

wherebyM�1 ¼M
�
nM

�
0. A usual way to choose between different multiple tests for the same problem is to seek

maximum power given control of the FWER at a specific significance level, e.g. � ¼ 0:05. There are other power
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concepts in multiple testing, aiming at the simultaneous rejection of several false hypotheses, which are not
considered in this work.24

2.2 The maxT-approach

We will consider one particular multiple test for H� in this work, namely the so-called maxT-approach which is
also called projection method in the literature.23,25

Let q̂ ¼ ð#̂m� Þm�2M� be the vector of estimates for the unknown parameter q ¼ ð#m� Þm�2M� . By n ¼ nE we

denote the evaluation set size. Let furthermore bD ¼ bDn be an estimate of the covariance matrix D ¼ covðq̂ Þ

with anbDn!
P

D where an is a nondecreasing sequence. In addition, we assume that q̂ ¼ q̂ n follows

Figure 1. Schematic representation of the machine learning and evaluation process.
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asymptotically a multivariate normal distribution, i.e. a1=2n ðq̂ n � q Þ!
D
NM� ð0,DÞ. We condense these two

assumptions to

q̂ _�NM� ðq ,b�Þ ð9Þ

to describe the approximate distribution of q̂ . We define the test statistics Tm� ¼ ð#̂m� � #0Þ=bseð#̂m� Þ or
T ¼ bD�1=2ðq̂ � q 0Þ in vectorized form, whereby bD ¼ diagðbDÞ. Assumption (9) entails

q ¼ q 0 ) T _�NM� ð0, bRÞ ð10Þ

where bR ¼ bD�1=2b�bD�1=2 is the estimated correlation matrix of q̂ . From this, the approximate distribution of the
maximum test statistic can be derived as

Pðmax
m�
ðTm� Þ � tÞ � �M� ðt, bRÞ ¼ Z t

�1

. . .

Z t

�1

�M� ðx, bRÞdx ð11Þ

where �M� ð	 , bRÞ is the density function of the M�-dimensional multivariate normal distribution with mean 0 and
covariance matrix bR. From this we can calculate the simultaneous critical value c� 2 R by solving
�M� ðc�, bRÞ ¼ 1� � numerically for c� ¼ ðc�, . . . , c�Þ. This defines a multiple test for H� by rejecting Hm� if and
only if tm� 4 c�. Calibrating c� under the global null G

� yields weak control of the FWER. In this case, even strong
FWER-control is warranted because the subset pivotality condition (SPC) is met.23 (p.48). One might also
construct approximate simultaneous (e.g. lower) confidence intervals with confidence level 1� � via

CI1�� ¼ 

m�2M�

#̂m��c� 	 bseð#̂m� Þ, 1h �
ð12Þ

The maxT-approach is a simultaneous test procedure (STP), meaning that all test statistics are compared to the
same critical value. Taking into account the correlation between the performance estimates results in an increased
rejection rate compared to simpler procedures when the correlations are positive. For instance, the critical value c�
is less than or equal to �ðð1� �Þ1=M

�

Þ which corresponds to a Šidák correction with equality in case the test
statistics are uncorrelated23 (p.55).

One might ask the question, in which situations it is more efficient to test multiple hypothesis instead of just one.
By efficiency we refer to distjunctive power as defined in equation (8). If q and D ¼ Dn ¼ D1=2

n RD1=2
n are assumed

to be known, Powerq can be calculated explicitly. For q 2 ? n G� the power is given as one minus the probability
that all observed test statistics are smaller than c�, i.e.

Powerq ðumaxTÞ ¼ 1��M� c� �D�1=2n ðq � q 0Þ, R
� �

ð13Þ

In case not all null hypotheses are false, the quantities q , Dn and R in equation (13) need to be restricted to the
index set of false null hypothesis. This may be used for an approximation of Power# when assuming certain q , Dn

and evaluation sample size n ¼ nE . Conversely, the sample size n to achieve a specific power may also be calculated.
However, since equation (13) ignores the fact that D needs to be estimated, simulations may yield a more precise
power estimate.

2.3 Performance estimation

We will now restrict our attention to binary classification, i.e. Y 2 f0, 1g, as this case is most important for
medical diagnosis and consider overall accuracy as the performance measure defined through
# ¼ ED½11ð f̂ ðXÞ ¼ YÞ� ¼ Pð f̂ ðXÞ ¼ YÞ. From the observed evaluation data E ¼ fðxi, yiÞgi¼1,...,n the actual relevant
similarity matrix

S ¼ 11ðf̂m� ðxiÞ ¼ yiÞ
� �

i¼1,...,n
m�2M�

ð14Þ

is derived by applying all selected models f̂m� to the observed feature data xi. Note that this step is deterministic,
given that all prediction rules f̂m� are deterministic.
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The true performances #m� can be estimated as the sample proportions of correct predictions

#̂m� ¼
1
n

Pn
i¼1 11ðf̂m� ðxiÞ ¼ yiÞ, the column means of S. A consistent estimate for the covariance matrix D of q is

given by bD ¼ bDn, the sample covariance matrix of S (divided by n). The entries of bD can be written as

�̂m�k� ¼
�̂m�k� � #̂m� #̂k�

n
ð15Þ

where �̂m�k� ¼
1
n

Pn
i¼1 11ðf̂m� ðxiÞ ¼ f̂k� ðxiÞ ¼ yiÞ is the estimated proportion of common correct predictions of model

m� and k�. Due to the multivariate central limit theorem,26 the joint distribution of q̂ is asymptotically
multivariate normal

n1=2ðbq n � q Þ!
D

NM� ð0,DÞ, n!1 ð16Þ

This result can be generalized to arbitrary similarity functions s as long as the estimator #̂ ¼ 1
n

Pn
i¼1 sð f̂ ðxiÞ, yiÞ is

employed. This justifies assumption (9) and hence the use of the maxT-approach when the empirical performance
estimator is used.

2.4 Model selection based on the evaluation data

Since we are no longer limited to evaluate only one model on E, the final model selection now needs to be
conducted based on the evaluation data. When using the maxT-approach, the most obvious choice is

m�� ¼ argmaxm�2M�Tm� . For classification accuracy, this is equivalent to choosing m�� ¼ argmaxm� #̂m� because

#̂� t ¼ ð#̂� #0Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#̂ð1� #̂Þ=n

q
is a strictly increasing function. Of course, (non-)rejection of Hm��

0 is equivalent to

(non-)rejection of the global null hypothesis G�.

We expect that conducting the final model selection based on the evaluation data will again introduce an
upward bias of the estimate #̂m�� . One elegant way to correct for this bias is to calculate the lower bound of a
one-sided simultaneous 50% confidence interval as an estimator for #m�� . More explicitly, for every selected model
we define a corrected point estimate for #m� as

#̂cm� ¼ #̂m� � c0:5bseð#̂m� Þ, m� 2 M� ð17Þ

where c0:5 satisfies �M� ðc0:5, bRÞ ¼ 0:5. Under the assumption of normality and a known covariance matrix we have

Pð#̂cm�� 4#m�� Þ � Pð9m
� 2 M

� : #̂cm� 4#m� Þ ¼ 0:5 ð18Þ

as the event E1 ¼ f#̂
c
m�� 4#m�� g implies E2 ¼ f9m

� 2 M
� : #̂cm� 4#m� g. The estimator #̂cm�� is

therefore (approximately) median-conservative. Equality in equation (18), which corresponds to median-
unbiasedness of #̂cm�� , follows in the case when all selected models have the same true performance as in this
case E1¼E2.

2.5 Transition from H� to H

As stated before, in the context of model selection and evaluation we perceive the hypothesis system
H ¼ fHm

0 : #m � #0, m 2 Mg as much more relevant than H� ¼ fHm�

0 : #m� � #0, m
� 2 M

�
g. We thus define a

multiple test w for H by combining a selection rule r : L�M� �M with a multiple test u for H� to a
multiple test w ¼ ðr,uÞ for H as given in equation (4). Due to this construction, w controls the FWER strongly
forH if u strongly controls the FWER forH� for allM� �M. This is given (approximately) in our framework as
pointed out in the statistical model section.

In summary, in the presented framework, we obtain corrected point estimates (17), a simultaneous confidence
region (12) and test decisions  m� ¼ ’m� , m

� 2 M
�, for the selected models after having conducted the evaluation

phase. Additionally, for all models m 2 M nM� which have not been selected we conclude  m ¼ 0, i.e. not to
reject the null hypothesis Hm

0 , compare Figure 1.
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3 Simulation study: model evaluation in practice

The purpose of our numerical experiments is to simulate the complete learning-evaluation process as illustrated in
Figure 1 and compare different evaluation strategies which differ with regards to the employed selection rules
based on the validation data. The simulation was conducted with R (version 3.4.4) and the batchtools package
(version 0.9.8).27,28 The maxT-approach was implemented with help of the mvtnorm package which allows the
calculation of the critical value as indicated in equation (11).29 The R code used to conduct the simulation study
can be accessed via a public GitHub repository.a In the following, essential characteristics of the simulations are
described.

3.1 Setup

First, the joint distribution DðX,YÞ is specified by means of the general product rule via DYjX and DX. For all
simulations, we consider P¼ 50 features with joint multivariate normal distribution, i.e. DX ¼ N Pð0,DXð�ÞÞ where
DXð�Þ is a equicorrelation matrix with correlation � 2 ½�1, 1�. The conditional distribution DYjX of Y given the
features X is specified by the logit model

PbðY ¼ 1 j X ¼ xÞ ¼
1

1þ expð��0 � bTxÞ
ð19Þ

defined by the coefficient vector b 2 RP. The intercept b0 is set to zero in all simulations which corresponds to a
prevalence of 50% for the event Y¼ 1 at the mean of the covariates. We mainly considered two different coefficient
models for the entries bp of the P-by-1 vector b:

(1) a sparse model with only Pact ¼ 55 50 ¼ P nonzero coefficients �p ¼ 11ð p � PactÞ 	 �1, p ¼ 1, . . . ,P,
(2) a dense model where �p ¼ ð�1Þ

p�1�2=p, p ¼ 1, . . . ,P.

In our numerical experiments, we considered different �1, �2, q and nL to adjust the difficulty of the prediction
task. In total, 16 ¼ 24 different scenarios were implemented, defined by �1 2 f2, 4g, �2 2 f3, 6g, � 2 f0, 0:5g and
nL 2 f200, 400g.

As a variation, the learning data L was also sampled from an altered data distribution eDðX,YÞ for the sparse
coefficient model. Here, we assumed that eDX ¼ DX but eDYjX defined through eb may differ from DYjX defined
through b. For example, we consider the case where some of the active coefficients from b are multiplied by a
factor c 2 ð0,1Þ ineb. This way we emulated the relevant scenario that covariate effects are damped or amplified in
the learning data compared to the target population.

For the learning phase, we considered penalized logistic regression models from the elastic net (EN) class with
varying L1 and L2 penalties.30,31 Training and cross-validation was carried out using the glmnet package (version
2.0–13), which allowed for fast computations.31 The EN algorithm maximizes the penalized conditional log-
likelihood

ð�̂0,bbÞ ¼ AENðT , 	,�Þ

¼ argmax
ð�0, bÞ

1

nT

XnT
i¼1

yið�0 þ bTxiÞ � logð1þ expð�0 þ bTxiÞÞ
� 	

� 	P�ðbÞ

" #

where � 2 ½0, 1�, 	 2 ½0,1Þ are tuning parameters and the penalty term P�ðbÞ is given by

P�ðbÞ ¼ ð1� �Þ
1

2
jjbjj22 þ �jjbjj1 ¼

XP
p¼1

1

2
ð1� �Þ�2p þ �j�pj


 �
Predictions ŷ 2 f0, 1g are obtained by thresholding the predicted probability 1=ð1þ expð�ð�̂0 þbbTxÞÞÞ for the

event Y¼ 1 at 0.5.
For every learning data set L, we train M¼ 100 models by considering � ¼ 0, 0:25, 0:5, 0:75, 1 and for each �,

20 equidistant values for k in the interval ½	minð�Þ, 	maxð�Þ�. Hereby kmin is close to zero and kmax, for whichbb ¼ 0

depends on the training data. Details are provided in the glmnet documentation.32 Expected performance estimates
ð#̂mðVÞÞm2M for all algorithms Am are obtained via 10-fold cross-validation.
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In the following, different heuristic selection rules based on the (cross-)validation performance estimates are
defined.

(1) default: evaluate only the best validation model
(2) within 1 SE: evaluate all models with validation performance within one standard error of the best validation

model
(3) best 10%: evaluate the top 10% of models based on the validation ranking
(4) no selection: evaluate all initial candidate models

Besides these four rules, we also consider the oracle selection rule defined as the (truly) best model. This rule can
of course not be employed in practice but may serve as a benchmark. As the final simulation step, evaluation data
E � D

nE is generated and the selected models are evaluated with the maxT-approach. We considered different
evaluation sample sizes nE 2 f100, 200, 400, 800g.

All results given in the following are averaged over all of Nsim¼ 5000 performed simulation runs per scenario

ðeD, nL,D, nEÞ. For estimated proportions (FWER, Power) this implies a standard error of at mostffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25=5000
p

� 0:0071. We performed a paired comparison, meaning that evaluation strategies w ¼ ðr,uÞ are
applied to the same 5000 combinations of learning and evaluation datasets per scenario. For all trained
prediction models, the true model performance #m is ‘calculated’ on a large population data set P � D

nP of
size nP ¼ 100, 000 with negligible numerical error.

3.2 Results

3.2.1 Prediction tasks

For nL ¼ 200, Figure 2 visualizes the empirical distribution (over the 5000 simulations) of the optimal performance
#opt ¼ maxm2M#m and the ‘median’ performance #med, defined as the empirical median of f#mgm2M. Additionally,
the accuracy of the true (data generating) model is indicated. This can be seen as an illustration of how well the
prediction tasks can be learned by the considered elastic net algorithm class for each of the eight learning tasks.

As expected, performances are increasing in the effect sizes controlled by �1 and �2. In the following, we will
only present our findings for scenario A ð�1 ¼ 4, � ¼ 0Þ and B ð�2 ¼ 6, � ¼ 0Þ in detail as highlighted in Figure 2.
For nL ¼ 200 the mean optimal performances (over all simulations) are 92.4% and 88.0% for scenario A and B,
respectively. Besides a slightly increased mean optimal performance (A: 93.4%, B: 89.6%) when training the
models on nL ¼ 400 instead of 200 observations, model selection quality should also be superior in this case,
since more validation data is available. Learning a good model for task A is easier with the considered class of
algorithms in the sense that the optimal candidate model performance is on average closer to the theoretically
achievable performance (A: 94.0%, B: 92.9%).

Note that only the within 1 SE rule selects a varying number M� of models while M� is constant for all other
selection rules tested. The overall median M� over all scenarios is 8 with an interquartile range (IQR) of 9. For

Figure 2. Illustration of the optimal and median performance of the M¼ 100 candidate models over Nsim¼ 5000 simulation runs for

nL ¼ 200 stratified by prediction task. The diamond symbols indicate the performance of the data generating model.
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nL ¼ 200, the median M� was 9 (IQR ¼ 7) for scenario A and 6 (IQR ¼ 5) for scenario B. As M� is on average
close to 10, the results of the within 1 SE and the best 10% rules are quite similar in our simulation study.
Consequently, we will only show the results for the within 1 SE rule to streamline the presentation.

3.2.2 Rejection rate

Figure 3 compares the different evaluation strategies regarding their overall rejection rate, i.e. the probability of a
successful evaluation study. Here, the black vertical line represents the scenario #0 ¼ #opt ¼ maxm2M#m, the
maximum value of #0 such that all null hypothesis Hm

0 , m 2 M, are still true. As pointed out above, the mean
#opt is 92.4% for scenario A and 88.0% for scenario B. The value 
 ¼ #opt � #0 describes if the global null G is true
(
 � 0) or false (
4 0).

As described earlier we will select m�� ¼ argmaxm�2M�Tm� as our final model based on the evaluation data. We
consider �ð
Þ ¼ Pð’m�� ¼ 1 j 
Þ, the rejection rate for Hm��

0 : #m�� � #0, as most important. In practice, the
evaluation study is declared successful if and only if ’m�� ¼ 1. For 
 � 0, a rejection of Hm��

0 is always wrong
and � coincides with the FWER. The situation 
4 0 is more complex: a rejection of Hm��

0 is not automatically
correct as we might have #m�� � #0 5#m� for another m� 6¼ m��. We found in separate analyses that the
probability for a false rejection is maximal for 
¼ 0 and monotone decreasing in j
j, as expected. Altogether
�ð
Þ should be increasing in 
 while being bounded by � ¼ 0:05 for 
 � 0.

It can be observed that the within 1 SE selection rule uniformly outperforms the default strategy where only the
best model from the evaluation stage is selected. The gain in terms of rejection rate is up to 10% in specific
situations (depending on n ¼ nE and 
). On the other hand, when the candidate model set is not reduced at all
based on the validation data (no selection), the rejection rate is commonly lower compared to the default approach.
We confirmed through separate analyses that the increased rejection rate is not inflated by false-positive test
decisions but rather represents a real power increase.

For lower samples sizes nE5 200, we observe an increased FWER up to 10% for 
¼ 0. Note that the default
approach can also not control the type 1 error exactly, but the problem is less severe here.

Figure 3. Rejection rate for the null hypothesis of the final model m�� stratified by scenario (top: A, bottom: B) and evaluation

sample size (from left to right: nE ¼ 100, 200, 400).
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3.2.3 Estimation bias

The price to pay for the increased power is the upward bias of the point estimate of the final model #̂m�� . This can
be seen in the upper part of Figure 4, which shows the distribution of the relative deviation ð#̂m�� � #m�� Þ=#m��

stratified by selection method for scenario B. This finding is not surprising, as one of the reasons to evaluate only
one model (default approach) was to obtain an unbiased performance estimate for that model. Besides the regular
point estimate #̂m�� we also consider the alternative point estimate #̂cm�� defined in equation (17). The lower part of
Figure 4 shows that the upward bias vanishes indeed due to this correction. On the other hand, when more (all)
models are evaluated, we now rather observe a downward bias of the corrected estimate, which is also in line with
our expectations as the corrected estimator is median-conservative.

3.2.4 Final model performance

We also investigate the true performance of the final chosen model relative to the optimal performance
#opt ¼ maxm2M#m, which is depicted for scenario B in Figure 5. Here the relative performance #m��=#opt is
shown stratified for selection rule, learning sample size nL and evaluation sample size n ¼ nE . As stated above,
the true performance in our simulations is calculated as the sample average over a large population dataset with
100,000 observations.

We first note that all selection rules work well in the sense that the relative final performance is close to 100% on
average. Interestingly, the expected final model performance when multiple models are evaluated is slightly higher.
When more than a single model is evaluated, the expected model performance increases in the number of
evaluation observations. This is plausible because the final model is selected based on these observations. When
all models are evaluated (no selection rule), the performance is lower compared to the within 1 SE rule.

3.2.5 Learning from non-representative data

Finally, we consider the case when the learning data L � eDnL is sampled from an altered distribution eD compared
to the target distribution D for scenario A (�1 ¼ 4, � ¼ 0). Figure 6 shows the rejection rate under the global null
(Figure 6(a): 
 ¼ #opt � #0 ¼ 0) and under the alternative (Figure 6(b): 
 ¼ 0:05) where the likelihood to obtain an
non-representative sample is measured as KLðD,eDÞ, the Kullback-Leibler (KL) divergence from eD toD.26 (p.329).
We observe that all evaluation strategies perform worse the larger KLðD,eDÞ becomes. Just as in the optimal case
D ¼ eD ð, KLðD,eDÞ ¼ 0Þ the within 1 SE rule clearly outperforms the default approach as well as the no selection

Figure 4. Relative deviation of the naive (top) and corrected (bottom) point estimate compared to the true value of the final model

performance for scenario B and different evaluation sample sizes nE . The diamond symbols indicate the sample means.
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Figure 6. Properties of selection rules when learning and evaluation population differ (measured via KL divergence from learning

distributioneD to evaluation distribution D) for prediction task A. (a) Rejection rate under global null (
 ¼ #opt � #0 ¼ 0). (b) Rejection

rate under alternative (
 ¼ 0:05). (c) Relative final model performance #m��=#opt.

Figure 5. Distribution of final model performance #m�� relative to the optimal performance #opt ¼ maxm2M#m for learning task B.

Results are stratified by evaluation sample size n ¼ nE (columns) and learning sample size nL (rows).
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strategy. Figure 6(c) shows the distribution of the final model performance. For all cases, except the one with the
highest disturbance, the within 1 SE approach yields the highest expected performance #m��.

3.2.6 Sensitivity analyses

The results for all other simulated prediction tasks (Figure 2) were similar to the presented results. In particular,
the default approach was always outperformed by the within 1 SE selection rule with regards to rejection rate and
final model performance. In addition, we repeated our analysis with 5-fold CV instead of 10-fold CV as a basis for
the model selection in the learning stage (Nsim¼ 2000). Despite the slightly higher bias of #̂ðVÞ in this case, results
were very similar to the results obtained when employing 10-fold CV.

3.2.7 Different learning algorithms

In our main simulation, all prediction models arise from the same learning algorithm, the elastic net, by variation
of two hyperparameters. Another case of practical interest involves the comparison of several different learning
algorithms on the same task. To mimic this case, we implemented the following additional simulation.

Instead of 100 elastic net models, 20 models were trained from each of the following five learning algorithms:
elastic net, random forests, decision trees, support vector machines and extreme gradient boosting. We used
existing implementations of these algorithms from the caret package (and according dependencies), by setting
the training method to glmnet, ranger, rpartCost, svmLinearWeights2 and xgbTree, respectively.33 Additional
details are provided in the web-based help for the caret package.b

These algorithms depend on two to seven hyperparameters which were sampled randomly according to the
default caret implementation in this simulation. We limited this analysis to learning tasks A and B (compare
Figure 2) due to the increased computational demand for training algorithms other than the elastic net. In
addition, we used a simple hold-out validation rather than cross-validation to further reduce the computatinal
burden of this study. Apart from these changes, the setup was exactly as described earlier for the main simulation.
Overall, this simulation includes 5000 instances of the learning-evaluation pipeline per scenario ðD, nL, nEÞ.

In summary, the results concerning this sensitivity analysis qualitatively match the main results. The power
when employing the within 1 SE rule is strictly greater than for the default approach. This is true for all sample
sizes and both learning tasks resulting in graphs highly similar to Figure 3. On the other hand, the type 1 error rate
is also slightly increased. In contrast to the main simulation, the type 1 error was controlled at the nominal level �
in all cases for both selection rules, even for the smaller evaluation sample sizes. Concerning estimation bias and
the expected final model performance, the results were again very similar to those reported in Figures 4 and 5,
respectively.

4 Application to real data

Finally, we illustrate our simultaneous model evaluation strategy on real data. For this purpose, we use the Breast
Cancer Wisconsin (Diagnostic) Data Setc and the Cardiotocography Data Setd which are both freely accessible at
the UCI Machine Learning Repository.34 Details regarding these datasets are given by Street et al.35 and Ayres-de
Campos et al.,36 respectively. Both our analyses are briefly described in the following and are fully reproducible as
the corresponding R code is publicly accessible.a Our primary goal here is not to come up with a superb prediction
model, but rather illustrate how multiple models can be evaluated simultaneously and results shall be interpreted.
Similar to our simulation study, we consider M¼ 100 penalized logistic regression candidate models from the
elastic net class for each learning task.30,31 We will employ the within 1 SE selection rule.

4.1 Diagnosis of breast cancer

This dataset contains of 569 observations of 30 numerical features which ‘‘are computed from a digitized image of
a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the
image.’’3 Features describe texture, area and spatial structure, among others. Our learning task is to predict
breast cancer, which is the given label for 212 out of the 569 available instances. We randomly split the dataset
into nL ¼ 427 observations for learning and nE ¼ 142 samples for evaluation.

In the learning phase, the 100 candidate models are compared by means of 10-fold CV. The best model is one
with zero L1 penalty and hence all 30 model coefficients (not counting the intercept) are nonzero. It achieves a CV
accuracy of 97.2%. Two further models with only 13 and 8 nonzero coefficients fall within one standard error of
the best model. Hence we obtain a total of M� ¼ 3 selected models for the evaluation phase.
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In the evaluation study, we observe uncorrected performance estimates of 137=142 � 96:5% for two of the
models and 95.8% for the last model. As our usual strategy to simply pick the best model leads to a tie, we decide
to favor the more parsimonious model (eight nonzero coefficients) over the saturated model (30 nonzero
coefficients). For this final model, we obtain a corrected performance estimate of 95.8% and a lower 95%
confidence limit of 93.4% via the maxT-approach; compare equations (17) and (12). If our goal was to reject
the null hypothesis of a performance less or equal to 90% with a FWER of 5%, we should do so based on this
evidence.

4.2 Prediction of abnormal fetal state

The second dataset contains 2126 fetal cardiotocograms (CTGs). ‘‘They were automatically processed and the
respective diagnostic features measured. The CTGs were also classified by three expert obstetricians and a
consensus classification label assigned to each of them.’’4 Our learning task is to predict a suspect or pathologic
fetal state (295þ 176 instances) versus a normal state (1655 instances). The 24 features include diverse properties of
the fetal heart rate histogram. As with the breast cancer data we employ a 3:1 ratio for the splitting into learning
and evaluation data. However, since each observation has an associated measurement date, we learn on the first
nL ¼ 1594 and evaluate on the last nE ¼ 532 instances, mimicking the real life condition of time delay between the
two phases. The date attribute was not used for model devolopment.

In the learning phase, the best cross-validation performance is 93.5% obtained by a rather sparse model with
eight nonzero coefficients. In this case, seven additional models with 6 to 23 nonzero coefficients are within one
standard error of the best model and hence selected for evaluation. Based on these intermediate results, one may
seek to obtain a final model with an accuracy greater than #0 ¼ 0:8.

In the evaluation study, empirical performances of the M� ¼ 8 selected models range between 72.9% and
79.5%. The performances dropped significantly from learning to evaluation phase, hinting at systematic
differences due to the different sampling time periods. Interestingly, the best validation model performs worst
among the selected models on the evaluation data. For the best evaluation model, which also has eight nonzero
coefficients, we obtain a corrected accuracy estimate of 78.7% and a lower confidence limit of 75.9%. Hence, the
null hypothesis H0 : #m�� � 0:8 cannot be rejected. This example clearly illustrates the advantage of the proposed
within 1 SE strategy although unlike in our simulations the ground truth is not known: If we would have used the
default selection approach and thus decided on the final model based only on the validation data, the final
estimated performance would have been only 72.9%. The lower confidence limit would have been

69:7% ¼ 0:729� 1:645 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:729 	 ð1� 0:729Þ=532

p
.

5 Discussion

5.1 Conclusions

This work shows that the simultaneous evaluation of multiple predictions is feasible and false positive claims
regarding model performances can be controlled. This is achieved via a multiple test that (asymptotically) controls
the family wise error rate, i.e. the probability to make at least one false positive test decision. In this work, we
applied the maxT-approach as one possibility of such a multiple test. Its main advantage is to explicitly take into
account the similarity of models in terms of the correlation between performance estimates. This reduces the
necessary adjustment for multiplicity compared to simpler methods like the Šidák correction if the evaluated
models give similar predictions. The maxT-approach is applicable in a wide context, most importantly when
the empirical performance estimate (sample average) is used. This also applies to performance measures for
regression tasks. Other measures may also be used as long their estimators approximately follow a multivariate
normal distribution, as it is for instance the case for the (nonparametric) area under the curve (AUC) estimator.37

As we have only conducted simulations regarding classification accuarcy, the operating characteristics of the
multiple testing approach (FWER, power, estimation bias) may deviate from our results for other performance
measures.

One major advantage of selecting multiple models for evaluation is the higher power, i.e. the increased
probability to correctly identify a model that performs sufficiently well. Employing this approach will therefore
lead to evaluation studies that are more likely to be successful or, equivalently, need less observations per study to
achieve the same power. This is relevant when the sample sizes cannot be too large due to cost constraints or
ethical considerations, which is often the case in medical research. Luckily, the main drawback of the procedure,
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namely the overoptimistic estimation of the final model performance, can be negated by means of a corrected point
estimator. This is another major benefit of the maxT-approach and not easily possible for simpler methods like the
Šidák correction.

Based on our results, we recommend to select all models for evaluation which are close to the best model based
on the validation estimates, e.g. within one standard error. As seen in our numerical experiments, this strategy
outperforms the default approach regarding power and also slightly improved the final model performance. This
conclusion is still valid in the suboptimal but realistic case when learning and evaluation distributions are not
identical but rather differ systematically. Although we could not yet derive precise conditions under which our
approach is superior, our results can intuitively be explained as follows. First, any selection rule can be seen as a
compromise between the default approach (evaluate only best validation model) and the no selection approach
(evaluate all models). In these two extreme cases model, selection is conducted completely in either the validation
phase or the evaluation phase. However, when a subset of models is (pre-)selected based on the validation ranking
and the final model is selected based on the evaluation data, effectively more data is used for the model selection.

Apart from the power increase, the performance of the final model also improves when employing the within 1
SE selection rule compared to the default approach. Albeit the magnitude of this effect was rather small in our
simulations, this performance improvement comes with no additional cost in the sense that the FWER can still be
controlled (asymptotically). In this regard, our evaluation strategy can be seen as a way to improve model selection
by incorporating the evaluation data without introducing over-optimism.

5.2 Limitations

Our simulation results are meaningful but strictly speaking limited to the considered (true) model performances #
and the correlation structure R between performance estimates. However, these might also occur when other
candidate model types than the elastic net class is considered. The results remained qualitatively the same when
considering a more diverse collection of learning algorithms to train the prediction models. The according
simulation study was, however, smaller in scope. We plan to extend our numerical experiments regarding
several aspects such as the prediction tasks and employed learning algorithms even further in the future.

The only true limitation of the maxT-approach is the loss of exact FWER control for lower evaluation sample
sizes due to the asymptotic nature of this procedure. We observed an increased FWER of up to 10% (instead of
the targeted � ¼ 0:05) for low evaluation samples sizes around nE ¼ 100. The same problem, however, also applies
to the default approach where only one model was selected, due to the used normal approximation of the binomial
distribution of �hat. This can be seen when comparing the default with the oracle selection rule (Figure 3): the
default approach is only closer to the target level � ¼ 0:05 because of imperfect model selection. A simple approach
to alleviate this problem is to apply a transformation to the performance estimates, e.g. the logit transform
and to apply the (multivariate) delta method. This reduced the FWER slightly (by around 2%) in ancillary
simulations not shown here in detail. If strict FWER for low evaluation sample sizes is needed, we suggest to
replace the maxT-approach by an exact (non-asymptotic) multiple test which is appropriate for the considered
performance measure.

We remark that under least favorable parameter configurations, i.e. when all evaluated models have the same
true performance equal to the benchmark #0, the control of the type 1 error will get worse when more models are
included. This is, however, also an increasingly unlikely scenario. For the most extreme case when all initial
candidtate models are evaluated (no selection rule), we observed a rejection rate below the nominal level
(Figure 3) due to considerably different true parameter values (Figure 2).

5.3 Outlook

Although the simultaneous evaluation of multiple prediction models worked great in our simulations, there is no
theoretical guarantee to obtain a certain power increase, with the selection rules we employed. This leads to the
question of optimal selection rules. For instance, one could explicitly take estimates for performance and
correlation structure from the validation data into consideration in order to maximize the expected power.
We encourage further research in this direction.

In practice, it may of course be necessary to also consider other factors besides raw predictive performance. In
this regard, an appropriate strategy would be to formulate and check suitable side conditions before the evaluation
study. For instance, an implausible or overcomplex model might not be considered for evaluation even if the
empirical validation performance is high.
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A common approach in machine learning is to combine different models into a single ensemble model. Different
techniques exist in this regard, e.g. bagging or boosting.6 As they can also be seen as the output of a learning
algorithm, ensemble models are technically already covered in our multiple testing framework. Our smaller
ancillary simulation also covers boosted trees as an example of such an ensemble technique. An interesting
question for future work would be to compare the efficieny in terms of statistical power (and final model
performance) of (a) the selection of multiple promising models for evaluation and (b) averaging (weighting)
these models to get a single ensemble model which will then be evaluated.

Our work sheds new light on the question how to optimally allocate observations to the training, validation and
evaluation datasets. This issue has received some attention in the past.38 The statistical power of the evaluation
study was, however, not considered as an important property of the machine learning and evaluation pipeline. As
a general guideline, we recommend that a power estimation should precede any evaluation study, see equation
(13). In the best case, the evaluation study is conducted prospectively and hence it can be decided (within certain
bounds) how many observations need to be acquired. In case the estimated power is low even under ideal
conditions (maximum acquirable sample size, optimistic assumptions regarding true performance(s)), we would
refrain from conducting a formal evaluation study and consequently from making strong claims about the
predictive performance.

For classification tasks, accuracy is seldom used alone as a single performance measure. Instead, at least in
medical diagnostic accuracy studies, sensitivity and specificity are defined to be co-primary endpoints. In this case,
the statistical inference problem is more complex and there are more options for model selection during validation
and evaluation phase which will be compared systematically in the future.
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26. Held L and Bové DS. Applied statistical inference: likelihood and Bayes. New York, NY: Springer Science & Business

Media, 2013.
27. R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical

Computing, 2013.
28. Lang M, Bischl B and Surmann D. batchtools: Tools for r to work on batch systems. J Open Source Software 2017; 2: 135.
29. Genz A, Bretz F, Miwa T, et al. mvtnorm: Multivariate normal and t distributions. R package version 1.0-10. http://CRAN.R

project.org/package=mvtnorm (accessed 31 May 2019).
30. Zou H and Hastie T. Regularization and variable selection via the elastic net. J Royal Stat Soc: Ser B (Stat Methodol)

2005; 67: 301–320.
31. Friedman J, Hastie T and Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat

Software 2010; 33: 1.
32. Friedman J, Hastie T and Tibshirani R. Regularization Paths for Generalized Linear Models via Coordinate Descent.

Journal of Statistical Software 2009; 33: 1–22.
33. Kuhn M. A Short Introduction to the caret Package. R Found Stat Comput 2015; 1–10. https://CRAN.R project.org/

package=caret.
34. Dheeru D and Karra Taniskidou E. UCI machine learning repository, http://archive.ics.uci.edu/ml (accessed 31 May

2019).

1744 Statistical Methods in Medical Research 29(6)

http://CRAN.R project.org/package=mvtnorm
http://CRAN.R project.org/package=mvtnorm
https://CRAN.R project.org/package=caret
https://CRAN.R project.org/package=caret
http://archive.ics.uci.edu/ml


35. Street WN, Wolberg WH and Mangasarian OL. Nuclear feature extraction for breast tumor diagnosis. In: Raj S Acharya
and Dmitry B Goldgof (eds) Biomedical image processing and biomedical visualization. Vol 1905, Bellingham, Washington:
International Society for Optics and Photonics, 1905, pp.861–871.

36. Ayres-de Campos D, Bernardes J, Garrido A, et al. Sisporto 2.0: a program for automated analysis of cardiotocograms.
J Matern-Fetal Med 2000; 9: 311–318.

37. DeLong ER, DeLong DM and Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating
characteristic curves: a nonparametric approach. Biometrics 1988; 44: 837–845.

38. Crowther PS and Cox RJ. A method for optimal division of data sets for use in neural networks. In: International
conference on knowledge-based and intelligent information and engineering systems, Melbourne, VIC, Australia, 14–16
September 2005, pp.1–7.

Westphal and Brannath 1745


