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A B S T R A C T   

Steady-state visual evoked potential (ssVEP) frequency tagging is an increasingly used method in electrophysi
ological studies of visual attention and perception. Frequency tagging is suitable for studies examining a wide 
range of populations, including infants and children. Frequency tagging involves the presentation of different 
elements of a visual array at different temporal rates, thus using stimulus timing to “tag” the brain response to a 
given element by means of a unique time signature. Leveraging the strength of the ssVEP frequency tagging 
method to isolate brain responses to concurrently presented and spatially overlapping visual objects requires 
specific signal processing methods. Here, we introduce the FreqTag suite of functions, an open source MATLAB 
toolbox. The purpose of the FreqTag toolbox is three-fold. First, it will equip users with a set of transparent and 
reproducible analytical tools for the analysis of ssVEP data. Second, the toolbox is designed to illustrate 
fundamental features of frequency domain and time-frequency domain approaches. Finally, decision criteria for 
the application of different functions and analyses are described. To promote reproducibility, raw algorithms are 
provided in a modular fashion, without additional hidden functions or transformations. This approach is 
intended to facilitate a fundamental understanding of the transformations and algorithmic steps in FreqTag, and 
to allow users to visualize and test each step in the toolbox.   

1. Introduction 

The electroencephalogram (EEG) relies on the non-invasive 
recording of brain electric activity through sensors that are placed on 
the scalp to provide a rich source of information about ongoing brain 
activity at a millisecond scale (Jackson and Bolger, 2014; Nunez et al., 
2006). EEG signals have been used to study a wide range of neural 
processes, including spectral properties of resting EEG (Donoghue et al., 
2020; Rogala et al., 2020), task-driven studies measuring event-related 
potentials (ERP, for review see: Luck and Kappenman, 2013; Handy, 
2004; Woodman, 2013) and steady-state visual evoked potentials 
(ssVEPs, for review see: Norcia et al., 2015; Vialatte et al., 2010). EEG 
methods are also extensively used in developmental populations from 
early infancy through adolescence (for review see: Barry-Anwar et al., 
2020; Bell and Cuevas, 2012; Riggins and Scott, 2020). The present 
report focuses on one specific EEG-based method: frequency-tagging 
with steady-state visual evoked potentials (Norcia et al., 2015; Wieser 
et al., 2016). Studies measuring ssVEPs in adults have substantially 
contributed to our understanding of visual processes including selective 

attention, figure-ground segregation, and adaptation (for review see 
Norcia et al., 2015). 

The ssVEP is a neurophysiological response to a periodic visual 
stimulus. It is evoked by stimuli that are periodically modulated in 
luminance (i.e., flickered) or contrast (e.g., pattern-reversed) typically at 
temporal rates above 3 Hz (Odom et al., 2004). Both the 
luminance-evoked and contrast-evoked ssVEP possess high 
signal-to-noise ratio and are robust to noisy recording conditions, 
allowing researchers flexibility regarding dimensions of interest within 
stimuli (Appelbaum et al., 2006; Keil, 2013). Luminance-evoked ssVEPs 
reflect visuocortical activation based on input across the retina, whereas 
contrast-evoked ssVEPs at constant luminance tend to emphasize foveal 
inputs which are more circumscribed in the visual cortex (Di Russo et al., 
2006). Because they are defined by their temporal frequency, ssVEPs 
may be extracted from scalp-recorded EEG signals in the frequency 
domain, by calculating the amplitude spectrum of the EEG segments of 
interest. 

The ssVEP response typically consists of robust oscillatory activity at 
the exact modulation frequency—driving frequency—as well as at its 
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higher harmonics (integer multiples of the driving frequency). Thus, an 
LED light flickering at 12 Hz evokes ssVEPs at 12 Hz, but may also 
prompt responses at 24 Hz, 36 Hz, etc., depending on the composition of 
the stimulus array and the extent to which the visual response is linear or 
non-linear (Norcia et al., 2015). Source estimation of scalp-recorded 
ssVEPs (Di Russo et al., 2006) as well as combined ssVEP-fMRI work 
(Petro et al., 2017) have converged to show that ssVEPs appear to be 
generated primarily in the striate cortex (V1) with contributions from 
extrastriate regions (for review see; Vialatte et al., 2010). 

One key feature of the ssVEP outlined in the present report is its use 
in frequency tagging. This technique enables researchers to indepen
dently quantify the visuocortical response to multiple stimuli, even 
when these stimuli are presented at the same time and at overlapping 
screen locations (Tononi et al., 1998; Wang et al., 2007; Zhigalov et al., 
2019). Thus, complex stimulus arrays may be used and a unique 
visuocortical response to each element of the complex array is evoked by 
periodically modulating each element at a different frequency. Fre
quency domain (spectral) analyses can then be used to independently 
quantify the response of each stimulus in the amplitude spectrum of the 
EEG data. For example, frequency tagging has been previously used for 
quantifying neural competition between concurrent visuocortical rep
resentations evoked by simultaneously present and overlapping stimuli 
(Appelbaum et al., 2006; Bach and Meigen, 1992), which is difficult to 
accomplish with other neuroscience methods. 

In developmental samples, ssVEPs have been used to assess lower- 
level sensory processes in infants (Braddick et al., 1986; Gilmore 
et al., 2007; Hamer and Norcia, 1994), but also to investigate higher 
cognitive processes such as overt and covert visual attention (Christo
doulou et al., 2018; Robertson et al., 2012), contour integration (Baker 
et al., 2011), face or object processing (Barry-Anwar et al., 2018; Buiatti 
et al., 2019; de Heering and Rossion, 2015; Farzin et al., 2012; Leleu 
et al., 2014; Lochy et al., 2019; Peykarjou et al., 2017; Vettori et al., 
2020), number sense (Park, 2018), and event processing (Köster et al., 
2019). Studying development using recordings of ssVEPs are particu
larly useful relative to other EEG measures for a variety of reasons. First, 
infant and child EEG data often include an increased amount of noise 
relative to adults. Because ssVEP analyses focus on a narrow set of fre
quency bands, the signal to noise ratio is very high because only the 
noise present in the driving frequency bins is relevant (Regan, 1989). 
Second, the amount of time required to collect high quality ssVEP re
sponses from infants is less than what is typically needed for ERPs. 
Furthermore, several conditions or tasks can be combined in a single 
session, reducing attrition and increasing statistical power. The shorter 
session duration requirement for ssVEP tasks compared to other EEG 
tasks is also important because it is often difficult for infants to complete 
tasks that take longer than about 15 min (including breaks). 

Studies using frequency tagging of multiple stimuli highlight the 
promise of using this technique for studying cognitive and perceptual 
development (Baker et al., 2011; Buiatti et al., 2019; Vettori et al., 
2020). The present report demonstrates key analytical procedures for 
analyzing frequency tagging data for both developmental and adult 
samples. The report is accompanied by example adult and infant data 
and a MATLAB toolbox (FreqTag, https://github.com/csea-lab/freqTag) 
containing algorithms for performing analyses on frequency tagged 
data. Several methodological details not covered in this paper are 
explained in the documentation accompanying the toolbox. Many 
existing EEG analysis tools may be used for the same purpose (e.g., see 
Mouraux and Iannetti, 2008 - Letswave, RRID:SCR_016414). The aim of 
the present toolbox is to illustrate core analytical principles using 
barebones algorithms, with the intention to promote a deeper under
standing of the method and increase user confidence. Specifically, this 
report illustrates spectral analysis based on discrete Fourier transform, 
and analysis in the time-frequency domain, where the neural time 
course at each tagging frequency is individually extracted using the 
Hilbert transformation. We also demonstrate the use of the sliding 
window averaging technique, suitable for studies with fewer trials, as is 

sometimes the case for developmental EEG work. The code 
(https://github.com/csea-lab/freqTag) and example datasets 
(https://osf.io/ga4dm/) are publicly available. 

2. Methods and materials 

2.1. Hardware and software needed to implement a frequency tagging 
protocol 

As discussed above, many different research questions may be pur
sued using frequency tagging. Thus, many different types of stimuli may 
be used, including stimuli in multiple modalities (Giabbiconi et al., 
2016; Riels et al., 2021). Regardless of the stimulus type and modality 
used, it is crucial that researchers ensure accurate timing of each stim
ulus. For visual stimuli, the tagging frequencies available are primarily 
determined by the display device used. The refresh rate denotes the 
frequency (in Hz) at which the display can update its content. Not all 
visual displays are suitable for evoking ssVEPs, and some of the key 
properties needed for regular, accurate, periodic stimulation are more 
likely to be found in Cathode-ray tube (CRT) monitors, compared to 
light-emitting diode displays (LED), and liquid crystal displays (LCD), 
since both LCD and LED may present (a) response delays caused by 
digital processing time as well as (b) temporal smearing due to slow and 
non-symmetric black to white and white to black response times, espe
cially at high stimulation rates. Several companies offer non-CRT solu
tions that provide high refresh rates and rapid transition times from 
black to white and vice versa. 

Successful implementations of tagging protocols are also accom
plished with hardware solutions where custom circuit boards drive in
dividual light-emitting diodes controlled by a microcomputer (e.g., 
Gulbinaite et al., 2019). A comprehensive discussion of display systems 
is outside the scope of this report, and readers are referred to the extant 
discussions in the literature (e.g., Wang and Nikolic, 2011). Likewise, 
graphic processing demands are high when using frequency tagging, and 
researchers should consider state-of-the art graphics cards rather than 
on-board graphics, which are often insufficient for ensuring accurate 
ssVEP stimulation. 

Not all software used to generate and control visual stimuli in the 
cognitive neuroscience laboratory is suitable for use with ssVEP fre
quency tagging given that the technique exerts high demands regarding 
graphic card control and timing accuracy (Jaganathan et al., 2005). It is 
therefore highly recommended to test and validate the intended timing 
before beginning data collection. Light sensitive diodes and similar de
vices are readily available to capture and store luminance changes 
directly from the display device, allowing researchers to examine the 
overlap between the control software’s specifications and the reality on 
the display. Suitable software packages for experimental control include 
psychtoolbox, psychopy, and presentation, in addition to low-level code 
written in various programming languages. We provide example code 
written in Psychtoolbox (taggingdemo.m) together with the FreqTaq 
toolbox. 

2.2. Implementing the stimulus array 

There are several parameters to be considered when using frequency 
tagging tasks such as the monitor refresh rate, the duration of the 
stimulus presentation within each trial, and the EEG sampling rate. 
When using on-off flicker, the frequencies available for tagging on a 60 
Hz monitor are at the ratio of 60 and the integers from 2 to 20, i.e., at 60/ 
2, 60/3, 60/4, … 60/20, resulting in potential frequencies at 30, 20, 15, 
12, 10, 8.571, 7.5, 6.667, 6.0, 5.455, 5.0, 4.615, 4.286, 4.0, 3.75, 3.529, 
3.333, 3.158, and 3.0 Hz. This is equivalent to determining the tagging 
frequencies based on the wavelength of the refresh rate, also known as 
the refresh interval, which in the case of the 60 Hz monitor is 1000/60 =
16.66 ms. Here, the available tagging frequencies can be computed by 
dividing 1000 by the product of the refresh interval and the integers 
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between 2 and 20, resulting in the same potential tagging frequencies for 
on-off flicker. Note that periodic presentations with other stimulation (e. 
g., sinusoidal, rather than on-off, modulation of luminance) may result 
in additional frequencies becoming available, as discussed for example 
by Andersen and Müller (2015). 

For some applications, researchers may prefer that the two compo
nents of the ssVEP duty cycle (e.g., the on and off periods of the stimulus 
in a flicker-ssVEP) be of equal duration. This reduces the available 
tagging frequencies by 50%. In the example above, frequencies resulting 
from multiplying odd numbers with the refresh interval will be un
available if on and off-periods (in luminance ssVEPs) or pattern one 
versus pattern two (in pattern reversal ssVEP) are to be of the same 
duration. Furthermore, when using multiple frequencies for many visual 
objects simultaneously, researchers will want to ensure that the tagging 
frequencies do not exhibit harmonic relations (in which one tagging 
frequency is an integer multiple of another; 6 Hz and 12 Hz for example), 
because this prevents the independent analysis of the two spectral re
sponses (in the example, the second harmonic of the 6 Hz stimulus is 
located at the fundamental driving frequency of the other stimulus, i.e., 
at 12 Hz). 

The epoch duration, the duration of the EEG data segment used for 
frequency analysis, determines the spectral resolution used to quantify 
the ssVEP at each frequency. If the epoch is too short in duration, fre
quency resolution may not suffice for discriminating between the two or 
more frequencies used for tagging. In these cases, many researchers use 
padding with zeros or other suitable values, which increases the number 
of the bins on the x-axis of the spectrum and thus facilitates the sepa
ration of the tagging frequencies in the spectrum. It is important to note, 
however, that increasing the number of bins does not increase the true 
underlying spectral resolution because zero-padding only interpolates 
the information already contained in the data. It is also advisable to use 
epoch durations that hold integer numbers of cycles for a given tagging 
frequency, based on integer numbers of sample points. For example, 60 
full cycles of flicker ssVEPs evoked for 6000 ms at a frequency of 10 Hz, 
on a 60 Hz monitor, are captured by the 6000 ms window when sam
pling at 500 or 1000 Hz, but not when sampling at 512 Hz. Ensuring that 
the data segment of interest contains integer numbers of cycles and 
sample points will result in frequency spectra that contain bins at the 
exact stimulation frequency, without additional preprocessing steps 
such as up-sampling and padding (for an extensive discussion of these 
points, see Bach and Meigen, 1999). 

Planning the epoch duration and selecting the tagging frequencies 
such that integer cycles are available in the epoch of interest, at the 
sample rate used, also minimizes distortions related to so-called "spec
tral leaking." This term refers to the smearing of oscillatory responses 
across two or more bins of the spectrum, which may occur for example 
when there is no bin available at the exact tagging frequency. Such 
leaking may lead to misinterpretation of condition differences, espe
cially when the mapping of tagging frequencies to stimuli and experi
mental condition is not counterbalanced across the experiment. The 
reader is directed to reviews and guidelines regarding the technical as
pects of ssVEP procedures (Bach and Meigen, 1999; Keil et al., 2014; 
Norcia et al., 2015; Vialatte et al., 2010; Wieser et al., 2016). 

3. Analyzing frequency tagging data: a step-by-step 
demonstration 

3.1. The example data sets 

Example data from one adult (Silva et al., 2021) and one infant 
(Barry-Anwar et al., in preparation) are provided on the Open Science 
Framework companion site of this paper. Both data sets have undergone 
initial segmenting, filtering, and artifact control. The functions provided 
in the FreqTag toolbox expect a 3-dimensional MATLAB array with di
mensions of sensors, time points, and trials, as produced by widely used 
preprocessing tools including EEGLAB (Delorme and Makeig, 2004), 

ERPLAB (Lopez-Calderon and Luck, 2014) as well as other preprocessing 
pipelines used for infant data including HAPPE (Gabard-Durnam et al., 
2018); MADE (Debnath et al., 2020), PREP (Bigdely-Shamlo et al., 
2015), and ADJUST (Leach et al., 2020) and readily exported from en
vironments such as BrainVision Analyzer (BrainVision Analyzer, Brain 
Products GmbH, Gilching, Germany), fieldtrip (Oostenveld et al., 2011), 
MNEPython (Gramfort et al., 2013). 

3.1.1. Adult data set 
The first example data set data comes from a study with adult ob

servers (Silva et al., 2021). The full data set for this study can be found 
at: https://osf.io/a53s9/?view_only=1966f70fac954bac886381f 
908c7a275. For the sample data provided here, EEG was recorded 
from 129 channel geodesic EEG recording net (Philips EGI, OR, USA) 
while faces and novel objects (Sheinbugs, see Jones et al., 2018) were 
concurrently presented, fully spatially overlapping with each other, and 
rapidly contrast-modulated. Two different temporal rates, 5 Hz and 6 
Hz, one used for faces and one for objects (counterbalanced across 
participants). The experimental design is depicted in Fig. 1. Both stimuli 
periodically emerged at their tagging frequency from a Brownian noise 
(spatial noise with a 1/f2 characteristic) patch with the same mean 
luminance and contrast as the experimental stimuli for a duration of 
6000 ms for 70 trials. 

3.1.2. Infant data set 
The second example data set is taken from a recently completed in

fant investigation using frequency tagging. The entire data set, and 
stimuli are available at: Barry-Anwar et al., in preparation; OPEN 
NEURO- BIDS format. Parents of all participants gave informed consent 
prior to testing. EEG data were collected using a 129-channel Electrical 
Geodesic system (Net Amps 400, Phillips EGI, Eugene, OR). A subset of 
109 sensors were kept for analysis. Infants viewed up to 20 6-second 
trials (sample data are from a 9-month-old). Frequency tagging pa
rameters, stimuli, and trial duration were the same as in the adult 
sample. 

3.2. Using this document and planning the analyses 

The following step-by-step instructions reflect operations that are 
part of prototypical pipelines for visualizing and analyzing data from a 
frequency-tagging study. Readers are encouraged to follow along with 
the example pipeline code supplied on the github companion site in the 
matlab live script (.mlx) format (freqtag_pipeline_example1.mlx, and 
freqtag_pipeline_example2.mlx), or the corresponding.m file scripts. 
Live scripts allow users to read background documentation and execute 
the code stepwise, while examining inputs and outputs along with vi
sualizations of each step. Thus, these live scripts and their accompanying 
documentation detail many technical aspects and usage of the functions 
employed in the pipeline. The description of these steps in the present 
paper focuses on conceptual issues. It is thus not sufficient as a user’s 
manual for the toolbox. 

Importantly, when planning an analysis pipeline, the use of the an
alyses described in this report depends on 1) the duration of the stim
ulation epoch, or how many seconds the stimuli array was presented, 
and 2) the number of trials (how many times the stimulus array was 
repeated) by experimental condition (see Fig. 2). As a rule of thumb, 
analyses of time-varying changes in the envelope of the ssVEP at each 
tagging frequency require durations of several seconds and numbers of 
trials per condition that are comparable with studies of late event- 
related potentials such as the P3, which have commensurate signal-to- 
noise ratio. By contrast, if time information is discarded, within-trial 
averaging across several seconds of ssVEP may be applied using 
sliding window procedures, substantially boosting the signal-to-noise 
ratio and allowing spectral analyses at the level of single trials in 
many cases (see Fig. 2). The present report illustrates typical pipelines 
applied at the single participant level and includes quality checks and 
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suggestions for establishing the robustness of the spectral estimates. 

3.3. Example 1: determining the ssVEP spectrum and measuring the 
envelope time course 

In this first example, we describe a pipeline for quantifying the ssVEP 
in the frequency and time-frequency domains, applicable for studies in 
which substantial numbers of trials are available for averaging. The 

pipeline “freqtag_pipeline_example1.mlx” involves planning consider
ations, and the usage of three toolbox functions, freqtag_FFT, freq
tag_FFT3D, and freqtag_HILB. 

3.3.1. Assessing data quality and preparing a barebones spectral analysis 
The first step towards quantifying the ssVEP amplitude for the 

tagging frequencies is the computation of the amplitude spectrum using 
the Discrete Fourier Transform (DFT). This transform produces an 

Fig. 1. Segments used for Frequency and Time-Frequency analysis were 6 s long. The stimuli (faces and objects, flickering in 5hz and 6 Hz) concurrently emerged 
from a Brownian noise background. 
Experimental design modified from Silva et al. (2020). 

Fig. 2. A decision tree for the choice of analysis purposes showing how the number of trials lead to two sets of different analyses.  
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amplitude spectrum, in which frequency is shown on the x-axis and 
amplitude at each frequency is plotted on the y-axis. In a spectral 
analysis not all frequencies are available and their distribution along the 
x-axis is determined by the Fourier uncertainty principle (for detailed 
discussion see: Bach and Meigen, 1999; Keil, 2013). According to this 
principle, the frequency resolution is determined by the duration of the 
EEG data segment used for the frequency analysis. Specifically, the 
smallest possible step-width on the x-axis of a spectrum is given as the 
inverse of the duration of the data segment entering the analysis, in 
cycles per second, measured in Hertz (Hz). Thus, transforming a time 
segment of 2 s from the time into the frequency (spectral) domain results 
in a spectrum with ½ = 0.5 Hz frequency resolution and a frequency 
axis, drawn on the x, which contains the frequency from 0 to half of the 
sampling rate in steps of 0.5 Hz. By the same token, transforming a time 
segment with a duration of 5 s will result in a spectrum spaced at 
⅕ = 0.2 Hz. 

After establishing these cornerstones of the planned analysis, we 
apply them to the example data files. The first dataset (exampledata_1. 
mat) was recorded with a sample rate of 500 Hz and has already been 
filtered by means of a 30 Hz low-pass (18th order Butterworth) and a 1- 
Hz high-pass (4th order Butterworth). The epochs were extracted from 
continuous EEG data, containing 400 ms pre- and 7400 ms post-stimulus 
onset (see Silva et al., 2021 for detailed description). Thus, if researchers 
were to transform the entire segment, including the pre-stimulus data, 
into the frequency domain, the frequency resolution would be 0.1282 
(frequency resolution = 1/7.802, i.e., one divided by the segment’s 
duration in seconds). However, in studies with frequency tagging it is 
likely that researchers are interested in determining the spectrum 
selectively for the period of time during which ssVEP stimulation was 
present. In addition, it is often preferred to exclude the early portion of 
the stimulation epoch. This practice eliminates confounds of the ssVEP 
signal with potential transient ERPs evoked by the onset of the frequency 
tagging array and assists in focusing the analysis on the segment during 
which the ssVEP has reached a steady, stationary state. In the example 
adult data, we select a segment starting 1 s after the onset of the fre
quency tagging array and ending at 7 s after the onset of the Brownian 
noise. In the pipeline this segment is called “data_ssvep”. Considering 
the Nyquist Theorem and the sampling rate (500 Hz), we know that the 
highest frequency to be analyzed for the dataset is 250 Hz. Therefore, 
between 0 Hz and 250 Hz, in steps of 0.2 Hz (1/5 s), the spectrum 
contains 1251 frequencies. 

Highest(Nyquist)Frequency =
Sampling Rate

2
;

Frequency Resolution =
1

Epoch Duration in secs
;

To implement ssVEP frequency-tagging in this task, Silva and col
leagues (2021) used two different rates, 5 Hz and 6 Hz, one used for 
faces and one for objects. An initial manipulation check includes making 
sure that the dataset’s frequency resolution can discriminate between 
the frequencies used for tagging and that the x-axis of the spectrum 
contains a bin at the exact stimulation frequencies. It is common practice 
to remove frequencies unrelated to the focus of your analysis and fre
quencies that are not related to brain activity. In this case, the fre
quencies kept for further analysis are those between 0 and 32.33 Hz, 
called faxis in freqtag_pipeline_example1.mlx. 

In general, it is good practice to visualize the data after each step of 
the analysis. Using the plot command, readers can plot the data in the 
time domain as an event-related potential (see Fig. 3). In Fig. 3, the x- 
axis represents time, and the y-axis represents the amplitude. Examples 
for plotting the data are provided throughout the freqtag_pipeline_ex
ample1.m script. 

3.3.2. Conducting a barebones Fourier Transform: the freqtag_FFT function 
The Fourier Theorem states that any given time domain signal can be 

represented in the frequency domain by a sum of sine and cosine waves 
with different frequencies, amplitudes, and phases. Several excellent 
tutorials on the foundations of Fourier analysis in EEG research are 
available for readers interested in learning more about its mathematical 
principles (Cohen, 2011; Keil, 2013). Many implementations of spectral 
analyses for EEG data exist, most of which involve application of 
so-called taper windows, within-segment averaging, zero-padding, or 
differential weighting of time points entering spectral analysis. How
ever, for ssVEP analyses, a Fourier transform with no or minimal mod
ifications (i.e., a barebones implementation) may yield the most 
unbiased estimate of ssVEP amplitude and phase (for a discussion, see 
Bach and Meigen, 1999). 

At this stage of the pipeline, researchers make a key conceptual de
cision regarding the nature of the ssVEP signal: Traditionally, the ssVEP 
has been regarded an “evoked” response, which means that it is defined 
by being exactly time and phase-locked to the tagging stimulus, and thus 
analyzed analogous to event-related potentials. Specifically, a sufficient 
number of trials, with the same driving stimulus array, are collected and 
averaged in the time domain to suppress activity that is not locked to the 
timing of the periodically modulated stimulus. In the present case, this is 
accomplished by averaging across the third dimension of the data array 
(trials). The resulting 2-dimensional time-domain average (sensors by 
time points) is then submitted to a spectral analysis. This is accom
plished by the function freqtag_FFT.m, which uses the MATLAB built-in 
Discrete Fourier Transform algorithm (FFT.mat) without windowing or 
padding. This function outputs the amplitude spectrum, the phase 
spectrum, the complex spectrum of Fourier components, and a vector 
(list) of the frequency bins available in the spectrum. 

Fig. 3. Adult dataset plotted in the time domain as an event-related potential by averaging the trials in the third dimension. On the left, all 129 sensors are plotted. 
On the right, only the Oz sensor is plotted. The two vertical bars indicate the 6-second analysis time-window. 
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3.3.3. Conducting a Fourier Transform on single trials: the freqtag_FFT3D 
function 

A second approach to conceptualizing the ssVEP is to emphasize the 
flexible entrainment of ongoing brain oscillations by the driving stim
ulus array. Under this assumption, not all of the ssVEP signal is exactly 
time- and phase-locked across trials and trial averaging may thus cause 
information loss (Gulbinaite et al., 2019). Researchers adopting this 
view have often analyzed the ssVEP by transforming each individual 
trial into the spectral domain followed by averaging the resulting 
single-trial amplitude spectra, thus avoiding cancellation of activity at 
the driving frequency that is not exactly time-locked across trials. In the 
present pipeline, this is accomplished by the function freqtag_FFT3D.m, 
which uses the initial 3-D data array (data_ssvep) containing electrodes, 
time points, and trials (for the third dimension). This function applies 
the Fourier Transform on each trial and averages the resulting spectra. 

This latter approach is suggested for researchers who are interested 
in quantifying ssVEP activity while assuming that the phase may vary 
from trial to trial. For more experienced users, freqtag_FFT3D also out
puts the complex spectrum for each trial, which can be used to calculate 
measures of variability and consistency of the ssVEP response, such as 
the circular T2 statistic proposed by Victor and Mast (1991), or the 
Rayleigh statistic. The present paper cannot provide an in-depth dis
cussion of these metrics, but readers are encouraged to consider metrics 
based on complex representations, including when planning a study, as 
discussed in Baker et al. (2021). The toolbox also includes a version of 
the circular T2 statistic, for application with the output of freq
tag_FTT3D, or freqtag_slidewin, discussed below. 

The typical way of illustrating the results of the Fourier Transform is 
a 2-D plot with frequency on the x-axis and amplitude on the y-axis. For 

visualization purposes, readers may wish to select a subset of the 
available frequencies. In the present example, both the evoked spectrum 
(after averaging in the time domain; Fig. 4 – top panel) and the single- 
trial based spectrum (averaging the single trial spectra; Fig. 4 – bot
tom panel) show not only the activity at the stimulus tagging frequency 
(5 Hz and 6 Hz peaks) but also at other frequencies. These frequencies 
include multiples of each tagging frequency (harmonics, e.g., at 10 and 
12 Hz) but also some linear combinations of the two driving frequencies 
(intermodulation frequencies, e.g., at 4 Hz). There is a growing litera
ture on how these additional responses may be used to test hypotheses 
regarding neural function (Appelbaum et al., 2006; Kim et al., 2005; Kim 
and Verghese, 2012). In a typical application, the amplitude at occipital 
sensors will serve as the dependent variable for statistical analysis, 
potentially after being converted to a signal-to-noise ratio (see 3.4.3 for 
an implementation of this step). 

3.3.4. Using the Hilbert Transform to extract time-varying ssVEP amplitude 
envelopes: the freqtag_HILB function 

Research questions addressed in frequency tagging studies often 
involve the time course of visuocortical activity assessed separately for 
stimuli in the tagging array. One method for extracting the time course 
of a narrow-band oscillatory waveform is the Filter-Hilbert method. This 
method involves the Hilbert transform, a mathematical approach to 
generate a 90◦ phase-shifted version of the empirical time series, which 
then directly translates into a time-varying envelope measure. A core 
requirement for accurately determining and shifting the phase of the 
empirical signal is that the data used to perform the Hilbert transform 
are narrowly bandpass filtered. Although the Hilbert method can be 
readily applied to broadband signals containing activity at multiple 

Fig. 4. Two ways of applying the Fourier Transform: On the top panel, trials are averaged in the time domain followed by the execution of the freqtag_FFT.m 
function. In this case, the averaging procedure aims at suppressing the activity that is not time-locked to the driving frequency. On the bottom panel, a Fourier 
Transform is applied in each trial and the resulting spectra is averaged, this is accomplished by the freqtag3D_FFT.m. If the phase varies across trials, researchers can 
benefit from the later approach. Plots on the left column contain the amplitude information for each frequency; each sensor is a line. Plots on the right column, 
contain the information from the Oz sensor. 
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frequencies, its results will range from difficult to interpret to mean
ingless because it uses phase-shifting, and the phase of a signal is only 
defined for a specific frequency. 

Given the importance of digital bandpass filtering in the context of 
the Hilbert transform, readers may wish to peruse suitable tutorials and 
reviews of digital filtering as used in human electrophysiology (Luck, 
2005; Nitschke et al., 1998; Rousselet, 2012; Widmann et al., 2015). The 
present paper uses simple and straightforward Butterworth filters. In 
brief, bandpass filtering is achieved by the construction of a kernel that 
is convolved with the EEG data to both preserve the frequencies of in
terest and attenuate the undesired frequencies. To create such kernel, it 
is necessary to define the filter shape and the frequency characteristics 
that define that shape. Designing a Butterworth filter in Matlab involves 
two input arguments: the filter order and the cutoff frequency. The filter 
order determines the precision of the filter’s frequency response. 
Sharper roll-offs produced by higher filter order may increase the edge 
artifact expected to arise from filtering segmented data, and they 
heighten the delay of the filter onset response. Therefore, readers should 
carefully select the filter and visualize the data in order to control these 
artifacts. Once the kernels are built, the data can be filtered by means of 
the “filtfilt” function which is a zero-phased forward and reverse digital 
infinite-impulse filtering procedure. The function freqtag_HILB contains 
all of these steps such that the filtered version of the data is computed 
within the function and passed into the built-in MATLAB function 
“Hilbert”. 

The results of the Hilbert Transform are the outputs “hilbamp,” 
“phase,” and “complex.” The variables “hilbamp” and “phase” contain 
the information of how amplitude and phase of the tagging frequency 
change over time. The variable “complex” contains both the empirical 
(real part) and phase-shifted (imaginary part) of the ssVEP, combined 
into one complex number for each time point. To visualize how the 
ssVEP amplitude at the frequency of interest changes over time, readers 
may plot the time-varying amplitude (“hilbamp”; see Fig. 5). 

3.4. Example 2. Using the sliding window approach to estimate the ssVEP 
in single trials 

Not all research questions are readily addressed using information 
that is pooled across trials. Experimenters may wish to quantify the trial- 
by-trial change of visuocortical processing across only one experimental 
session or may wish to apply trial-based modeling of learning, habitu
ation, adaptation, or other concepts that are at odds with trial averaging. 
Furthermore, limitations specific to the design or the population may 
prevent researchers from obtaining enough trials to enable the approach 
discussed in 3.3 above. Fig. 6 represents the amplitude spectra obtained 
after the Fourier Transform, the expected driving frequencies and 

harmonic peaks are not as clear as the adult amplitude spectra shown in 
Fig. 4. In many of these cases, it is possible to quantify the ssVEP 
amplitude evoked by a specific tagging stimulus at the level of single 
trials, using a simple sliding window method (Morgan et al., 1996; 
Wieser et al., 2016). Here, we use an example data set obtained from 
infants to illustrate this method, which may be particularly helpful in 
developmental studies with few available trials. The procedures are 
illustrated in the accompanying live script freqtag_pipeline_example2. 
mlx. 

3.4.1. Implementing the sliding window analysis: the freqtag_slidewin 
function 

Sliding window analyses capitalize on the regularity of the driving 
stimulus and its evoked brain electric response, at a known frequency. 
The rationale is simple: given sufficient trial durations, a sliding average 
window that contains a suitable number of integer cycles of the driving 
frequency (in our example, 4 cycles) can be shifted across the ssVEP 
segment of interest, in steps that correspond to a full cycle of the oscil
lation (e.g., Morgan et al., 1996). Continuous averaging of the contents 
of these sliding windows amplifies any oscillation that is time and 
phase-locked to the driving stimulus and attenuates oscillations that 
vary in terms of their phase or frequency. 

The example infant data set (exempledata_2.mat) has a 3-dimen
sional MATLAB array with channels (109), time points (2500), and tri
als (after artifact detection 15 out of 20). During preprocessing and 
segmenting, the time points that were not of interest have been removed 
and the remaining 2500 sample points represent the duration of the 
frequency tagging array containing faces and objects, tagged at 5 and 
6 Hz. To implement the sliding window analysis, we use the function 
freqtag_slidewin.m, which executes all steps needed for this analysis, 
including the sliding window averaging and subsequent spectral anal
ysis. This function applies a sliding window analysis as described in 
Wieser et al. (2016) to each trial, at a given frequency. 

The freqtag_slidewin function requires as input arguments: the data 
in a 3-D format (sensor-by-time points-by-trials), a flag to determine 
whether or not to plot the sliding window process (plotfag), a vector 
containing the sample points to be used for baseline subtraction (bslvec), 
a vector containing the sample points to be used in the sliding window 
procedure (ssvepvc), the driving frequency (foi = 5 or 6), a new sample 
rate if needed (fsampnew, see below), the sampling rate (fsamp =
500 Hz), and an out name. The baseline correction is necessary to 
remove drift, which may induce spectral leaking. In the present 
example, exampledata_2 only contains the data segment during which 
the stimuli were flickering. If users are working with epochs containing 
other stimuli, they may assign only the time window of interest using the 
ssvepvec argument. 

Fig. 5. The time-varying ssVEP amplitude envelopes of the 5 Hz (on the left) and 6 Hz (on the left) tagging frequencies. This plot can be drawn using the results from 
the freqtag_HILB.m function. 
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The function computes the duration, the onset times, and the number 
of sliding windows. These windows contain 4 cycles of the driving fre
quency of interest and are stepped across the ssVEP segment in steps of 
one cycle. For example, when extracting the 5 Hz ssVEP, the sliding 
window contains 4 cycles of 200 ms (the wavelength at 5 Hz), thus being 
800 ms long. Second, the window is then moved across the EEG segment 
of interest in each trial, in steps of 200 ms, corresponding to one full 
cycle of the driving frequency at 5 Hz. 

At a driving rate of 6 Hz, the corresponding window length is 
666.667 ms, to be moved over the EEG segment in steps of 166.667 ms. 
Thus, at a sampling rate of 500 Hz, there will be no integer numbers of 
sample points that accommodates the step-width or window length. As 
explained above (Section 2.2), this will lead to spectral leaking due to 
including incomplete cycles entering the analysis. It is thus necessary to 
upsample the data to a rate that allows representation of integer cycles 
of the driving frequency. As discussed in Bach and Meigen (1999), an 
integer relation between monitor retrace and sample rate is required to 
ensure the capture of each available driving frequency by an integer 
number of sample points. In our example, this can be accomplished by 
upsampling the data to 600 Hz, implemented by setting the “sampnew” 
input argument accordingly. Setting the plotting flag to 1 produces a 
time-varying representation of each new sliding window and the 
running average. Default outputs of the function are the trial-by-trial 
spectral amplitude at the frequency of interest, at each electrode (tri
alamp), and a 3-dimensional array that contains the sliding average in 
the time domain, for each trial and sensor (winmat). 

One potential concern when using short segments of data is the cross- 
contamination of one tagging frequency by the other frequency, which is 
present in the signal, but not centered at another frequency bin. This 
concern may be particularly relevant when tagging frequencies occupy 

nearby spectral bins, as is the case in the example data sets used here: 
When applying the sliding window method to extract 6 Hz ssVEP re
sponses from single trials, there is no bin at 5 Hz in the spectrum used to 
measure the 6 Hz response, which has bins at steps of 1/0.666 = 1.5 Hz. 
In most practical situations, the sliding window average technique 
however suppresses responses outside the target frequency. To illustrate 
this, the toolbox contains a simulation (simulsidebands.m) of how 
varying the amplitude of one tagging frequency affects the ssVEP 
amplitude measurement at the other (target) frequency and vice versa, 
when using the sliding window approach. Across a range of signal and 
noise levels, this simulation (See Appendix C and accompanying code) 
shows that, given typical trial lengths and stimulation rates, cross-talk 
between tags does not significantly affect amplitude estimation with 
the sliding window average method. As is also shown in appendix C, 
crosstalk does affect certain measures of signal-to-noise ratio, especially 
in cases where the tags are nearby and when the signal-to-noise ratio of 
the frequency of interest is low. Thus, users are encouraged to use 
caution when using signal-to-noise ratios in combination with the 
sliding window method. 

3.4.2. Computing variables of interest: amplitude and phase-stability 
The default outputs of the sliding window function may not always 

be suitable for testing the hypothesis of interest in a given study. For 
example, if researchers are not interested in the trial-wise variation of 
the ssVEP they may wish to combine spectral information across trials, 
or to calculate amplitude after pooling the time-domain sliding window 
averages for each trial. For example, in studies with few trials in which 
the analyses described in 3.3 are unavailable. Like the rationale 
explained in 3.3 for time-domain averaging prior to spectral analysis, 
researchers may combine the single trial averaged windows into a cross- 

Fig. 6. Amplitude spectra from the Fourier Transform applied to the infant data. The vertical bars indicate the tagging frequencies (5 and 6 Hz). Although the spectra 
look as expected, it is not possible to obtain robust ssVEP response given the insufficient number of trials (less than 20). The evoked amplitude spectrum can be seen 
in the top panel, on the left, each electrode is a line and on the right the line represents the ssVEP amplitude at Oz. The mean amplitude of the single trial spectra is 
plotted on the bottom panel. 
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trial average, emphasizing the portion of the oscillation that is time and 
phase locked to the driving stimulus across repeated trials. 

This can be accomplished by averaging the time-domain information 
contained in the winmat (winmat3d5Hz or winmat3d6Hz) in the third 
dimension (trials). The new time series (meanwinmat, electrode-by- 
time-points) can, then, be used as the input argument for the freq
tag_FFT function. The frequency spectrum of the sliding windows can be 
plotted using the bar built-in MATLAB function (Fig. 7, left panel), 
where the y-axis is the amplitude at each time-point (variable “amp”) 
and the x-axis is the frequency axis (variable “freq”). Alternatively, the 
spectral amplitude extracted from each trial may be averaged across 
trials, allowing contributions to the trial averaged amplitude indepen
dent of the within-trial phase, using the function freqtag_FFT3D. 

As discussed in Wieser et al. (2016) researchers may also wish to test 
hypotheses regarding the stability of the tagged oscillation within each 
trial, measured as the phase similarity between all of the sliding win
dows. If the phase or latency of the ssVEP changes within a trial, relative 
to the periodic driving stimulus, then the phase similarity will be lower. 
If the phase relationship between the ssVEP and the driving stimulus 
remains stable across the duration of the trial, then the phase at the 
driving frequency should be similar across all sliding windows. Phase 
similarity is readily quantified using the phase-locking index, in which 
normalized complex phase values (real and imaginary part of the 
Fourier transform) are averaged and the absolute value (vector length or 
the Euclidean norm) of the average is the phase similarity index. The 
freqtag_slidewin function computes the phase stability index for each 
trial and outputs a value for each electrodes and trial as 2-dimensional 
matrix (electrodes by trials), which can then be statistically analyzed 
and plotted using EEGLAB/ERPLAB. 

3.4.3. Computing the signal-to-noise ratio: freqtag_simpleSNR 
Finally, as was visible from the amplitude spectra shown in 3.3.2 (see 

Fig. 4), spectral peaks located at the ssVEP amplitude often sit on top of 
other spectral phenomena which may include ongoing oscillatory ac
tivity or non-periodic activity. Thus, a comparison of raw amplitude 
often is difficult, as the amplitude estimate may confound ssVEP with 
non-ssVEP amplitude at the frequency of interest. Researchers have 
addressed this problem by computing signal-to-noise ratios or similar 
measures (e.g., baseline corrected amplitude) for determining the dis
tance between the ssVEP amplitude peak of interest from spectral noise 
in the same region of the spectrum (see e.g. Rossion et al., 2012). This 
issue has also been discussed for non-ssVEP spectral signals, which are 
often difficult to distinguish from non-periodic activity: Several 
advanced methods have been developed to separate oscillatory activity 
from other contributions to the spectrum (Donoghue et al., 2020). These 
methods often rely on estimating the overall shape of the amplitude 
spectrum which tends to take the shape of an exponential (1/f) function. 

In the case of ssVEP spectra after trial averaging however, or with 
shorter segments as used in sliding window analyses, the spectrum tends 
to be overall flat, with the ssVEP tagging frequency visible as a signal. In 
the present report, we provide a widely used and simple approach for 
addressing this issue and measure the ratio of the amplitude at a given 
driving frequency over the mean amplitude measured at suitable 
neighboring (non-ssVEP) frequencies, by means of the freqtag_sim
pleSNR function. 

As shown in the example, the selection of adjacent frequencies for 
the noise estimation aims to avoid other tagging frequencies, harmonics, 
and intermodulation frequencies (linear combinations of the tagging 
frequencies). The resulting ratios can be exported for hypothesis testing 
as unitless ratios, but also converted into decibels. One way to plot the 
result as decibels, using the bar built-in MATLAB function, is using the 

Fig. 7. Moving window estimates. On the left panel, each line is a sensor that combines the single trials time-domain information of the evoked ssVEP at 5 Hz (top) 
and 6 Hz (bottom). The time series (meanwinmat) obtained from the freqtag_slidewin.m can be projected in the frequency domain by means of Fourier Transform 
(freqtag_FFT.m). The right panel shows the amplitude spectra of the sliding-window at 5 Hz (top) and 6hz (bottom). 
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SNRdb output of this function (SNRdb5Hz or SNRdb6Hz) as the y-axis 
and the “freq” as the x-axis “freq” is a variable originated through the 
freqtag_FFT and contains all the available frequencies as a vector. 

To fully take advantage of the barebones functions provided in this 
toolbox, readers are invited to consult extant review papers on ssVEPs 
and the frequency tagging approach (Norcia et al., 2015; Wieser et al., 
2016). Furthermore, the functions provided here are readily combined 
with functions from other MATLAB-based analysis environments, which 
may add additional functionality. Finally, the code provided is intended 
to be tailored to specific research questions and populations. Many of the 
intermediate results computed in this pipeline may be used in ways that 
suit researchers interested in concepts like connectivity, neural compe
tition, source distribution, and inter-trial variability of visuocortical 
signals (e.g., Silva et al., 2021). 

4. Summary and outlook 

The goal of this article was to provide readers with conceptual and 
practical building blocks for ssVEP analysis for data collected using 
frequency tagging. The ability to individually quantify the individual 
visuocortical responses evoked by multiple concurrent and overlapping 
stimuli is a unique strength of this approach. Thus, frequency tagging 
allows testing hypotheses not typically addressable with other methods, 
including hypotheses regarding interactions between multiple items. 
Given its robust underlying signal, the method is highly suited for 
investigating populations that may be unable to sit through lengthy 
experimental sessions including infants, young children, and clinical 
populations. 
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