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This review provides a distillate of the advances in knowledge about the neurotransmitter functions of acetylcholine over the 50-year period between
1967 and 2017, together with incremental information about the cognate nicotinic and muscarinic acetylcholine receptors, and some brief comments
on possible advances in the near future. The text is supplemented by a timelines figure indicating the dates of some key advances in knowledge about
acetylcholine receptors and a box-figure providing a snapshot of selected papers about acetylcholine published in the year 1967.
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Introduction: the research
environment 50years ago

In order to appreciate what was known or not known 50 years
ago, and if not, why not, it is important to know what currently
used facilities were not available to the lab neuroscientist
pre-1967.

1. Thus, although mainframe computers (accessed by
punched cards) were coming in there were no PCs or lab
computers. (The best our lab could afford in 1967 was a
64-step programmable calculator costing more than a PC
does now.)

2. Although the structure of DNA was known (in 1953) and
the genetic code had been unravelled in 1962, there were
no ways of gene-cloning or gene manipulation, and no
‘knock-out” mice or knock-down siRNA to test what a
gene did.

3. There was also neither chemical nor structural informa-
tion about membrane proteins such as receptors and ion
channels, and no means of seeing their location with
antibodies or mRNA hybridisation.

4.  The electrophysiologist was restricted to using microe-
lectrodes (no patch-clamp) for recording and drug appli-
cation, with no visual aids for seeing neurons like GFP,
no calcium indicators for monitoring activity or optoge-
netics for tracking circuits.

5. When it came to recording data, this was usually done
directly on photographic film (subject to the hazard of
dark-room development, when all was lost if someone
switched the light on) — neither computer corrections nor
enhancement was available.

6. Papers were written on a typewriter (with carbon
paper copies — no word processors or photocopiers), or

sometimes just by hand, and submitted for publication by
post. There were no e-mails or Internet, and no electronic
journals — to read the references meant going to the
library with a notebook or a bunch of index cards in hand.

Under the circumstances, one can only be impressed by how
much was discovered

What was known by 1967

Acetylcholine as a neurotransmitter

By 1967, acetylcholine (ACh) was firmly accepted as a major
neurotransmitter in the peripheral nervous system, including
somatic motor nerves and parts of the autonomic nervous system
(see, e.g. Goodman and Gilmam, 1965; Krnjevic, 1974).
Enzymes for its synthesis ( ‘choline acetylase’=choline acetyl-
transferase) and degradation (cholinesterase) had been isolated
and studied biochemically. ACh release following nerve stimu-
lation had been detected from vagal parasympathetic nerves,
preganglionic sympathetic nerves, cholinergic postganglionic
sympathetic nerves and somatic motor nerves. A transmitter
function was also supported by inhibition by tubocurarine
(motor nerves, preganglionic sympathetic nerves) or atropine
(postganglionic parasympathetic nerves).
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Transmission at the neuromuscular junction

Comprehensive information regarding the details of somatic
nerve-to-muscle transmission had been generated by the work of
Bernard Katz and his colleagues (Katz, 1966). Fatt and Katz (1951)
used R.W. Gerard’s recently introduced microelectrode technique
(Ling and Gerard, 1949: J. cell. comp. Physiol, 34,383 383) to
make the first intracellular recordings of the end-plate potential
from the frog neuromuscular junction. Using the muscle action
potential as a neat way of altering membrane voltage, they deduced
that the epp arose from a general increase in ionic conductance
(cations and anions) which partially short-circuited the action
potential. On the basis of further studies with radioactive tracers
(Jenkinson and Nicholls, 1961) and reversal potential measure-
ments under voltage-clamp (Takeuchi and Takeuchi, 1960) the
conductance change was adduced to be only to the cations Na™ and
K*, not anions. This became the model for other forms of excita-
tory synaptic transmission (Eccles, 1957; Ginsborg, 1967):

Apart from the facts that they could be activated by
acetylcholine and nicotine (and hence was classified as
‘nicotinic’ following Dale’s (1914) nomenclature), and
inhibited by tubocurarine and related alkaloids, the physical
nature of the muscle end-plate receptor was entirely unknown.
[Fatt and Katz (1951) did not even mention a receptor — they
only referred to an interaction of acetylcholine with the end-
plate membrane.] One approach to the receptor was to use
ligand binding to find out more about it. Thus, Peter Waser
(1960) used radioactively-labelled tubocurarine to begin to
localise the end-plate receptors by autoradiography. However,
the resolution was poor and microscopic resolution had to
await the later introduction of a-bungarotoxin. Also, Waser
and others (e.g., Chothia, 1970) tried to deduce the chemical
nature of the acetylcholine binding site from studies
comparing chemical congeners.

Transmitter release

Another crucial advance from Katz’ work on the frog neuromus-
cular junction was the discovery of miniature epps (Fatt and
Katz, 1952), which led to the development of the quantal theory
of transmitter release (see Katz, 1969). This, coupled with the
discovery of synaptic vesicles (de Robertis and Bennett, 1955),
provided the foundation stones for nearly all subsequent studies
on transmitter release at synapses.

Transmission between neurons

Pre-1967, intracellular microelectrode recordings were also
obtained from sympathetic neurons, another prospective site of
tubocurarine-sensitive  nicotinic  cholinergic  transmission
(Blackman et al., 1963a, 1963b; Eccles, 1955; Nishi and Koketsu,
1960). These revealed a very similar transmission process to that
at frog muscle end-plates — a depolarising excitatory postsynaptic
potential (epsp), giving rise to a superimposed action potential;
and spontanecous mepsps (though at a low frequency unless
enhanced by raising (K*),,) forming the quantal components of
the epsp:

Notwithstanding, other experiments using extracellular
recording methods, were beginning to suggest the presence of
slower synaptic processes following repetitive afferent
stimulation that were mediated by muscarinic (atropine-
sensitive) receptors (see Phillis, 1970). The presence of a
slower muscarinic component to the cholinergic excitation of
Renshaw cells in the spinal cord (see below) was also
emerging (Curtis and Ryall, 1966). Slow muscarinic excitatory
effects were subjected to intensive study in subsequent years,
generating new concepts of neural information processing
and intracellular signalling mechanisms (see Brown, 2010).

Another difference between the motor end-plate and the
sympathetic ganglion already apparent by 1967 concerned the
nature of the nicotinic receptors. Although both are sensitive
to tubocurarine, in an attempt to control essential hypertension
a number of selective ganglion-blocking drugs had been
developed which had little effect on muscle receptors. These
included hexamethonium (Paton and Zaimis, 1949),
pentolinium (Mason and Wien, 1955), and mecamylamine
(Stone et al., 1956). Much later (following the cloning of the
nicotinic receptors it transpired that this difference between
nerve and muscle receptors was related to their different
subunit compositions (see later).

Transmission in the CNS

By 1967, there was plenty of evidence suggesting an important
role for ACh in the CNS (see Feldberg, 1954; Krnjevic, 1974;
Phillis, 1970). It was present therein in high concentrations, as
were choline acetyltransferase and cholinesterase (Hebb, 1957).
Using a histochemical assay, Shute and Lewis (1963 & elsewhere)
describe specific aggregations of neurons and specific neural pro-
jection tracts containing a high concentration of acetylcholinester-
ase, suggesting that they were cholinergic (a designation later
supported by co-localization with choline acetyltransferase:
Levey et al., 1983). There was also pharmacological evidence for
likely transmitter functions (Goodman and Gilman, 1965). Thus,
injecting ACh itself into the brain via the cerebral ventricles pro-
duced a variety of behavioural effects. CNS-penetrant anti-cho-
linesterases (including the nerve gases DFP, sarin and tabun,
developed during WWII) exerted a variety of central excitatory
effects, plausibly caused by enhanced effects of naturally released
ACh because they could be diminished by atropine. Nicotine also
clearly had central effects, including inhibition of ADH secretion
via the hypothalamus (replicated by local ACh injection). The
lipophilic muscarinic agonists pilocarpine, muscarine and areco-
line produced cortical EEG arousal, whereas hyoscine (scopola-
mine) desynchronised the EEG and inhibited the arousal effect of
photostimulation or reticular formation activation; and scopola-
mine exerted a well-known amnesic effect (witness its use in
obstetrics or pre-anaesthetic medication to produce ‘twilight
sleep’). Atropine and scopolamine were also known to be effec-
tive in diminishing the tremors of Parkinson’s disease, and, with
more lipophilic derivatives thereof such as benztropine, were the
mainstay of Parkinson’s disease treatment until the advent of lev-
odopa. Finally, the release of ACh from the surface of the cerebral
cortex, and its enhancement by afferent stimulation, could be
detected (Mitchell, 1963; see also Box 1).
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What about cholinergic synapses in the CNS? The introduc-
tion of a technique for the electrophoretic ejection of charged
substances such as ACh from glass micropipettes ( ‘iontophore-
sis’) led to a vast plethora of experiments in which ACh was
applied directly onto individual neurons in the CNS, and changes
in their activity levels recorded — excitation or acceleration or
inhibition of ongoing discharges (see Phillis, 1970 for a detailed
survey). Notwithstanding, in only one case was a truly choliner-
gic synaptic pathway established. This involved the activation of
a group of inhibitory interneurons in the spinal cord ( ‘Renshaw
cells”) by intraspinal recurrent collateral branches of motor
axons, which were already known to be cholinergic at their
peripheral ending onto skeletal muscle. Although direct intracel-
lular recordings from these cells were not possible at the time,
focal extracellular recordings from within the spinal cord in
anaesthetised revealed a burst of action potentials following anti-
dromic motor nerve stimulation that were enhanced and pro-
longed by anticholinesterase drug and suppressed by
dihydro-B-erythroidine, an analogue of the nicotinic blocker
d-tubocurarine; these drugs produced concomitant effects on the
simultaneous recurrent inhibitory postsynaptic potential (ipsp)
recorded intracellularly from the motor neurons that resulted
from Renshaw cell activation (see Eccles, 1957):

Although analogous to cholinergic transmission at the
neuromuscular junction and at autonomic ganglia, other and
subsequent studies revealed some differences. First, like
sympathetic neurons, Renshaw cells also possess excitatory
muscarinic receptors (Phillis, 1970), though how far they
contribute to cholinergic synaptic excitation seems unclear.
Second, the co-release of glutamate with the acetylcholine also
contributes to transmission between motor axon collaterals
and Renshaw cells (Lamotte d’Incamps and Ascher, 2008)
though not apparently to synaptic transmission at the peripheral
end of the motor fibres onto skeletal muscle (Nishimaru et al,
2005) (Co-release of two transmitters was unheard of in 1967,
but co-release of glutamate with acetylcholine from other
“cholinergic” neurons in the CNS such as basal forebrain neurons
(Allen et al., 2006: J Neurosci 26: 1588—-1595) has since been
reported (see also Lamotte d’Incamps and Ascher, 2008, for some
more examples).. Contrary to common belief, it does not
contradict “Dale’s Principal * (that the same chemical should be
released from all processes of the same neuron; Dale, 1935: Proc.
Roy.Soc.Med., 28: 319-332) since Dale did not specify only one
transmitter. However, the apparent selective release of glutamate
from only the collateral terminals would seem to do so.)

Fast excitatory cholinergic transmission has been identified at
a few other synapses in the brain (see Lamotte d’Incamps and
Ascher, 2008, for examples) but these are rare. Most nicotinic
receptors in the brain seem to be presynaptic and most
postsynaptic cholinergic effects are mediated by muscarinic
receptors. (see Brown, 2010)

Advances 1967-2017
Nicotinic receptors

Individual receptor currents
1. Membrane ‘noise’ was recorded during ACh depolarisa-
tion of frog muscle end-plates using focal extracellular

recording (Katz and Miledi, 1972): ‘... the orders of
magnitude of the calculated “shot effect”... provide a
basis for discussing certain questions which seemed pre-
viously not to be open to experimental attack. Among
these are: the number of ionic gates involved in the pro-
duction of a miniature e.p.p., the absolute conductance of
a single ion gate opened by ACh molecules; the duration
of the gating action and the total transfer of charge
through the ion channel; the relation between the time
course of the elementary current and the kinetics of drug/
receptor action; the probability of single or repeated
action of individual ACh molecules during normal trans-
mission, etc’. ACh-induced current fluctuations were
subsequently recorded under voltage-clamp by Anderson
and Stevens (1973: J.Physiol., 235: 655-691).

2. Single channel currents of ACh receptors were recorded
from denervated skeletal muscle membranes (Neher
and Sakmann, 1976): ‘Recordings of single-channel
currents finally resolves the third level of quantitation
in the process of neuromuscular transmission after the
discovery of endplate currents and miniature endplate
currents’. Resolution was improved with the introduc-
tion of the gigaseal patch (Hamill et al., 1981: Pflug.
Arch., 391, 85-100). This allowed the molecular inter-
action of ACh molecules with single nicotinic receptors
to be examined at high temporal resolution to obtain
realistic rate constants for suggested kinetic schemes of
agonist-receptor interaction (Colquhoun and Sakmann,
1985) and the basis for such mysterious concepts as
‘partial agonism’ to be determined (Lape et al., 2008:
Nature, 454, 722-727; Figure 1).

Clones and genes

1. Using the electric organ (electroplax) of the electric eel
Torpedo as a rich source of muscle-type nicotinic recep-
tors, by 1980 the overall structure of the receptor had
been determined by protein chemistry to comprise a pen-
tamer containing four subunits designated o,Byd (e.g.
Raftery et al, 1980).

2. In 1982, using DNA probes derived from a partial amino
acid sequence of the Torpedo receptor, Shosaku Numa
and his colleagues cloned the full-length ¢cDNA and
deduced the complete amino acid sequence for the -
subunit of the Torpedo receptor (Noda et al., 1982); and
in subsequent papers reported cDNAs and sequences for
the other three subunits (Noda et al., 1983: Nature, 301,
251-255, and 302, 538-542).

3.  Knowledge of the muscle receptor composition allowed
the neural nicotinic receptors cDNAs to be isolated by
homology screening from neural tissue (e.g. Boulter
et al., 1986, see Dani, 2015; McGehee and Role, 1995
for others). Like muscle channels, neuronal channels are
pentamers, but composed only of a and 3 subunits, or
sometimes homomeric a-subunits. In mammalian neu-
rons eight a-subunits (al-a7, a9, and a10) and three
B-subunits (32-B4) have been identified. In the mam-
malian CNS, the most common combinations are
4,325, with two ACh binding sites at the o-@3 interfaces,
or a4, 32,, with potentially three binding sites, or five
homomeric a7 subunits with up to five binding sites
(Dani, 2015). Uniquely among neural receptors, the
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Figure 1. Cholinergic receptors: discovery timeline 1967-2017.

latter are blocked by bungarotoxins. They also have a
fivefold higher calcium permeability than the a-f3 heter-
omers (and 10 times more than muscle receptors): this
probably contributes to the presynaptic action of ACh
(and nicotine) in enhancing transmitter release (McGehee
and Role, 1996). The most prominent receptor in the
peripheral nervous system (including sympathetic gan-
glia) is an a334 heteromer, though this is also present in
the medial habenular and interpeduncular nuclei.

4. Knowing the genes allows the construction of knock-in
or knock-out subunits. Cordero-Erausquin et al. (2000)
summarise some of the effects of individual neuronal
receptor subunit knock-outs in mice. As expected, sym-
pathetic and autonomic functions are disrupted in a3 or
4 null mice. Deletion of a4 or 32 reduced high-affinity
nicotine binding and some presynaptic transmitter
release enhancing nicotinic receptors were non-func-
tional in the 32 knockout mice. Furthermore, 32 subu-
nits appeared to have a role in learning and in protection
against ageing.

Looking at nicotinic receptors

1.  Animportant early post-1967 advance was the discovery
by C.Y. Lee of the snake venom toxin a-bungarotoxin,
which binds irreversibly to muscle nicotinic receptors
(Miledi and Potter, 1971). This not only facilitated the iso-
lation and identification of the receptor but its tight bind-
ing allowed its use as a probe for localising the receptor at
a much higher resolution than that that obtained with radi-
olabelled curare (Fertuck and Salpeter, 1974). The persis-
tent binding of bungarotoxin also permitted experiments
on end-plate receptor turnover and regulation (e.g. Levitt
et al., 1980: Science, 210, 550-551).

2. The detailed atomic structure of the nicotinic ACh recep-
tor has not yet been determined by X-ray crystallogra-
phy, but the discovery of a secreted water-soluble ACh
binding protein (Smit et al., 2001: Nature, 411, 261-268
has allowed the crystal structure of the homologous

binding domain in the nicotinic receptor to be deter-
mined (Brejc et al., 2001).

3. On the other hand, the exceptional density and organisa-
tion of the receptors in Torpedo electroplax has been
brilliantly exploited to provide images of the intact
receptor down to 4A resolution by cryo-electron micros-
copy (Unwin, 2013) — now much-favoured molecular
imaging technique (see Fernandez-Leiro and Scheres,
2016: Nature, 537, 339-346).

What do neural nicotinic receptors do? Other than the pre-
1967 Renshaw cells, only a few functional cholinergic synapses
with postsynaptic nicotinic receptors have yet been identified in
the mammalian CNS (Jones et al., 1999). Instead, the majority of
nicotinic receptors are presynaptic, and serve to enhance the
release of other neurotransmitters such as glutamate (McGehee
and Role, 1996) — very much as predicated from the experiments
of Koelle and Nishi on sympathetic ganglia (see Box 1) (In some
cases, this seemed truly surprising. Thus, as pointed out to us by
Dr M.J.Brownstein (National Institutes of Mental Health (NIMH)
one of the most striking “cholinergic” tracts in the brain (neuro-
chemically speaking is the fasciculus retroflexus of Meynert
(FRM), between the medial habenula and the interpeduncular
nucleus (IPN). When we saw this gleaming white tract in dis-
sected brain slices just begging to be stimulated, we thought this
must be the perfect central homologue of the sympathetic gan-
glion synapse. But not so: although ACh and nicotinic agonists
readily excited IPN neurons, the IPN response to FRM stimula-
tion was not at all diminished by nicotinic antagonists; instead it
was inhibited by glutamate antagonists, suggesting that transmis-
sion was glutamatergic (Brown et al., 1983: J.Physiol., 341, 655—
670)!!. The most prominent effect of ACh or nicotinic agonists on
FRM stimulation was to reduce the amplitude of the action poten-
tial recorded from the FRM terminals within the IPN and slow its
conduction (Brown et al., 1984: J.Physiol. 353, 101-109; we sug-
gested that this was due to a depolarization of the unmyelinated
fibre terminals, as seen on peripheral C-fibres. In some elegant
experiments, McGehee et al (1995: Science, 260, 1692—-1696)
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later confirmed this presynaptic action, and showed that it led to
an entry of Ca?* through the nicotinic channels, and consequent
enhancement of the glutamatergic epsc. More recently, Pen et al
(2010: Neuron, 69, 445-452) have found that selective stimula-
tion of choline acetyltransferase-expressing fibres in the FRM
release both glutamate and ACh: glutamate drives the individual
fast epscs in the IPN neurons while ACh released by repetitive
20-50 Hz FRM stimulation induces a lower amplitude slow
nicotinic epsc in the IPN neurons.). Most of these presynaptic
receptors are a432, occasionally a332 or 34 (e.g. medial haben-
ula and interpeduncular nucleus, see footnote), or a7 homomers.
Some clues regarding their overall functional significance may be
gleaned from the effects of subunit knock-outs noted above — for
example, disruption of some forms of learning, or loss of
responses to nicotine such as antinociception (Cordero-Eraus-
quin et al., 2000). Notwithstanding, there are very few (if any)
examples of true cholinergic axo-axonal synapses, so presumably
these presynaptic receptors are activated by more remotely
released ACh-the ‘soup’ theory of transmission (Sivilotti and
Colghuoun, 1995: Science, 269, 1681-1682).

Muscarinic receptors (mAChRs)

The nature of the receptor. As with the nicotinic receptor,
the physical nature of the muscarinic receptor was unknown in
1967. The first muscarinic receptor was cloned from a pig brain
cDNA library by Kubo et al. (1986). The predicted amino acid
sequence showed a clear homology to the 3-adrenergic receptor
(Dixon et al., 1986: Nature, 321, 75-79) and to the visual pig-
ment rhodopsin (Ovchinnikov, 1982: FEBS Lett, 148 179-191)
and hence it joined the family of heptahelical (7 transmembrane
domain=7TM) signalling proteins.

Previous and ongoing pharmacological studies (e.g. Hammer
et al., 1980) indicated that there may be more than one subtype of
muscarinic receptor. Eventually, five genetic subtypes designated
M1 through M5, were cloned (Bonner et al., 1987: Science, 237,
527-532; Fukuda et al., 1987: Nature, 327, 623—625; summarised in
Bonner, 1989). Interestingly, each receptor is encoded by a separate
intronless gene. The original pig brain receptor corresponded to the
pharmacological M1 subtype described by Hammer et al (1980) —
the most abundant muscarinic receptor expressed in the brain.

The structures of the M2 (Haga et al., 2012: Nature, 482 547—
551) and M3 (Kruse et al., 2012: Nature, 482 552—-556) receptors
in their resting state have now been determined by X-ray crystal-
lography, so that it is now possible to envisage the ligand-binding
and G protein-binding domains, and the possible conformational
changes accompanying ligand and G protein binding, in some
detail (Hulme, 2013).

How do the receptors work? Unlike nicotinic receptors, mus-
carinic receptors are not ion channels. Instead, they are members
of the G protein-coupled receptor (GPCR) superfamily, that is,
when activated by ACh, their usual (I say ‘usual’ because there is
accumulating evidence that GPCRs can sometimes alternatively
route through other associated proteins such as f-arrestins
(DeFea, 2008: Br J Pharmacol, 153, 5298-5309). Primary
response is to dock onto, and activate, a trimeric guanine nucleo-
tide-binding protein called a G protein (Oldham and Hamm,
2008). G proteins were discovered in the 1970s through a require-
ment for guanosine triphosphate (GTP) in the solution when

studying GPCR activity in broken cell preparations (Rodbell
etal., 1971: J.Biol.Chem., 246, 1877-1882).

The G protein comprises «, 3, and y subunits. The a-subunit
contains the guanine nucleotide binding domain, and also a
GTPase catalytic domain. At rest the a-subunit binds guanosine
diphosphate (GDP). The activated GPCR induces a conforma-
tional change in the G-protein leading to (a) dissociation of the
trimer into a- and coupled By-subunits and (b) dissociation of
GDP and its replacement by GTP. Hydrolysis of GTP by the
GTPase activity of the a-subunit leads to replacement of GTP by
GDP and reassembly of the a3y trimer. The GTPase activity deter-
mines the rate of recovery, and may be accelerated by ancillary
GTPase activating proteins (GAPs). The GPCR-induced reduction
in the binding affinity of GDP to the a-subunit is matched by a
reciprocal reduction in the apparent binding affinity of the agonist
for the GPCR (shown for muscarinic receptors by Berrie et al.
(1979: Biochem. Biophys. Res. Comm., 87 1000—1005).

There are a number of different G proteins, differentiated in
terms of the structures and downstream targets of their a-subunit.
The individual muscarinic receptors show a general pattern of G
protein ‘preferences’ as follows (Bonner, 1989; Caulfield, 1993):

Receptor subtype G protein  Main targets
M1, M3, M5 Gqg, G11 Phospholipase C (PLC) activation —
Phosphatidylinositol-4,5-bisphosphate
(PIP2) hydrolysis
M2, M4 Gi a-subunit: adenylate cyclase inhibition
Go By-subunits: Kir3 activation

CaV2 inhibition

What do they do to a neuron? In the short term, activation of
mAChRs modifies the signalling properties of neurons by alter-
ing the activity of selected membrane ion channels using the
apposite G protein (or one of its downstream biochemical effec-
tors) as the receptor — ion channel transducer (see Brown, 2010;
Caulfield, 1993 for reviews.) Thus, in brief, and with consider-
able simplification, activation of M1/M3/MS5 receptors tends to
increases neuronal excitability by inhibiting one or more of sev-
eral potassium channels and/or by activating cation channels;
whereas activation of M2 or M4 receptors produces postsynaptic
inhibtion by activating Kir potassium channels, or presynaptic
inhibition by inhibiting CaV2 calcium channels. However, the
indirect nature of the pathway connecting receptor to ion channel
mitigates against any hard and fast rules linking the receptor to
the response, for the following reasons.

1. The ion channel only ‘sees’ the final transducer, not the
receptor, so in principle cannot tell whether (say) Go has
been activated by a muscarinic receptor or a metabo-
tropic glutamate receptor; or, if the former, by the M2 or
M4 receptor. Dissecting or predicting the final response
and its mechanistic pathway when (say) ACh is applied
to a neuron or a mixture of ACh and glutamate are
released onto a neuron then becomes a question of anat-
omy: that is, which receptor/G protein/intermediary
transducer/ion channel is/are present in that neuron, and
whereabouts are they located in the neuron. For the lat-
ter, one might think first of which compartment of the
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neuron houses the receptors and channels. Thus, the
CaV2 calcium channels closed by stimulating M2 or M4
receptors (and thence by Gofvy-subunits) are heavily
concentrated in the presynaptic terminals of central and
peripheral neurons, where they drive action potential-
evoked transmitter release; so the principal effect of M2
or M4 receptor stimulation is to inhibit transmitter
release — either of ACh itself (feedback auto-inhibition,
for example, from basal forebrain axons: Allen and
Brown, 1996: J.Physiol., 492 453—466), or of other
transmitters (hetero-inhibition). On the other hand, the
Kir3 channels opened by M2 or M4 receptors are pri-
marily postsynaptic and generate a form of postsynaptic
inhibition. As an example of subcellular compartmenta-
tion: in hippocampal neurons the Kv7 channels inhib-
ited by M1 receptor activation are localised to the axon
initial segment where they bind to ankyrinG and control
the action potential threshold; hence, their inhibition by
ACh increases excitability by facilitating local spike
generation (Martinello et al., 2015; Shah et al., 2008:
Proc.Natl.Acad.Sci.,USA, 105, 7869-7874). In other
neurons where the Kv7 channels are somatic, their inhi-
bition by mAChR receptors can also increase excitabil-
ity more generally, by depolarising the cell and
increasing input resistance. Further micro-anatomical
association and segregation of muscarinic receptors
with their cognate G proteins and ion channels may be
achieved by association with ancillary scaffolding pro-
teins such as A-kinase Anchoring Proteins (AKAPs;
Kosenko et al., 2012: EMBO J., 31, 3147-3156).
Unlike nicotinic receptors, or other transmitter-gated
ionotropic receptors, the response to stimulating mus-
carinic receptors is indirect and takes time, from about
30-50ms for the activation of a G protein-gated inward
rectifier Kir3 potassium channel by an M2 receptor, to
=200ms for the closure of an M-type Kv7 potassium
channel by an M1 receptor (via Gq and consequent fall
in membrane PIP2 concentration: Hille et al., 2014), sec-
onds or minutes for responses involving downstream
phosphorylation or dephosphorylation, and several hours
for transcription changes (e.g. a change in the number of
M-type channels induced by a calcium-dependent tran-
scriptional response to neural excitation by M1-mAChRs
(Zhang and Shapiro, 2012: Neuron. 76 1133-1146).

Muscarinic receptors and global nervous
system function

Thiele (2013) provides a contemporary update on the contri-
butions of muscarinic receptors to central nervous system physi-
ology. Wess (2004) summarises the roles of the individual
muscarinic receptors to nervous system function in mice as
revealed by genetic subtype deletions. A few points of interest
from these surveys:

As predicated by Krnjevic (1967, 1974 (see Box 1) a major
contribution of muscarinic excitation of cortical and hip-
pocampal neurons to cortical arousal and cognition has been

established. This is mediated substantially by M1 receptors,
but probably with additional input from M5 receptors, and
with a negative feedback effect from presynaptic M2 autore-
ceptors onto ascending cholinergic afferents.

Substantially more information about the cellular mech-
anisms of muscarinic excitation of cortical and hip-
pocampal neurons and their consequences for network
behaviour has been obtained over the past 50 years (see
also Brown, 2010; Martinello et al., 2015: 346-353).
Also, as predicated from old pharmacological knowl-
edge, activation of muscarinic receptors affects basal
ganglion locomotor function, probably through release
of ACh from striatal interneurons and indirect inhibition
of dopamine release by M4 receptors. An additional role
for M1 receptors is indicated by an increase in striatal
dopamine levels in M 1R k-o mice.

A cholinergic input also enhances dopamine release in
the ventral tegmental ‘reward centre’ through an action
on M5 receptors. This is subject to M4 auto-inhibition of
ACh release, so dopamine levels in the nucleus accum-
bens are raised in M4 k-0 mice.

Muscarinic agonists induce an analgesic effect of
supraspinal origin when injected intra-thecally. This is
mediated by a combination of M2 and M4 receptors,
offering interesting prospects for drug development.

Future prospects

1.

With increasingly precise information about the struc-
ture of the receptors, we might expect the development
of increasingly selective drugs targetting different sub-
types of muscarinic receptors and subtype combinations
of nicotinic receptors.

For the muscarinic receptors, subtype selectivity is likely
to be best achieved by targetting allosteric sites (see
Conn et al., 2009: Trends Pharmacol Sci., 30: 148—155).
Apart from greater selectivity, positive alllosteric modu-
lators (PAMS) have the advantage over direct agonists
that they only affect ongoing cholinergic activity. Thus,
M1-PAMS show promise for treatment of cognitive dis-
orders while M4-PAMS may be appropriate for treat-
ment of schizophrenia.

In the past, much work on nicotinic receptor pharmacology
has been driven by the need to control nicotine addiction,
but this will be a declining market in the future. Nevertheless,
drugs interacting with nicotinic receptors may have benefi-
cial effects independently of nicotine actions. For example,
PAMs for a7 nicotinic receptors have beneficial effects on
cognition and pain in animal studies (Bagdas et al., 2017:
Br. J. Pharmacol., 173(16): 2506-2520; Potasiewicz et al.,
2017: Neuropharmacol, 113: 188-197).

Optogenetic techniques coupled with refined recording
of neuronal responses in vivo should allow a much more
precise description of the cholinergic circuits underlying
the behavioural responses to cholinergic stimulation in
the brain and of their effect on neural coding, to the
extent that they might be simulated in virtual reality and
the effects of pathological lesions in (e.g.) Alzheimer’s
Disease and their pharmacological amelioration fully
understood.
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